573
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise

, , , ORCID Icon, ORCID Icon, , , , & show all
Pages 11967-11986 | Published online: 11 Jul 2022

References

  • Abdul Malik, N., M. Mohamed, M.-Z. Mustafa, and A. Zainuddin. 2020. In vitro modulation of extracellular matrix genes by stingless bee honey in cellular aging of human dermal fibroblast cells. Journal of Food Biochemistry 44 (1):e13098. doi: 10.1111/jfbc.13098.
  • Abu-Serie, M.-M., and N.-H. Habashy. 2018. The ameliorating effect of the combined extract from Greek Thymus vulgaris and bee’s honey on the hydrocortisone-induced osteoporosis in rat bone cells via modulating the bone turnover. RSC Advances 8 (50):28341–55. doi: 10.1039/C8RA04370A.
  • Afrin, S., S.-M. Haneefa, M.-J. Fernandez-Cabezudo, F. Giampieri, B.-K. Al-Ramadi, and M. Battino. 2020. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: An evidence-based review. Nutrition Research Reviews 33 (1):50–76. doi: 10.1017/S0954422419000192.
  • Ahmad, N.-S., A. Abdul Aziz, K.-W. Kong, M.-S.-A. Hamid, J.-P.-G. Cheong, and S.-H. Hamzah. 2017. Dose-response effect of Tualang Honey on postprandial antioxidant activity and oxidative stress in female athletes: A pilot study. Journal of Alternative and Complementary Medicine 23 (12):989–95. doi: 10.1089/acm.2017.0129.
  • Aliyu, M., S. Ibrahim, H.-M. Inuwa, A.-B. Sallau, O. Abbas, I.-A. Aimola, N. Habila, and N.-S. Uche. 2013. Ameliorative effects of acacia honey against sodium arsenite-induced oxidative stress in some viscera of male Wistar albino rats. Biochemistry Research International 2013:1–5. doi: 10.1155/2013/502438.
  • Almasaudi, S.-B., A.-T. Abbas, R.-R. Al-Hindi, N.-A. El-Shitany, U.-A. Abdel-Dayem, S.-S. Ali, R.-M. Saleh, S.-K. Al Jaouni, M.-A. Kamal, and S.-M. Harakeh. 2017. Manuka honey exerts antioxidant and anti-inflammatory activities that promote healing of acetic acid-induced gastric ulcer in rats. Evidence-Based Complementary and Alternative Medicine 2017:5413917. doi: 10.1155/2017/5413917.
  • Alvarez-Suarez, J.-M., F. Giampieri, A.-M. González-Paramás, E. Damiani, P. Astolfi, G. Martinez-Sanchez, S. Bompadre, J.-L. Quiles, C. Santos-Buelga, and M. Battino. 2012. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology 50 (5):1508–16. doi: 10.1016/j.fct.2012.01.042.
  • Alvarez-Suarez, J. M., F. Giampieri, M. Cordero, M. Gasparrini, T. Y. Forbes-Hernández, L. Mazzoni, S. Afrin, P. Beltrán-Ayala, A. M. González-Paramás, C. Santos-Buelga, et al. 2016. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. Journal of Functional Foods 25:38–49. doi: 10.1016/j.jff.2016.05.008.
  • Al-Yahya, M., R. Mothana, M. Al-Said, M. Al-Dosari, N. Al-Musayeib, M. Al-Sohaibani, M.-K. Parvez, and S. Rafatullah. 2013. Attenuation of CCl4-induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats. Evidence-Based Complementary and Alternative Medicine 2013:569037. doi: 10.1155/2013/569037.
  • Amidfar, M., J. de Oliveira, E. Kucharska, J. Budni, and Y.-K. Kim. 2020. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sciences 257:118020. doi: 10.1016/j.lfs.2020.118020.
  • Anisimov, V. N., and A. Bartke. 2013. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Critical Reviews in Oncology/Hematology 87 (3):201–23. doi: 10.1016/j.critrevonc.2013.01.005.
  • Ansary, J., and D. Cianciosi. 2020. Natural antioxidants: Is the research going in the right direction? Mediterranean Journal of Nutrition and Metabolism 13 (3):187–91. doi: 10.3233/MNM-200484.
  • Argyropoulou, A., N. Aligiannis, I.-P. Trougakos, and A.-L. Skaltsounis. 2013. Natural compounds with anti-ageing activity. Natural Product Reports 30 (11):1412–37. doi: 10.1039/c3np70031c.
