596
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge

, ORCID Icon, , , &
Pages 11925-11941 | Published online: 11 Jul 2022

References

  • Agarwal, P., T. S. Morriseau, S. M. Kereliuk, C. A. Doucette, B. A. Wicklow, and V. W. Dolinsky. 2018. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Critical Reviews in Clinical Laboratory Sciences 55 (2):71–101. doi: 10.1080/10408363.2017.1422109.
  • Antoun, E., N. T. Kitaba, P. Titcombe, K. V. Dalrymple, E. S. Garratt, S. J. Barton, R. Murray, P. T. Seed, J. D. Holbrook, M. S. Kobor, et al. 2020. Maternal dysglycaemia, changes in the infant’s epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Medicine 17 (11):e1003229., doi: 10.1371/journal.pmed.1003229.
  • Aron, P. M., and J. A. Kennedy. 2008. Flavan-3-ols: Nature, occurrence and biological activity. Molecular Nutrition & Food Research 52 (1):79–104. doi: 10.1002/mnfr.200700137.
  • Aschner, P. J., and A. J. Ruiz. 2012. Metabolic memory for vascular disease in diabetes. Diabetes Technology & Therapeutics 14 (S1):S-68. doi: 10.1089/dia.2012.0012.
  • Balasubramanyam, A. 2021. Defining and classifying new subgroups of diabetes. Annual Review of Medicine 72:63–74. doi: 10.1146/annurev-med-050219-034524.
  • Bangarusamy, D. K., A. P. Lakshmanan, S. Al-Zaidan, S. Alabduljabbar, and A. Terranegra. 2021. Nutri-epigenetics: The effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatrics 73 (2):98–110. doi: 10.23736/S2724-5276.20.06166-6.
  • Bansal, A., S. Balasubramanian, S. Dhawan, A. Leung, Z. Chen, and R. Natarajan. 2020. Integrative omics analyses reveal epigenetic memory in diabetic renal cells regulating genes associated with kidney dysfunction. Diabetes 69 (11):2490–02. doi: 10.2337/db20-0382.
  • Barbati, S. A., C. Colussi, L. Bacci, A. Aiello, A. Re, E. Stigliano, A. M. Isidori, C. Grassi, A. Pontecorvi, A. Farsetti, et al. 2017. Transcription factor CREM mediates high glucose response in cardiomyocytes and in a male mouse model of prolonged hyperglycemia. Endocrinology 158 (7):2391–405. doi: 10.1210/en.2016-1960.
  • Bayo, J., E. J. Fiore, L. M. Dominguez, A. Real, M. Malvicini, M. Rizzo, C. Atorrasagasti, M. G. García, J. Argemi, E. D. Martinez, et al. 2019. A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. Journal of Hepatology 71 (1):78–90. doi: 10.1016/j.jhep.2019.03.007.
  • Billah, M. M., S. Khatiwada, M. J. Morris, and C. A. Maloney. 2022. Effects of paternal overnutrition and interventions on future generations. International Journal of Obesity (2005) 46 (5):901–17. doi: 10.1038/s41366-021-01042-7.
  • Bošković, A., and O. J. Rando. 2018. Transgenerational epigenetic inheritance. Annual Review of Genetics 52:21–41. doi: 10.1146/annurev-genet-120417-031404.
  • Caro-Ordieres, T., G. Marín-Royo, L. Opazo-Ríos, L. Jiménez-Castilla, J. A. Moreno, C. Gómez-Guerrero, and J. Egido. 2020. The coming age of flavonoids in the treatment of diabetic complications. Journal of Clinical Medicine 9 (2):346–76. doi: 10.3390/jcm9020346.
  • Castro, B. T., L. R. Ingerslev, P. S. Alm, S. Versteyhe, J. Massart, M. Rasmussen, I. Donkin, R. Sjögren, J. M. Mudry, L. Vetterli, et al. 2016. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Molecular Metabolism 5 (3):184–97. doi: 10.1016/j.molmet.2015.12.002.
  • Chen, X., L. Qian, B. Wang, Z. Zhang, H. Liu, Y. Zhang, and J. Liu. 2019. Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type II diabetes mellitus mice. Molecules 24 (5):955–71. doi: 10.3390/molecules24050955.
  • Chen, Z., F. Miao, B. H. Braffett, J. M. Lachin, L. Zhang, X. Wu, D. Roshandel, M. Carless, X. A. Li, J. D. Tompkins, et al. 2020. DNA methylation mediates development of HbA1c-associated complications in type 1 diabetes. Nature Metabolism 2 (8):744–62., doi: 10.1038/s42255-020-0231-8.
  • Choi, K. C., M. G. Jung, Y. H. Lee, J. C. Yoon, S. H. Kwon, H. B. Kang, M. J. Kim, J. H. Cha, Y. J. Kim, W. J. Jun, et al. 2009. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Research 69 (2):583–92. doi: 10.1158/0008-5472.CAN-08-2442.
  • Choi, Y., N. Larson, D. D. Gallaher, A. O. Odegaard, J. S. Rana, J. M. Shikany, L. M. Steffen, and D. R. Jacobs. 2020. A shift toward a plant-centered diet from young to middle adulthood and subsequent risk of type 2 diabetes and weight gain: The coronary artery risk development in young adults (CARDIA) study. Diabetes Care 43 (11):2796–803. doi: 10.2337/dc20-1005.
  • Ciesielski, O., M. Biesiekierska, and A. Balcerczyk. 2020. Epigallocatechin-3-gallate (EGCG) alters histone acetylation and methylation and impacts chromatin architecture profile in human endothelial cells. Molecules 25 (10):2326–41. doi: 10.3390/molecules25102326.
  • Cione, E., T. C. La, R. Cannataro, M. C. Caroleo, P. Plastina, and L. Gallelli. 2019. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human microRNA modulation. Molecules 25 (1):63–84. doi: 10.3390/molecules25010063.
  • Cissé, O., I. Fajardy, F. Delahaye, A. Dickes, V. Montel, E. Moitrot, C. Breton, D. Vieau, and C. Laborie. 2019. Effect of diet in females (F1) from prenatally undernourished mothers on metabolism and liver function in the F2 progeny is sex-specific. European Journal of Nutrition 58 (6):2411–23. doi: 10.1007/s00394-018-1794-y.