  • Azami, S.-H., H. Nazarian, M.-A. Abdollahifar, F. Eini, M.-A. Farsani, and M.-G. Novin. 2020. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reproduction, Fertility, and Development 32 (3):292–303. doi: 10.1071/RD18472.
  • Azman, K.-F., and R. Zakaria. 2019. Honey as an antioxidant therapy to reduce cognitive ageing. Iranian Journal of Basic Medical Sciences 22 (12):1368–77. doi: 10.22038/IJBMS.2019.14027.
  • Badillo-Carrasco, A., V. Jiménez-Trigo, J.-M. Romero-Márquez, L. Rivas-García, A. Varela-López, and M.-D. Navarro-Hortal. 2022. Evidence supporting beneficial effects of virgin olive oil compared to sunflower and fish oils from the point of view of aging and longevity. Mediterranean Journal of Nutrition and Metabolism 15 (1):69–80. doi: 10.3233/MNM-210587.
  • Balistreri, C.-R., G. Candore, G. Accardi, G. Colonna-Romano, and D. Lio. 2013. NF-κB pathway activators as potential ageing biomarkers: Targets for new therapeutic strategies. Immunity & Ageing 10 (1):24. doi: 10.1186/1742-4933-10-24.
  • Barja, G. 2013. Updating the mitochondrial free radical theory of aging: An integrated view, key aspects, and confounding concepts. Antioxidants & Redox Signaling 19 (12):1420–45. doi: 10.1089/ars.2012.5148.
  • Battino, M., F. Giampieri, D. Cianciosi, J. Ansary, X. Chen, D. Zhang, E. Gil, and T. Forbes-Hernández. 2021. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine 86:153170. doi: 10.1016/j.phymed.2020.153170.
  • Bayram, B., B. Ozcelik, S. Grimm, T. Roeder, C. Schrader, I.-M.-A. Ernst, A.-E. Wagner, T. Grune, J. Frank, and G. Rimbach. 2012. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Research 15 (1):71–81. doi: 10.1089/rej.2011.1245.
  • Bello, R. I., C. Gómez-Díaz, M.-I. Burón, P. Navas, and J.-M. Villalba. 2006. Differential regulation of hepatic apoptotic pathways by dietary olive and sunflower oils in the aging rat. Experimental Gerontology 41 (11):1174–84. doi: 10.1016/j.exger.2006.08.012.
  • Bezerra, M. L. R., E. L. de Souza, J. M. B. de Sousa, M. D. S. Lima, A. F. Alves, M. d G. Almeida, R. Coutinho Alves, E. Veríssimo de Araújo, N. L. Soares, G. A. da Silva, et al. 2018. Effects of honey from Mimosa quadrivalvis L. (Malícia) produced by the Melipona subnitida D. (Jandaíra) nats. Food & Function 9 (8):4480–92. doi: 10.1039/c8fo01044g.
  • Bickford, P. C., T. Gould, L. Briederick, K. Chadman, A. Pollock, D. Young, B. Shukitt-Hale, and J. Joseph. 2000. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Research 866 (1-2):211–7. doi: 10.1016/S0006-8993(00)02280-0.
  • Bickford, P. C., B. Shukitt-Hale, and y J. Joseph. 1999. Effects of aging on cerebellar noradrenergic function and motor learning: Nutritional interventions. Mechanisms of Ageing and Development 111 (2-3):141–54. doi: 10.1016/S0047-6374(99)00063-9.
  • Blackwell, T. K., M.-J. Steinbaugh, J.-M. Hourihan, C.-Y. Ewald, and M. Isik. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology & Medicine 88 (Pt B):290–301. doi: 10.1016/j.freeradbiomed.2015.06.008.
  • Bowtell, J. L., Z. Aboo-Bakkar, M.-E. Conway, A.-L.-R. Adlam, and J. Fulford. 2017. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism 42 (7):773–9. doi: 10.1139/apnm-2016-0550.
  • Bullon, P., M. Battino, A. Varela-Lopez, P. Perez-Lopez, S. Granados-Principal, M. C. Ramirez-Tortosa, J. J. Ochoa, M. D. Cordero, A. Gonzalez-Alonso, C. L. Ramirez-Tortosa, et al. 2013. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS One 8 (9):e74234. doi: 10.1371/journal.pone.0074234.