  • Cordero-Herrera, I., X. Chen, S. Ramos, and S. Devaraj. 2017. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. European Journal of Nutrition 56 (3):1369–73. doi: 10.1007/s00394-015-1136-2.
  • Das, S., M. A. Reddy, P. Senapati, K. Stapleton, L. Lanting, M. Wang, V. Amaram, R. Ganguly, L. Zhang, S. Devaraj, et al. 2018. Diabetes mellitus-induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology 38 (8):1806–20. doi: 10.1161/ATVBAHA.117.310663.
  • Degirmenci, U., J. Li, Y. C. Lim, D. T. C. Siang, S. Lin, H. Liang, and L. Sun. 2019. Silencing an insulin-induced lncRNA, LncASIR, impairs the transcriptional response to insulin signalling in adipocytes. Scientific Reports 9 (1):5608–18. doi: 10.1038/s41598-019-42162-5.
  • Ding, G. L., Y. Liu, M. E. Liu, J. X. Pan, M. X. Guo, J. Z. Sheng, and H. F. Huang. 2015. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian Journal of Andrology 17 (6):948–53. doi: 10.4103/1008-682X.150844.
  • Ding, H., F. Wang, X. Shi, H. Ma, Y. Du, L. Hou, and N. Xing. 2020. LncRNA MALAT1 induces the dysfunction of β cells via reducing the histone acetylation of the PDX-1 promoter in type 1 diabetes. Experimental and Molecular Pathology 114:104432. doi: 10.1016/j.yexmp.2020.104432.
  • Dolinoy, D. C., J. R. Weidman, R. A. Waterland, and R. L. Jirtle. 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environmental Health Perspectives 114 (4):567–72. doi: 10.1289/ehp.8700.
  • Dong, M. Z., Q. N. Li, L. H. Fan, L. Li, W. Shen, Z. B. Wang, and Q. Y. Sun. 2021. Diabetic uterine environment leads to disorders in metabolism of offspring. Frontiers in Cell and Developmental Biology 9:706879. doi: 10.3389/fcell.2021.706879.
  • Dong, Y., Y. Xing, J. Sun, W. Sun, Y. Xu, and C. Quan. 2020. Baicalein alleviates liver oxidative stress and apoptosis induced by high-level glucose through the activation of the PERK/Nrf2 signaling pathway. Molecules 25 (3):599–616. doi: 10.3390/molecules25030599.
  • Dunford, A. R., and J. M. Sangster. 2017. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11:S655–S662. doi: 10.1016/j.dsx.2017.04.021.
  • Escande, C., V. Nin, N. L. Price, V. Capellini, A. P. Gomes, M. T. Barbosa, L. O’Neil, T. A. White, D. A. Sinclair, and E. N. Chini. 2013. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: Implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62 (4):1084–93. doi: 10.2337/db12-1139.
  • Fang, P., Y. Sun, X. Gu, M. Shi, P. Bo, Z. Zhang, and L. Bu. 2019. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 64:153074. doi: 10.1016/j.phymed.2019.153074.
  • Fang, P., M. Yu, W. Min, S. Han, M. Shi, Z. Zhang, and P. Bo. 2018. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. Diabetes Research and Clinical Practice 139:262–71. doi: 10.1016/j.diabres.2018.03.007.
  • Fitz-James, M. H., and G. Cavalli. 2022. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews. Genetics 23 (6):325–41. doi: 10.1038/s41576-021-00438-5.
  • Franzago, M., F. Fraticelli, L. Stuppia, and E. Vitacolonna. 2019. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics 14 (3):215–35. doi: 10.1080/15592294.2019.1582277.
  • Fu, Z., J. Yuskavage, and D. Liu. 2013. Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. Journal of Agricultural and Food Chemistry 61 (18):4303–9. doi: 10.1021/jf304915h.
  • Gabriel, R., A. N. Boukichou, T. Acosta, A. Gilis-Januszewska, R. Gómez-Huelgas, K. Makrilakis, Z. Kamenov, B. Paulweber, I. Satman, P. Djordjevic, et al. 2020. Early prevention of diabetes microvascular complications in people with hyperglycaemia in Europe. ePREDICE randomized trial. Study protocol, recruitment and selected baseline data. PLoS One. 15 (4):e0231196., doi: 10.1371/journal.pone.0231196.
  • Gan, M., L. Shen, S. Wang, Z. Guo, T. Zheng, Y. Tan, Y. Fan, L. Liu, L. Chen, A. Jiang, et al. 2020. Genistein inhibits high fat diet-induced obesity through miR-222 by targeting BTG2 and adipor1. Food & Function 11 (3):2418–26. doi: 10.1039/c9fo00861f.
  • Gapp, K., A. Jawaid, P. Sarkies, J. Bohacek, P. Pelczar, J. Prados, L. Farinelli, E. Miska, and I. M. Mansuy. 2014. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience 17 (5):667–9. doi: 10.1038/nn.3695.
  • Giglio, R. V., A. P. Stoian, A. M. Patti, A. A. Rizvi, V. Sukhorukov, M. Ciaccio, A. Orekhov, and M. Rizzo. 2021. Genetic and epigenetic bmarkers for diagnosis, prognosis and treatment of metabolic syndrome. Current Pharmaceutical Design 27 (35):3729–40. doi: 10.2174/1381612827666210412145915.
  • Godfrey, W., S. Y. Cutfield, P. N. Chan, Y. S. Baker, and Chong, K. M. 2017. Nutritional intervention preconception and during pregnancy to maintain healthy glucose metabolism and offspring health (“NiPPeR”): Study protocol for a randomised controlled trial. Trials 18 (1):131–43. doi: 10.1186/s13063-017-1875-x.
  • Gómez-Zorita, S., M. González-Arceo, A. Fernández-Quintela, I. Eseberri, J. Trepiana, and M. P. Portillo. 2020. Scientific evidence supporting the beneficial effects of isoflavones on human health. Nutrients 12 (12):3853–78. doi: 10.3390/nu12123853.