  • Caruso, G., S. A. Torrisi, M. P. Mogavero, W. Currenti, S. Castellano, J. Godos, R. Ferri, F. Galvano, G. M. Leggio, G. Grosso, et al. 2022. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacology & Therapeutics 232:108013. doi: 10.1016/j.pharmthera.2021.108013.
  • Casadesus, G., B. Shukitt-Hale, H.-M. Stellwagen, X. Zhu, H.-G. Lee, M.-A. Smith, and J.-A. Joseph. 2004. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience 7 (5-6):309–16. doi: 10.1080/10284150400020482.
  • Cefali, L. C., J.-G. Franco, G.-F. Nicolini, J.-A. Ataide, and P.-G. Mazzola. 2019. In vitro antioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation. Journal of Cosmetic Dermatology 18 (2):539–44. doi: 10.1111/jocd.12842.
  • Chakravarti, D., K.-A. LaBella, and R.-A. DePinho. 2021. Telomeres: History, health, and hallmarks of aging. Cell 184 (2):306–22. doi: 10.1016/j.cell.2020.12.028.
  • Chen, J.-R., O.-P. Lazarenko, X. Wu, J. Kang, M.-L. Blackburn, K. Shankar, T. M. Badger, and M.-J.-J. Ronis. 2010. Dietary-induced serum phenolic acids promote bone growth via P38 MAPK/β-catenin canonical Wnt signaling. Journal of Bone and Mineral Research 25 (11):2399–411. doi: 10.1002/jbmr.137.
  • Chepulis, L.-M., N.-J. Starkey, J.-R. Waas, and P.-C. Molan. 2009. The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats. Physiology & Behavior 97 (3-4):359–68. doi: 10.1016/j.physbeh.2009.03.001.
  • Cherif, H., D. Bisson, P. Jarzem, M. Weber, J. Ouellet, and L. Haglund. 2019. Curcumin and o-vanillin exhibit evidence of senolytic activity in human IVD cells in vitro. Journal of Clinical Medicine 8 (4):433. doi: 10.3390/jcm8040433.
  • Cianciosi, D., J. Simal-Gándara, and T.-Y. Forbes-Hernández. 2019. The importance of berries in the human diet. Mediterranean Journal of Nutrition and Metabolism 12 (4):335–40. doi: 10.3233/MNM-190366.
  • Cianciosi, D., T. Forbes-Hernández, S. Afrin, M. Gasparrini, P. Reboredo-Rodriguez, P. Manna, J. Zhang, L. Bravo Lamas, S. Martínez Flórez, P. Agudo Toyos, et al. 2018. Phenolic compounds in honey and their associated health benefits: A review. Molecules 23 (9):2322. doi: 10.3390/molecules23092322.
  • Cianciosi, D., T.-Y. Forbes-Hernández, J. Ansary, E. Gil, A. Amici, S. Bompadre, J. Simal-Gandara, F. Giampieri, and M. Battino. 2020. Phenolic compounds from Mediterranean foods as nutraceutical tools for the prevention of cancer: The effect of honey polyphenols on colorectal cancer stem-like cells from spheroids. Food Chemistry 325:126881. doi: 10.1016/j.foodchem.2020.126881.
  • Coluzzi, E., M. Colamartino, R. Cozzi, S. Leone, C. Meneghini, N. O’Callaghan, and A. Sgura. 2014. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 9 (10):e110963. doi: 10.1371/journal.pone.0110963.
  • Coluzzi, E., S. Leone, and A. Sgura. 2019. Oxidative stress induces telomere dysfunction and senescence by replication fork arrest. Cells 8 (1):19. doi: 10.3390/cells8010019.
  • Corrado, A., D. Cici, C. Rotondo, N. Maruotti, and F.-P. Cantatore. 2020. Molecular basis of bone aging. International Journal of Molecular Sciences 21 (10):3679. doi: 10.3390/ijms21103679.
  • Demirovic, D., and S.-I.-S. Rattan. 2011. Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology 12 (5):437–44. doi: 10.1007/s10522-011-9326-7.
  • Deng, J., R. Liu, Q. Lu, P. Hao, A. Xu, J. Zhang, and J. Tan. 2018. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to Manuka honey. Food Chemistry 252:243–9. doi: 10.1016/j.foodchem.2018.01.115.
  • Devareddy, L., S. Hooshmand, J.-K. Collins, E.-A. Lucas, S.-C. Chai, and B.-H. Arjmandi. 2008. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. The Journal of Nutritional Biochemistry 19 (10):694–9. doi: 10.1016/j.jnutbio.2007.09.004.