  • Guevara-Cruz, M., E. T. Godinez-Salas, M. Sanchez-Tapia, G. Torres-Villalobos, E. Pichardo-Ontiveros, R. Guizar-Heredia, L. Arteaga-Sanchez, G. Gamba, R. Mojica-Espinosa, A. Schcolnik-Cabrera, et al. 2020. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Research & Care 8 (1):e000948. doi: 10.1136/bmjdrc-2019-000948.
  • Guo, C. J., J. J. Xie, R. H. Hong, H. S. Pan, F. G. Zhang, and Y. M. Liang. 2019. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 115:108570. doi: 10.1016/j.biopha.2019.01.031.
  • Guo, T. Y., F. J. Luo, and Q. L. Lin. 2020. You are affected by what your parents eat: Diet, epigenetics, transgeneration and intergeneration. Trends in Food Science & Technology 100:248–61. doi: 10.1016/j.tifs.2020.04.021.
  • Guo, X. F., Y. Ruan, Z. H. Li, and D. Li. 2019. Flavonoid subclasses and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Critical Reviews in Food Science and Nutrition 59 (17):2850–62. doi: 10.1080/10408398.2018.1476964.
  • Han, P., D. Gao, W. Zhang, S. Liu, S. Yang, and X. Li. 2015. Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sciences 130:103–7. doi: 10.1016/j.lfs.2015.02.022.
  • Han, S., Y. Luo, Z. Hu, D. Qin, and F. Luo. 2022. Targeting gut microbiota in type 2 diabetes mellitus: Potential roles of dietary flavonoids. Food Bioscience 45 (3):101500. doi: 10.1016/j.fbio.2021.101500.
  • Hanafi, M. Y., M. M. Saleh, M. I. Saad, T. M. Abdelkhalek, and M. A. Kamel. 2016. Transgenerational effects of obesity and malnourishment on diabetes risk in F2 generation. Molecular and Cellular Biochemistry 412 (1-2):269–80. doi: 10.1007/s11010-015-2633-6.
  • Harcourt, B. E., S. A. Penfold, and J. M. Forbes. 2013. Coming full circle in diabetes mellitus: From complications to initiation. Nature Reviews. Endocrinology 9 (2):113–23. doi: 10.1038/nrendo.2012.236.
  • Homayouni, F., F. Haidari, M. Hedayati, M. Zakerkish, and K. Ahmadi. 2017. Hesperidin supplementation alleviates oxidative DNA damage and lipid peroxidation in type 2 Diabetes: A randomized double-blind placebo-controlled clinical trial. Phytotherapy Research : PTR 31 (10):1539–45. doi: 10.1002/ptr.5881.
  • Hostetler, G. L., A. Ralston, and S. J. Schwartz. 2017. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition (Bethesda, Md.) 8 (3):423–35. doi: 10.3945/an.116.012948.
  • Jiang, H., Q. Yao, Y. An, L. Fan, J. Wang, and H. Li. 2022. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m6A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged capase3 pathway. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 94:153823. doi: 10.1016/j.phymed.2021.153823.
  • Jiang, A., K. Johnson, J. Pratte, A. Beals, S. M. Bullock, and Manson, L. 2018. Long-term outcomes of lifestyle intervention to prevent diabetes in American Indian and Alaska native communities: The special diabetes program for Indians diabetes prevention program. Diabetes Care 41 (7):1462–70. doi: 10.2337/dc17-2685.
  • Jimenez-Chillaron, J. C., M. Ramon-Krauel, S. Ribo, and R. Diaz. 2016. Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. The Proceedings of the Nutrition Society 75 (1):78–89. doi: 10.1017/S0029665115004231.
  • Johnson, R. K., L. A. Vanderlinden, F. Dong, P. M. Carry, J. Seifert, K. Waugh, H. Shorrosh, T. Fingerlin, B. I. Frohnert, I. V. Yang, et al. 2020. Longitudinal DNA methylation differences precede type 1 diabetes. Scientific Reports 10 (1):3721. doi: 10.1038/s41598-020-60758-0.
  • Kaimala, S., C. A. Kumar, M. Z. Allouh, S. A. Ansari, and B. S. Emerald. 2022. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Medicinal Research Reviews 42 (3):1343–71. doi: 10.1002/med.21878.
  • Karnam, K., K. Sedmaki, P. Sharma, G. Routholla, S. Goli, B. Ghosh, V. V. K. Venuganti, and O. P. Kulkarni. 2020. HDAC6 inhibitor accelerates wound healing by inhibiting tubulin mediated IL-1β secretion in diabetic mice. Biochimica et Biophysica Acta. Molecular Basis of Disease 1866 (11):165903. doi: 10.1016/j.bbadis.2020.165903.
  • Kedhari, S. M., A. Hussain, S. Haque, R. Raina, and N. Afroze. 2019. Quercetin modifies 5’CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. Journal of Cellular Biochemistry 120 (10):18357–69. doi: 10.1002/jcb.29147.
  • Kerner, J., and Brückel, W. 2014. Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes : Official Journal, German Society of Endocrinology [and] German Diabetes Association 122 (7):384–6. doi: 10.1055/s-0034-1366278.
  • Kerr, A. G., I. Sinha, S. Dadvar, P. Arner, and I. Dahlman. 2019. Epigenetic regulation of diabetogenic adipose morphology. Molecular Metabolism 25:159–67. doi: 10.1016/j.molmet.2019.04.009.
  • Khan, J., P. K. Deb, S. Priya, K. D. Medina, R. Devi, S. G. Walode, and M. Rudrapal. 2021. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 26 (13):4021. doi: 10.3390/molecules26134021.
  • Khan, M. A., A. Hussain, M. K. Sundaram, U. Alalami, D. Gunasekera, L. Ramesh, A. Hamza, and U. Quraishi. 2015. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncology Reports 33 (4):1976–84. doi: 10.3892/or.2015.3802.
  • Khan, S. 2021. Wogonin and alleviation of hyperglycemia via inhibition of DAG mediated PKC expression. a brief insight. Protein and Peptide Letters 28 (12):1365–71. doi: 10.2174/0929866528666211027113349.
  • Kim, A., and J. M. Yun. 2017. Combination treatments with luteolin and fisetin enhance anti-inflammatory effects in high glucose-treated THP-1 cells through histone acetyltransferase/histone deacetylase regulation. Journal of Medicinal Food 20 (8):782–9. doi: 10.1089/jmf.2017.3968.