  • DiLoreto, R., and C.-T. Murphy. 2015. The cell biology of aging. Molecular Biology of the Cell 26 (25):4524–31. doi: 10.1091/mbc.E14-06-1084.
  • Dorling, J.-L., C.-K. Martin, and L.-M. Redman. 2020. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Research Reviews 64:101038. doi: 10.1016/j.arr.2020.101038.
  • Eckert, G.-P., C. Schiborr, S. Hagl, R. Abdel-Kader, W.-E. Müller, G. Rimbach, and J. Frank. 2013. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochemistry International 62 (5):595–602. doi: 10.1016/j.neuint.2013.02.014.
  • El-Haskoury, R., N. Al-Waili, J. El-Hilaly, W. Al-Waili, and B. Lyoussi. 2019. Antioxidant, hypoglycemic, and hepatoprotective effect of aqueous and ethyl acetate extract of Carob honey in streptozotocin-induced diabetic rats. Veterinary World 12 (12):1916–23. doi: 10.14202/vetworld.2019.1916-1923.
  • Erejuwa, O. O., S.-A. Sulaiman, M.-S.-A. Wahab, S.-K.-N. Salam, M.-S.-M. Salleh, and S. Gurtu. 2011. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. International Journal of Molecular Sciences 12 (1):829–43. doi: 10.3390/ijms12010829.
  • Escuredo, O., M. Míguez, M. Fernández-González, and M.-C. Seijo. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic Area. Food Chemistry 138 (2-3):851–6. doi: 10.1016/j.foodchem.2012.11.015.
  • Esposito, D., J. Overall, M.-H. Grace, S. Komarnytsky, and M.-A. Lila. 2019. Alaskan berry extracts promote dermal wound repair through modulation of bioenergetics and integrin signaling. Frontiers in Pharmacology 10:1058. doi: 10.3389/fphar.2019.01058.
  • Fabiani, R., N. Vella, and P. Rosignoli. 2021. Epigenetic modifications induced by olive oil and its phenolic compounds: A systematic review. Molecules 26 (2):273. doi: 10.3390/molecules26020273.
  • Farr, S.-A., T.-O. Price, L.-J. Dominguez, A. Motisi, F. Saiano, M.-L. Niehoff, J.-E. Morley, W.-A. Banks, N. Ercal, and M. Barbagallo. 2012. Extra virgin olive oil improves learning and memory in SAMP8 mice. Journal of Alzheimer’s Disease 28 (1):81–92. doi: 10.3233/JAD-2011-110662.
  • Feresin, R.-G., J. Huang, D.-S. Klarich, Y. Zhao, S. Pourafshar, B.-H. Arjmandi, and G. Salazar. 2016. Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells. Food & Function 7 (10):4175–87. doi: 10.1039/c6fo00743k.
  • Fernández del Río, L., E. Gutiérrez-Casado, A. Varela-López, and J.-M. Villalba. 2016. Olive oil and the hallmarks of aging. Molecules (Basel, Switzerland) 21 (2):163. doi: 10.3390/molecules21020163.
  • Ferrucci, L., and E. Fabbri. 2018. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology 15 (9):505–22. doi: 10.1038/s41569-018-0064-2.
  • Foscolou, A., E. Critselis, S. Tyrovolas, C. Chrysohoou, L. Sidossis, N. Naumovski, A.-L. Matalas, L. Rallidis, E. Polychronopoulos, J. Ayuso-Mateos, et al. 2019. The effect of exclusive olive oil consumption on successful aging: A combined analysis of the ATTICA and MEDIS epidemiological studies. Foods 8 (1):25. doi: 10.3390/foods8010025.
  • Galli, R.-L., D.-F. Bielinski, A. Szprengiel, B. Shukitt-Hale, and J. A. Joseph. 2006. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiology of Aging 27 (2):344–50. doi: 10.1016/j.neurobiolaging.2005.01.017.
  • Galli, R.-L., A.-N. Carey, K.-A. Luskin, D.-F. Bielinski, and B. Shukitt-Hale. 2016. Red raspberries can improve motor function in aged rats. Journal of Berry Research 6 (2):97–103. doi: 10.3233/JBR-160119.