  • Kim, D., H. J. Nam, W. Lee, H. Y. Yim, J. Y. Ahn, S. W. Park, H. R. Shin, R. Yu, K. J. Won, J. S. Bae, et al. 2018. PKCα-LSD1-NF-κB-signaling cascade is crucial for epigenetic cntrol of the inflammatory response. Molecular Cell 69 (3):398–411. doi: 10.1016/j.molcel.2018.01.002.
  • Kim, H. J., S. H. Kim, and J. M. Yun. 2012. Fisetin inhibits hyperglycemia-induced proinflammatory cytokine production by epigenetic mechanisms. Evidence-Based Complementary and Alternative Medicine : eCAM 2012:639469. doi: 10.1155/2012/639469.
  • Kim, H. J., W. Lee, and J. M. Yun. 2014. Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes. Phytotherapy Research : PTR 28 (9):1383–91. doi: 10.1002/ptr.5141.
  • King, S. E., and M. K. Skinner. 2020. Epigenetic transgenerational inheritance of obesity susceptibility. Trends in Endocrinology and Metabolism: TEM 31 (7):478–94. doi: 10.1016/j.tem.2020.02.009.
  • Knip, M., and H. K. Akerblom. 2005. Early nutrition and later diabetes risk. Advances in Experimental Medicine and Biology 569:142–50. doi: 10.1007/1-4020-3535-7_21.
  • Kowluru, R. A. 2020a. Retinopathy in a diet-induced type 2 diabetic rat model and role of epigenetic modifications. Diabetes 69 (4):689–98. doi: 10.2337/db19-1009.
  • Kowluru, R. A., and G. Mohammad. 2020b. Epigenetics and Mitochondrial Stability in the Metabolic memory phenomenon associated with continued progression of diabetic retinopathy. Scientific Reports 10 (1):6655. doi: 10.1038/s41598-020-63527-1.
  • Kowluru, R. A., and G. Mohammad. 2022. Epigenetic modifications in diabetes. Metabolism: Clinical and Experimental 126:154920. doi: 10.1016/j.metabol.2021.154920.
  • Kumari, A., S. Bhawal, S. Kapila, H. Yadav, and R. Kapila. 2022. Health-promoting role of dietary bioactive compounds through epigenetic modulations: A novel prophylactic and therapeutic approach. Critical Reviews in Food Science and Nutrition 62 (3):619–39. doi: 10.1080/10408398.2020.1825286.
  • Kuryłowicz, A. 2020. The role of isoflavones in type 2 Diabetes prevention and treatment-A narrative review. International Journal of Molecular Sciences 22 (1):218–51. doi: 10.3390/ijms22010218.
  • Lachin, J. M., and D. M. Nathan. 2021. Understanding metabolic memory: The prolonged influence of glycemia during the diabetes control and complications trial (DCCT) on future risks of complications during the study of the epidemiology of diabetes interventions and complications (EDIC). Diabetes Care 44 (10):2216–24. doi: 10.2337/dc20-3097.
  • Lee, W. J., J. Y. Shim, and B. T. Zhu. 2005. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Molecular Pharmacology 68 (4):1018–30. doi: 10.1124/mol.104.008367.
  • Lei, J., Q. Nie, and D. B. Chen. 2018. A single-cell epigenetic model for paternal psychological stress-induced transgenerational reprogramming in offspring. Biology of Reproduction 98 (6):846–55. doi: 10.1093/biolre/ioy050.
  • Li, A., R. Peng, Y. Sun, H. Liu, H. Peng, and Z. Zhang. 2018a. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. Cell Death & Disease 9 (5):461–77. doi: 10.1038/s41419-018-0527-8.
  • Li, D., C. Jiang, G. Mei, Y. Zhao, L. Chen, J. Liu, Y. Tang, C. Gao, and P. Yao. 2020a. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 12 (10):2954. doi: 10.3390/nu12102954.
  • Li, N., X. Wu, W. Zhuang, L. Xia, Y. Chen, R. Zhao, M. Yi, Q. Wan, L. Du, and Y. Zhou. 2020b. Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans. Molecular Nutrition & Food Research 64 (4):e1900751. doi: 10.1002/mnfr.201900751.
  • Li, R. Z., X. W. Ding, T. Geetha, L. Al-Nakkash, T. L. Broderick, and J. R. Babu. 2020c. Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Design, Development and Therapy 14:3325–36. doi: 10.2147/DDDT.S249608.
  • Li, T., Y. Yang, X. Wang, W. Dai, L. Zhang, and C. Piao. 2021. Flavonoids derived from buckwheat hull can break advanced glycation end-products and improve diabetic nephropathy. Food & Function 12 (16):7161–70. doi: 10.1039/d1fo01170g.
  • Li, X., X. Shi, Y. Hou, X. Cao, L. Gong, H. Wang, J. Li, J. Li, C. Wu, D. Xiao, et al. 2018b. Paternal hyperglycemia induces transgenerational inheritance of susceptibility to hepatic steatosis in rats involving altered methylation on Pparα promoter. Biochimica et Biophysica Acta. Molecular Basis of Disease 1865 (1):147–60. doi: 10.1016/j.bbadis.2018.10.040.
  • Li, Y., F. Chen, A. Wei, F. Bi, X. Zhu, S. Yin, W. Lin, and W. Cao. 2019. Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice. Journal of Molecular Medicine (Berlin, Germany) 97 (4):541–52. doi: 10.1007/s00109-019-01759-z.
  • Liberman, N., S. Y. Wang, and E. L. Greer. 2019. Transgenerational epigenetic inheritance: From phenomena to molecular mechanisms. Current Opinion in Neurobiology 59:189–206. doi: 10.1016/j.conb.2019.09.012.
  • Ling, C., and T. Rönn. 2019. Epigenetics in human obesity and type 2 diabetes. Cell Metabolism 29 (5):1028–44. doi: 10.1016/j.cmet.2019.03.009.
  • Ling, C., and T. Rönn. 2016. Epigenetic markers to further understand insulin resistance. Diabetologia 59 (11):2295–7. doi: 10.1007/s00125-016-4109-y.
  • Liu, D., J. T. Perkins, and B. Hennig. 2016. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-κB target genes in human endothelial cells. The Journal of Nutritional Biochemistry 28:164–70. doi: 10.1016/j.jnutbio.2015.10.003.
  • Liu, H., H. Guan, X. Tan, Y. Jiang, F. Li, D. Sun-Waterhouse, and D. Li. 2022. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96-5p. Free Radical Biology & Medicine 181:105–17. doi: 10.1016/j.freeradbiomed.2022.02.002.
  • Liu, H., L. Wang, F. Li, Y. Jiang, H. Guan, D. Wang, D. Sun-Waterhouse, M. Wu, and D. Li. 2021a. The synergistic protection of EGCG and quercetin against streptozotocin (STZ)-induced NIT-1 pancreatic β cell damage via upregulation of BCL-2 expression by miR-16-5p. The Journal of Nutritional Biochemistry 96:108748. doi: 10.1016/j.jnutbio.2021.108748.
  • Liu, J., Y. Sun, M. Cheng, Q. Liu, W. Liu, C. Gao, J. Feng, Y. Jin, and L. Tu. 2021b. Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech 22 (3):133. doi: 10.1208/s12249-021-02012-y.
  • Liu, X., F. Qi, and W. Wu. 2014. Effect of intervention in the diacylglycerol‑protein kinase C signaling pathway on JNK1 expression and its downstream signaling in diabetic cardiomyopathy. Molecular Medicine Reports 9 (3):979–84. doi: 10.3892/mmr.2014.1904.
  • Luo, J., X. Wang, L. Yuan, and L. Guo. 2021. Genome‑wide profiling of DNA methylation and gene expression unravel the epigenetic landscape in diabetes-related hypothyroidism. Clinical Epigenetics 13 (1):123–34. doi: 10.1186/s13148-021-01109-2.
  • Lv, Y., P. Zhao, K. Pang, Y. Ma, H. Huang, T. Zhou, and X. Yang. 2021. Antidiabetic effect of a flavonoid-rich extract from Sophora alopecuroides L. in HFD- and STZ- induced diabetic mice through PKC/GLUT4 pathway and regulating PPARα and PPARγ expression. Journal of Ethnopharmacology 268:113654. doi: 10.1016/j.jep.2020.113654.
  • Matboli, M., D. Ibrahim, A. H. Hasanin, M. K. Hassan, E. K. Habib, M. M. Bekhet, A. M. Afifi, and S. Eissa. 2021b. Epigenetic modulation of autophagy genes linked to diabetic nephropathy by administration of isorhamnetin in type 2 diabetes mellitus rats. Epigenomics 13 (3):187–202. doi: 10.2217/epi-2020-0353.
  • Matboli, M., M. Saad, A. H. Hasanin, A. L. Saleh, W. Baher, M. M. Bekhet, and S. Eissa. 2021a. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: Molecular and computational approach. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 135:111176. doi: 10.1016/j.biopha.2020.111176.
  • Matsui, M., and D. R. Corey. 2017. Non-coding RNAs as drug targets. Nature Reviews. Drug Discovery 16 (3):167–79. doi: 10.1038/nrd.2016.117.
  • Mehdipour, P., S. A. Marhon, I. Ettayebi, A. Chakravarthy, A. Hosseini, Y. Wang, F. A. Castro, Y. H. Loo, C. Ishak, S. Abelson, et al. 2020. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588 (7836):169–73. doi: 10.1038/s41586-020-2844-1.
  • Meng, H., Y. Cao, J. Qin, X. Song, Q. Zhang, Y. Shi, and L. Cao. 2015. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences 11 (5):604–17. doi: 10.7150/ijbs.11218.
  • Merino, J. 2022. Precision nutrition in diabetes: When population-based dietary advice gets personal. Diabetologia Epub ahead of print doi: 10.1007/s00125-022-05721-6.
  • Miguel-Escalada, I., S. Bonàs-Guarch, I. Cebola, J. Ponsa-Cobas, J. Mendieta-Esteban, G. Atla, B. M. Javierre, D. M. Y. Rolando, I. Farabella, C. C. Morgan, et al. 2019. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nature Genetics 51 (7):1137–48. doi: 10.1038/s41588-019-0457-0.
  • Milenkovic, D., K. Declerck, Y. Guttman, Z. Kerem, S. Claude, A. R. Weseler, A. Bast, H. Schroeter, C. Morand, and B. W. Vanden. 2020. (-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochemical Pharmacology 173:113699. doi: 10.1016/j.bcp.2019.113699.
  • Miro-Blanch, J., and O. Yanes. 2019. Epigenetic regulation at the interplay between gut microbiota and host metabolism. Frontiers in Genetics 10:638–47. doi: 10.3389/fgene.2019.00638.
  • Morrison, A. J. 2020. Chromatin-remodeling links metabolic signaling to gene expression. Molecular Metabolism 38:100973. doi: 10.1016/j.molmet.2020.100973.
  • Nadeau, J. H. 2009. Transgenerational genetic effects on phenotypic variation and disease risk. Human Molecular Genetics 18 (R2):R202–10. doi: 10.1093/hmg/ddp366.
  • Naidoo, V., M. Naidoo, and M. Ghai. 2018. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scandinavian Journal of Immunology 88 (6):e12723. doi: 10.1111/sji.12723.
  • Nettore, I. C., C. Rocca, G. Mancino, L. Albano, D. Amelio, F. Grande, F. Puoci, T. Pasqua, S. Desiderio, R. Mazza, et al. 2019. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. The Journal of Nutritional Biochemistry 69:151–62. doi: 10.1016/j.jnutbio.2019.03.019.
  • Ni, T., N. Lin, W. Lu, Z. Sun, H. Lin, J. Chi, and H. Guo. 2020. Dihydromyricetin prevents diabetic cardiomyopathy via miR-34a suppression by activating autophagy. Cardiovascular Drugs and Therapy 34 (3):291–301. doi: 10.1007/s10557-020-06968-0.
  • Nodelman, I. M., and G. D. Bowman. 2021. Biophysics of chromatin remodeling. Annual Review of Biophysics 50:73–93. doi: 10.1146/annurev-biophys-082520-080201.
  • Otto, M., C. Bucher, W. Liu, M. Müller, T. Schmidt, M. Kardell, M. N. Driessen, J. Rossaint, E. R. Gross, and N. M. Wagner. 2020. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. The Journal of Clinical Investigation 130 (9):4999–5010. doi: 10.1172/JCI136621.