  • García-Gavilán, J. F., M. Bulló, S. Canudas, M. A. Martínez-González, R. Estruch, S. Giardina, M. Fitó, D. Corella, E. Ros, and y J. Salas-Salvadó. 2018. Extra virgin olive oil consumption reduces the risk of osteoporotic fractures in the PREDIMED trial. Clinical Nutrition 37 (1):329–35. doi: 10.1016/j.clnu.2016.12.030.
  • Gasparrini, M., S. Afrin, T.-Y. Forbes-Hernández, D. Cianciosi, P. Reboredo-Rodriguez, A. Amici, M. Battino, and F. Giampieri. 2018. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food and Chemical Toxicology 120:578–87. doi: 10.1016/j.fct.2018.08.001.
  • Giampieri, F., J. M. Alvarez-Suarez, M. D. Cordero, M. Gasparrini, T. Y. Forbes-Hernandez, S. Afrin, C. Santos-Buelga, A. M. González-Paramás, P. Astolfi, C. Rubini, et al. 2017. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chemistry 234:464–71. doi: 10.1016/j.foodchem.2017.05.017.
  • Goyarzu, P., D. H. Malin, F. C. Lau, G. Taglialatela, W. D. Moon, R. Jennings, E. Moy, D. Moy, S. Lippold, B. Shukitt-Hale, et al. 2004. Blueberry supplemented diet: Effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutritional Neuroscience 7 (2):75–83. doi: 10.1080/10284150410001710410.
  • Grabowska, W., M. Suszek, M. Wnuk, A. Lewinska, E. Wasiak, E. Sikora, and A. Bielak-Zmijewska. 2016. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget 7 (15):19201–13. doi: 10.18632/oncotarget.8450.
  • Grossi, C., S. Rigacci, S. Ambrosini, T. E. Dami, I. Luccarini, C. Traini, P. Failli, A. Berti, F. Casamenti, and M. Stefani. 2013. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One 8 (8):e71702. doi: 10.1371/journal.pone.0071702.
  • guo Zhang, Z., X. yan Niu, A. Ping Lu, and G.-G. Xiao. 2015. Effect of curcumin on aged Drosophila melanogaster: A pathway prediction analysis. Chinese Journal of Integrative Medicine 21 (2):115–22. doi: 10.1007/s11655-013-1333-2.
  • Gupta, S.-C., S. Patchva, and B.-B. Aggarwal. 2013. Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal 15 (1):195–218. doi: 10.1208/s12248-012-9432-8.
  • Hajizadeh Maleki, B., B. Tartibian, F.-C. Mooren, K. Krüger, L.-Z. FitzGerald, and M. Chehrazi. 2016. A randomized controlled trial examining the effects of 16 weeks of moderate-to-intensive cycling and honey supplementation on lymphocyte oxidative DNA damage and cytokine changes in male road cyclists. Cytokine 88:222–31. doi: 10.1016/j.cyto.2016.09.016.
  • Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology 11 (3):298–300. doi: 10.1093/geronj/11.3.298.
  • Hasenan, S.-M., S.-A. Karsani, and Z. Jubri. 2018. Modulation of age related protein expression changes by Gelam honey in cardiac mitochondrial rats. Experimental Gerontology 113:1–9. doi: 10.1016/j.exger.2018.09.001.
  • Haza, A.-I., and P. Morales. 2013. Spanish honeys protect against food mutagen-induced DNA damage. Journal of the Science of Food and Agriculture 93 (12):2995–3000. doi: 10.1002/jsfa.6129.
  • Hewlings, S., and D. Kalman. 2017. Curcumin: A review of its effects on human health. Foods 6 (10):92. doi: 10.3390/foods6100092.
  • Hubert, P.-A., S.-G. Lee, S.-K. Lee, and O.-K. Chun. 2014. Dietary polyphenols, berries, and age-related bone loss: A review based on human, animal, and cell studies. Antioxidants 3 (1):144–58. doi: 10.3390/antiox3010144.
  • Hussein, S.-Z., K. Mohd Yusoff, S. Makpol, and Y.-A M. Yusof. 2012. Gelam honey inhibits the production of proinflammatory, mediators NO, PGE(2), TNF-α, and IL-6 in carrageenan-induced acute paw edema in rats. Evidence-Based Complementary and Alternative Medicine 2012:109636. doi: 10.1155/2012/109636.
  • Jędrusek-Golińska, A., D. Górecka, M. Buchowski, K. Wieczorowska-Tobis, A. Gramza-Michałowska, and K. Szymandera-Buszka. 2020. Recent progress in the use of functional foods for older adults: A narrative review. Comprehensive Reviews in Food Science and Food Safety 19 (2):835–56. doi: 10.1111/1541-4337.12530.