  • Ou, X. H., C. C. Zhu, and S. C. Sun. 2019. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. Journal of Cellular Physiology 234 (6):7847–55. doi: 10.1002/jcp.27847.
  • Pandey, N., N. Goswami, D. Tripathi, K. K. Rai, S. K. Rai, S. Singh, and S. Pandey-Rai. 2019. Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L. Planta 249 (2):497–514. doi: 10.1007/s00425-018-3022-7.
  • Papamichou, D., D. B. Panagiotakos, and C. Itsiopoulos. 2019. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD 29 (6):531–43. doi: 10.1016/j.numecd.2019.02.004.
  • Pasquel, F. J., M. C. Lansang, K. Dhatariya, and G. E. Umpierrez. 2021. Management of diabetes and hyperglycaemia in the hospital. The Lancet. Diabetes & Endocrinology 9 (3):174–88. doi: 10.1016/S2213-8587(20)30381-8.
  • Peixoto, P., P. F. Cartron, A. A. Serandour, and E. Hervouet. 2020. From 1957 to nowadays: A brief history of epigenetics. International Journal of Molecular Sciences 21 (20):7571–89. doi: 10.3390/ijms21207571.
  • Persico, G., F. Casciaro, A. Marinelli, C. Tonelli, K. Petroni, and M. Giorgio. 2021. Comparative analysis of histone H3K4me3 distribution in mouse liver in different diets reveals the epigenetic efficacy of cyanidin-3-O-glucoside dietary intake. International Journal of Molecular Sciences 22 (12):6503–13. doi: 10.3390/ijms22126503.
  • Quach, A., M. E. Levine, T. Tanaka, A. T. Lu, B. H. Chen, L. Ferrucci, B. Ritz, S. Bandinelli, M. L. Neuhouser, J. M. Beasley, et al. 2017. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9 (2):419–46. doi: 10.18632/aging.101168.
  • Raina, R., A. G. Almutary, S. A. Bagabir, N. Afroze, S. Fagoonee, S. Haque, and A. Hussain. 2021. Chrysin modulates aberrant epigenetic variations and hampers migratory behavior of human cervical (HeLa) cells. Frontiers in Genetics 12:768130. doi: 10.3389/fgene.2021.768130.
  • Remely, M., F. Ferk, S. Sterneder, T. Setayesh, S. Roth, T. Kepcija, R. Noorizadeh, I. Rebhan, M. Greunz, J. Beckmann, et al. 2017. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Oxidative Medicine and Cellular Longevity 2017:3079148. doi: 10.1155/2017/3079148.
  • Rodríguez, J. B., and C. Camprubí Sánchez. 2019. Epigenetic transgenerational inheritance. Advances in Experimental Medicine and Biology 1166:57–74. doi: 10.1007/978-3-030-21664-1_4.
  • Rollo, M. E., R. L. Haslam, and C. E. Collins. 2020. Impact on dietary intake of two levels of technology-assisted personalized nutrition: A randomized trial. Nutrients 12 (11):3334. doi: 10.3390/nu12113334.
  • Rosen, E. D., K. H. Kaestner, R. Natarajan, M. E. Patti, R. Sallari, M. Sander, and K. Susztak. 2018. Epigenetics and epigenomics: Implications for diabetes and obesity. Diabetes 67 (10):1923–31. doi: 10.2337/db18-0537.
  • Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, et al. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice 157:107843., doi: 10.1016/j.diabres.2019.107843.
  • Saini, R. K., A. Ranjit, K. Sharma, P. Prasad, X. Shang, K. G. M. Gowda, and Y. S. Keum. 2022. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 11 (2):239. doi: 10.3390/antiox11020239.
  • Santos, J. L., B. J. Krause, L. R. Cataldo, J. Vega, F. Salas-Pérez, P. Mennickent, R. Gallegos, F. I. Milagro, P. Prieto-Hontoria, J. I. Riezu-Boj, et al. 2020. PPARGC1A gene promoter methylation as a biomarker of insulin secretion and sensitivity in response to glucose challenges. Nutrients 12 (9):2790. doi: 10.3390/nu12092790.
  • Sharma, M., N. Akhtar, K. Sambhav, G. Shete, A. K. Bansal, and S. S. Sharma. 2015. Emerging potential of citrus flavanones as an antioxidant in diabetes and its complications. Current Topics in Medicinal Chemistry 15 (2):187–95. doi: 10.2174/1568026615666141209163013.
  • Shi, G. J., Y. Li, Q. H. Cao, H. X. Wu, X. Y. Tang, X. H. Gao, J. Q. Yu, Z. Chen, and Y. Yang. 2019. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 109:1085–99. doi: 10.1016/j.biopha.2018.10.130.
  • Singh, J., P. Mittal, B. G. Vasant, G. Ajmal, and B. Mishra. 2018. Design, optimization, characterization and in-vivo evaluation of quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup3):S546–S555. doi: 10.1080/21691401.2018.1501379.
  • Singh, R., S. Chandel, D. Dey, A. Ghosh, S. Roy, V. Ravichandiran, and D. Ghosh. 2020. Epigenetic modification and therapeutic targets of diabetes mellitus. Bioscience Reports 40 (9):BSR20202160. doi: 10.1042/BSR20202160.
  • Skinner, M. K., M. Manikkam, and C. Guerrero-Bosagna. 2010. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology and Metabolism: TEM 21 (4):214–22. doi: 10.1016/j.tem.2009.12.007.
  • Smeriglio, A., A. Calderaro, M. Denaro, G. Laganà, and E. Bellocco. 2019. Effects of isolated isoflavones intake on health. Current Medicinal Chemistry 26 (27):5094–107. doi: 10.2174/0929867324666171006143047.
  • Song, Y., J. H. Kamstra, Y. Cao, J. Asselman, d’Auriac, M. Anglès, and N. Friberg. 2021. High-throughput analyses and bayesian network modeling highlight novel epigenetic adverse outcome pathway networks of DNA methyltransferase inhibitor mediated transgenerational effects. Journal of Hazardous Materials 408:124490. doi: 10.1016/j.jhazmat.2020.124490.