  • Joseph, J. A., B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and y P. C. Bickford. 1999. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. The Journal of Neuroscience 19 (18):8114–21. doi: 10.1523/JNEUROSCI.19-18-08114.1999.
  • Kandezi, N., M. Mohammadi, M. Ghaffari, M. Gholami, M. Motaghinejad, and S. Safari. 2020. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. International Journal of Molecular and Cellular Medicine 9 (1):1–32. doi: 10.22088/IJMCM.BUMS.9.1.1.
  • Kelly, E., P. Vyas, and J.-T. Weber. 2017. Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules 23 (1):26. doi: 10.3390/molecules23010026.
  • Kennedy, B. K., S. L. Berger, A. Brunet, J. Campisi, A. M. Cuervo, E. S. Epel, C. Franceschi, G. J. Lithgow, R. I. Morimoto, J. E. Pessin, et al. 2014. Geroscience: Linking aging to chronic disease. Cell 159 (4):709–13. doi: 10.1016/j.cell.2014.10.039.
  • Kitani, K., T. Osawa, and T. Yokozawa. 2007. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology 8 (5):567–73. doi: 10.1007/s10522-007-9100-z.
  • Krikorian, R., M.-D. Shidler, T.-A. Nash, W. Kalt, M.-R. Vinqvist-Tymchuk, B. Shukitt-Hale, and J.-A. Joseph. 2010. Blueberry supplementation improves memory in older adults. Journal of Agricultural and Food Chemistry 58 (7):3996–4000. doi: 10.1021/jf9029332.
  • Kukkemane, K., and A. Jagota. 2019. Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats. Biogerontology 20 (4):405–19. doi: 10.1007/s10522-018-09794-y.
  • Kuo, C.-J., C.-C. Huang, S.-Y. Chou, Y.-C. Lo, T.-J. Kao, N.-K. Huang, C. Lin, H.-C. Lin, H.-C. Lin, and Y.-C. Lee. 2019. Potential therapeutic effect of curcumin, a natural mTOR inhibitor, in tuberous sclerosis complex. Phytomedicine 54:132–9. doi: 10.1016/j.phymed.2018.09.203.
  • Lavefve, L., L.-R. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function 11 (1):45–65. doi: 10.1039/c9fo01634a.
  • Li, T., S.-M. Wu, Z.-Y. Xu, and S. Ou-Yang. 2014. Rabbiteye blueberry prevents osteoporosis in ovariectomized rats. Journal of Orthopaedic Surgery and Research 9:56. doi: 10.1186/s13018-014-0056-9.
  • Li, Y., J. Li, S. Li, Y. Li, X. Wang, B. Liu, Q. Fu, and S. Ma. 2015. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicology and Applied Pharmacology 286 (1):53–63. doi: 10.1016/j.taap.2015.03.010.
  • Liao, V.-H.-C., C.-W. Yu, Y.-J. Chu, W.-H. Li, Y.-C. Hsieh, and T.-T. Wang. 2011. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development 132 (10):480–7. doi: 10.1016/j.mad.2011.07.008.
  • Lima, C.-F., C. Pereira-Wilson, and S.-I.-S. Rattan. 2011. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Molecular Nutrition & Food Research 55 (3):430–42. doi: 10.1002/mnfr.201000221.
  • Liu, X., R. Zhang, H. Shi, X. Li, Y. Li, A. Taha, and C. Xu. 2018. Protective effect of curcumin against ultraviolet A irradiation‑induced photoaging in human dermal fibroblasts. Molecular Medicine Reports 17 (5):7227–37. doi: 10.3892/mmr.2018.8791.
  • López-Miranda, J., F. Pérez-Jiménez, E. Ros, R. De Caterina, L. Badimón, M. I. Covas, E. Escrich, J. M. Ordovás, F. Soriguer, R. Abiá, et al. 2010. Olive oil and health: Summary of the II International Conference on Olive Oil and Health Consensus Report, Jaén and Córdoba (Spain) 2008. Nutrition, Metabolism, and Cardiovascular Diseases 20 (4):284–94. doi: 10.1016/j.numecd.2009.12.007.
  • López-Otín, C., M.-A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153 (6):1194–217. doi: 10.1016/j.cell.2013.05.03. 9.
  • Luceri, C., E. Bigagli, V. Pitozzi, and L. Giovannelli. 2017. A nutrigenomics approach for the study of anti-aging interventions: Olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. European Journal of Nutrition 56 (2):865–77. doi: 10.1007/s00394-015-1134-4.
  • Luo, J., H. Si, Z. Jia, and D. Liu. 2021. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants 10 (2):283. doi: 10.3390/antiox10020283.
  • Majtan, J., J. Bohova, R. Garcia-Villalba, F.-A. Tomas-Barberan, Z. Madakova, T. Majtan, V. Majtan, and J. Klaudiny. 2013. Fir honeydew honey flavonoids inhibit TNF-α-induced MMP-9 expression in human keratinocytes: A new action of honey in wound healing. Archives of Dermatological Research 305 (7):619–27. doi: 10.1007/s00403-013-1385-y.
  • Malin, D.-H., D.-R. Lee, P. Goyarzu, Y.-H. Chang, L.-J. Ennis, E. Beckett, B. Shukitt-Hale, and J.-A. Joseph. 2011. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats. Nutrition 27 (3):338–42. doi: 10.1016/j.nut.2010.05.001.
  • Manyi-Loh, C.-E., R.-N. Ndip, and A.-M. Clarke. 2011. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences 12 (12):9514–32. doi: 10.3390/ijms12129514.
  • Martínez-Lapiscina, E.-H., P. Clavero, E. Toledo, B. San Julián, A. Sanchez-Tainta, D. Corella, R.-M. Lamuela-Raventós, J.-A. Martínez, and M.-Á. Martínez-Gonzalez. 2013. Virgin olive oil supplementation and long-term cognition: The PREDIMED-NAVARRA randomized, trial. The Journal of Nutrition, Health & Aging 17 (6):544–52. doi: 10.1007/s12603-013-0027-6.
  • Martinotti, S., G. Pellavio, M. Patrone, U. Laforenza, and E. Ranzato. 2020. Manuka honey induces apoptosis of epithelial cancer cells through aquaporin-3 and calcium signaling. Life 10 (11):256. doi: 10.3390/life10110256.
  • Mazucanti, C., J. Cabral-Costa, A. Vasconcelos, D. Andreotti, C. Scavone, and E. Kawamoto. 2015. Longevity pathways (mTOR, SIRT, insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Current Topics in Medicinal Chemistry 15 (21):2116–38. doi: 10.2174/1568026615666150610125715.
  • McHugh, D., and J. Gil. 2018. Senescence and aging: Causes, consequences, and therapeutic avenues. The Journal of Cell Biology 217 (1):65–77. doi: 10.1083/jcb.201708092.
  • Mehraein, F., M. Sarbishegi, and A. Aslani. 2014. Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice. Cell Journal 16 (1):25–30.
  • Menicacci, B., C. Cipriani, F. Margheri, A. Mocali, and L. Giovannelli. 2017. Modulation of the senescence-associated inflammatory phenotype in human fibroblasts by olive phenols. International Journal of Molecular Sciences 18 (11):2275. doi: 10.3390/ijms18112275.
  • Micek, A., J. Godos, D. Del Rio, F. Galvano, and G. Grosso. 2021. Dietary flavonoids and cardiovascular disease: A comprehensive dose-response meta-analysis. Molecular Nutrition & Food Research 65 (6):e2001019. doi: 10.1002/mnfr.202001019.
  • Miller, M.-G., D.-A. Hamilton, J.-A. Joseph, and B. Shukitt-Hale. 2018. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. European Journal of Nutrition 57 (3):1169–80. doi: 10.1007/s00394-017-1400-8.
  • Miquel, J. 1991. An integrated theory of aging as the result of mitochondrial-DNA mutation in differentiated cells. Archives of Gerontology and Geriatrics 12 (2-3):99–117. doi: 10.1016/0167-4943(91)90022-I.
  • Molinari, C., V. Morsanuto, S. Ruga, F. Notte, M. Farghali, R. Galla, and F. Uberti. 2020. The role of BDNF on aging-modulation markers. Brain Sciences 10 (5):285. doi: 10.3390/brainsci10050285.
  • Motaghinejad, M., M. Karimian, O. Motaghinejad, B. Shabab, I. Yazdani, and S. Fatima. 2015. Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacological Reports 67 (2):230–5. doi: 10.1016/j.pharep.2014.09.006.