  • Staite, E., A. Bayley, E. Al-Ozairi, K. Stewart, D. Hopkins, J. Rundle, N. Basudev, Z. Mohamedali, and K. Ismail. 2020. A wearable technology delivering a web-based diabetes prevention program to people at high risk of type 2 diabetes: Randomized controlled trial. JMIR mHealth and uHealth 8 (7):e15448. doi: 10.2196/15448.
  • Stegemann, R., and D. A. Buchner. 2015. Transgenerational inheritance of metabolic disease. Seminars in Cell & Developmental Biology 43:131–40. doi: 10.1016/j.semcdb.2015.04.007.
  • Stillman, B. 2018. Histone modifications: Insights into their influence on gene expression. Cell 175 (1):6–9. doi: 10.1016/j.cell.2018.08.032.
  • Su, L., and M. E. Patti. 2019. Paternal nongenetic intergenerational transmission of metabolic disease risk. Current Diabetes Reports 19 (7):38–47. doi: 10.1007/s11892-019-1163-0.
  • Szarc, K., K. Declerck, M. Vidaković, and B. W. Vanden. 2015. From inflammaging to healthy aging by dietary lifestyle choices: Is epigenetics the key to personalized nutrition? Clinical Epigenetics 7 (1):33–51. doi: 10.1186/s13148-015-0068-2.
  • Tavares, R. S., and J. Ramalho-Santos. 2021. The role of sperm and oocyte in fetal programming: Is Lamarck making a comeback? European Journal of Clinical Investigation 51 (10):e13521. doi: 10.1111/eci.13521.
  • Testai, L., and V. Calderone. 2017. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients 9 (5):502–15. doi: 10.3390/nu9050502.
  • Thomas, A. A., S. Biswas, B. Feng, S. Chen, J. Gonder, and S. Chakrabarti. 2019. LncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 62 (3):517–30. doi: 10.1007/s00125-018-4797-6.
  • Tsai, H. H., C. Y. Shen, C. C. Ho, S. Y. Hsu, D. M. Tantoh, O. N. Nfor, S. L. Chiu, Y. H. Chou, and Y. P. Liaw. 2022. Interaction between a diabetes-related methylation site (TXNIP cg19693031) and variant (GLUT1 rs841853) on fasting blood glucose levels among non-diabetics. Journal of Translational Medicine 20 (1):87–96. doi: 10.1186/s12967-022-03269-y.
  • Tu, P., X. Li, B. Ma, H. Duan, Y. Zhang, R. Wu, Z. Ni, P. Jiang, H. Wang, M. Li, et al. 2015. Liver histone H3 methylation and acetylation may associate with type 2 diabetes development. Journal of Physiology and Biochemistry 71 (1):89–98. doi: 10.1007/s13105-015-0385-0.
  • Vaag, A. A., L. G. Grunnet, G. P. Arora, and C. Brøns. 2012. The thrifty phenotype hypothesis revisited. Diabetologia 55 (8):2085–8. doi: 10.1007/s00125-012-2589-y.
  • Vastolo, V., I. C. Nettore, M. Ciccarelli, L. Albano, G. A. Raciti, M. Longo, F. Beguinot, and P. Ungaro. 2018. High-fat diet unveils an enhancer element at the Ped/Pea-15 gene responsible for epigenetic memory in skeletal muscle. Metabolism: Clinical and Experimental 287:70–9. doi: 10.1016/j.metabol.2018.06.001.
  • Vigorelli, V., J. Resta, V. Bianchessi, A. Lauri, B. Bassetti, M. Agrifoglio, M. Pesce, G. Polvani, G. Bonalumi, L. Cavallotti, et al. 2019. Abnormal DNA methylation induced by hyperglycemia reduces CXCR 4 gene expression in CD 34+ stem Cells. Journal of the American Heart Association 8 (9):e010012. doi: 10.1161/JAHA.118.010012.
  • Volkmar, M., S. Dedeurwaerder, D. A. Cunha, M. N. Ndlovu, M. Defrance, R. Deplus, E. Calonne, U. Volkmar, M. Igoillo-Esteve, N. Naamane, et al. 2012. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. The EMBO Journal 31 (6):1405–26. doi: 10.1038/emboj.2011.503.
  • Walaszczyk, E., M. Luijten, A. M. W. Spijkerman, M. J. Bonder, H. L. Lutgers, H. Snieder, B. H. R. Wolffenbuttel, and J. V. Vliet-Ostaptchouk. 2018. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: A systematic review and replication in a case-control sample of the Lifelines study. Diabetologia 61 (2):354–68. doi: 10.1007/s00125-017-4497-7.
  • Wang, D., Y. Li, Q. Q. Zhai, Y. F. Zhu, B. Y. Liu, and Y. Xu. 2022. Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats. Bosnian Journal of Basic Medical Sciences 22 (2):191–204. doi: 10.17305/bjbms.2021.6299.
  • Wang, W., L. Min, X. Qiu, X. Wu, C. Liu, J. Ma, D. Zhang, and L. Zhu. 2021a. Biological function of long non-coding RNA (LncRNA) xist. Frontiers in Cell and Developmental Biology 9:645647. doi: 10.3389/fcell.2021.645647.
  • Wang, S. W., H. Sheng, Y. F. Bai, Y. Y. Weng, X. Y. Fan, F. Zheng, J. Q. Fu, and F. Zhang. 2021b. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 88:153454. doi: 10.1016/j.phymed.2020.153454.
  • Wang, X., H. Gao, W. Wu, E. Xie, Y. Yu, X. He, J. Li, W. Zheng, X. Wang, X. Cao, et al. 2019a. The zinc transporter Slc39a5 controls glucose sensing and insulin secretion in pancreatic β-cells via Sirt1- and Pgc-1α-mediated regulation of Glut2. Protein & Cell 10 (6):436–49. doi: 10.1007/s13238-018-0580-1.
  • Wang, Y., C. Hou, J. Wisler, K. Singh, C. Wu, Z. Xie, Q. Lu, and Z. Zhou. 2019b. Elevated histone H3 acetylation is associated with genes involved in T lymphocyte activation and glutamate decarboxylase antibody production in patients with type 1 diabetes. Journal of Diabetes Investigation 10 (1):51–61. doi: 10.1111/jdi.12867.
  • Wang, Y., H. Li, L. Wang, J. Han, Y. Yang, T. Fu, H. Qiao, Z. Wang, and J. Li. 2021c. Mucoadhesive nanocrystal-in-microspheres with high drug loading capacity for bioavailability enhancement of silybin. Colloids and Surfaces. B, Biointerfaces 198:111461. doi: 10.1016/j.colsurfb.2020.111461.
  • Wei, X. B., W. Wei, L. L. Ding, and S. Y. Liu. 2021. Comparison of the effects of 10 GLP-1 RA and SGLT2 inhibitor interventions on cardiovascular, mortality, and kidney outcomes in type 2 diabetes: A network meta-analysis of large randomized trials. Primary Care Diabetes 15 (2):208–11. doi: 10.1016/j.pcd.2020.08.017.
  • Wei, Y., C. R. Yang, Y. P. Wei, Z. A. Zhao, Y. Hou, H. Schatten, and Q. Y. Sun. 2014. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proceedings of the National Academy of Sciences of the United States of America 111 (5):1873–8. doi: 10.1073/pnas.1321195111.
  • Weng, L., F. Zhang, R. Wang, W. Ma, and Y. Song. 2019. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chemico-Biological Interactions 310:108665. doi: 10.1016/j.cbi.2019.05.031.
  • Xavier, M. J., S. D. Roman, R. J. Aitken, and B. Nixon. 2019. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Human Reproduction Update 25 (5):518–40. doi: 10.1093/humupd/dmz017.
  • Xiong, C., Q. Wu, M. Fang, H. Li, B. Chen, and T. Chi. 2020. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. The Journal of International Medical Research 48 (4):300060520903642. doi: 10.1177/0300060520903642.
  • Yajnik, C. S., and P. C. Yajnik. 2020. Fetal adiposity epidemic in the modern world: A thrifty phenotype aggravated by maternal obesity and diabetes. The American Journal of Clinical Nutrition 112 (1):8–10. doi: 10.1093/ajcn/nqaa122.
  • Yang, J., X. Wang, C. Zhang, L. Ma, T. Wei, Y. Zhao, and X. Peng. 2021. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chemistry 347:129056. doi: 10.1016/j.foodchem.2021.129056.
  • Yang, X. H., B. L. Zhang, X. M. Zhang, J. D. Tong, Y. H. Gu, L. L. Guo, and H. M. Jin. 2020. EGCG attenuates renal damage via reversing klotho hypermethylation in diabetic db/db mice and HK-2 Cells. Oxidative Medicine and Cellular Longevity 2020:6092715. doi: 10.1155/2020/6092715.
  • Yin, H., L. Huang, T. Ouyang, and L. Chen. 2018. Baicalein improves liver inflammation in diabetic db/db mice by regulating HMGB1/TLR4/NF-κB signaling pathway. International Immunopharmacology 55:55–62. doi: 10.1016/j.intimp.2017.12.002.
  • Yu, Y., H. Du, S. Wei, L. Feng, J. Li, F. Yao, M. Zhang, G. M. Hatch, and L. Chen. 2018. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics 8 (8):2171–88. doi: 10.7150/thno.22565.
  • Zhang, F., D. Ma, W. Zhao, D. Wang, T. Liu, Y. Liu, Y. Yang, Y. Liu, J. Mu, B. Li, et al. 2020b. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion. Nature Communications 11 (1):1822. doi: 10.1038/s41467-020-15529-w.
  • Zhang, J., X. Gao, M. Wei, Y. Li, G. Yang, C. Yang, and L. Yu. 2021. A novel epigenetic drug conjugating flavonoid and HDAC inhibitor confer suppression of acute myeloid leukemogenesis. Clinical Science (London, England : 1979) 135 (14):1751–65. doi: 10.1042/CS20210571.
  • Zhang, L., Q. Lu, and C. Chang. 2020a. Epigenetics in health and disease. Advances in Experimental Medicine and Biology 1253:3–55. doi: 10.1007/978-981-15-3449-2_1.
  • Zhang, L., Q. Zhang, S. Liu, Y. Chen, R. Li, T. Lin, C. Yu, H. Zhang, Z. Huang, X. Zhao, et al. 2017. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury. Kidney International 92 (1):140–53. doi: 10.1016/j.kint.2017.01.010.
  • Zhang, X. T., G. Wang, L. F. Ye, Y. Pu, R. T. Li, J. Liang, L. Wang, K. K. H. Lee, and X. Yang. 2020d. Baicalin reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal injury in type 1 diabetic mouse model. Cell Cycle (Georgetown, Tex.) 19 (23):3329–47. doi: 10.1080/15384101.2020.1843815.
  • Zhang, Y., M. Gu, Y. Ma, and Y. Peng. 2020c. LncRNA TUG1 reduces inflammation and enhances insulin sensitivity in white adipose tissue by regulating miR-204/SIRT1 axis in obesity mice. Molecular and Cellular Biochemistry 475 (1-2):171–83. doi: 10.1007/s11010-020-03869-6.
  • Zhao, L., Y. Wang, J. Liu, K. Wang, X. Guo, B. Ji, W. Wu, and F. Zhou. 2016. Protective effects of genistein and puerarin against chronic alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. Journal of Agricultural and Food Chemistry 64 (38):7291–7. doi: 10.1021/acs.jafc.6b02907.
  • Zhong, J., C. Xu, E. A. Reece, and P. Yang. 2016. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. American Journal of Obstetrics and Gynecology 215 (3):368.e1–368.e10. doi: 10.1016/j.ajog.2016.03.009.
  • Zhou, Q., K. W. Cheng, J. Gong, T. S. Li, and M. Wang. 2019. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. Biochemical Pharmacology 166:231–41. doi: 10.1016/j.bcp.2019.05.027.
  • Zhou, Y. X., H. Zhang, and C. Peng. 2014. Puerarin: A review of pharmacological effects. Phytotherapy Research : PTR 28 (7):961–75. doi: 10.1002/ptr.5083.
  • Zhu, Z., X. Chen, Y. Xiao, J. Wen, J. Chen, K. Wang, and G. Chen. 2019. Gestational diabetes mellitus alters DNA methylation profiles in pancreas of the offspring mice. Journal of Diabetes and Its Complications 33 (1):15–22. doi: 10.1016/j.jdiacomp.2018.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.