  • Navarro-Hortal, M.-D., C.-L. Ramírez-Tortosa, A. Varela-López, J.-M. Romero-Márquez, J.-J. Ochoa, M.-C. Ramírez-Tortosa, T.-Y. Forbes-Hernández, S. Granados-Principal, M. Battino, and J.-L. Quiles. 2019. Heart histopathology and mitochondrial ultrastructure in aged rats fed for 24 months on different unsaturated fats (virgin olive oil, sunflower oil or fish oil) and affected by different longevity. Nutrients 11 (10):2390. doi: 10.3390/nu11102390.
  • Navarro-Hortal, M. D., J. M. Romero-Márquez, A. Esteban-Muñoz, C. Sánchez-González, L. Rivas-García, J. Llopis, D. Cianciosi, F. Giampieri, S. Sumalla-Cano, M. Battino, et al. 2022. Strawberry (Fragaria × Ananassa Cv. Romina) methanolic extract attenuates Alzheimer’s beta amyloid production and oxidative stress by SKN-1/NRF and DAF-16/FOXO mediated mechanisms in C. Food Chemistry 372:131272. doi: 10.1016/j.foodchem.2021.131272.
  • Navarro-Hortal, M.-D., A. Varela-López, J.-M. Romero-Márquez, C. Piquer-Martinez, P. Bullón, T.-Y. Forbes-Hernández, and J.-L. Quiles. 2020. Twenty-four months feeding on unsaturated dietary fats (virgin olive, sunflower, or fish oil) differentially modulate gingival mitochondria in the rat. eFood 1 (1):61–8. doi: 10.2991/efood.k.190802.002.
  • NIH. 2020. Turmeric. Accessed May 21, 2022. https://www.nccih.nih.gov/health/turmeric.
  • Ochoa, J.-J., J.-L. Quiles, S. Ibáñez, E. Martínez, M. López-Frías, J.-R. Huertas, and J. Mataix. 2003. Aging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues. Journal of Bioenergetics and Biomembranes 35 (3):267–75. doi: 10.1023/A:1024615816839.
  • Ochoa, J.-J., R. Pamplona, M.-C. Ramirez-Tortosa, S. Granados-Principal, P. Perez-Lopez, A. Naudí, M. Portero-Otin, M. López-Frías, M. Battino, and J.-L. Quiles. 2011. Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q10. Free Radical Biology & Medicine 50 (9):1053–64. doi: 10.1016/j.freeradbiomed.2011.02.004.
  • Othman, Z., N. Shafin, R. Zakaria, N.-H.-N. Hussain, and W.-M.-Z.-W. Mohammad. 2011. Improvement in immediate memory after 16 weeks of Tualang honey (Agro Mas) supplement in healthy postmenopausal women. Menopause 18 (11):1219–24. doi: 10.1097/gme.0b013e31821e2044.
  • Perez-Jimenez, F., G. Alvarez de Cienfuegos, L. Badimon, G. Barja, M. Battino, A. Blanco, A. Bonanome, R. Colomer, D. Corella-Piquer, I. Covas, et al. 2005. International conference on the healthy effect of virgin olive oil. European Journal of Clinical Investigation 35 (7):421–4. doi: 10.1111/j.1365-2362.2005.01516.x.
  • Pitozzi, V., M. Jacomelli, D. Catelan, M. Servili, A. Taticchi, A. Biggeri, P. Dolara, and L. Giovannelli. 2012. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: Role of oxidative stress. Rejuvenation Research 15 (6):601–12. doi: 10.1089/rej.2012.1346.
  • Pu, Y., H. Zhang, P. Wang, Y. Zhao, Q. Li, X. Wei, Y. Cui, J. Sun, Q. Shang, D. Liu, et al. 2013. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cellular Physiology and Biochemistry 32 (5):1167–77. doi: 10.1159/000354516.
  • Qin, C., S. Hu, S. Zhang, D. Zhao, Y. Wang, H. Li, Y. Peng, L. Shi, X. Xu, C. Wang, et al. 2021. Hydroxytyrosol acetate improves the cognitive function of APP/PS1 transgenic mice in ERβ-dependent manner. Molecular Nutrition & Food Research 65 (3):e2000797. doi: 10.1002/mnfr.202000797.
  • Quiles, J.-L., J.-J. Ochoa, M.-C. Ramirez-Tortosa, J.-R. Huertas, and J. Mataix. 2006. Age-related Mitochondrial DNA deletion in rat liver depends on dietary fat unsaturation. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 61 (2):107–14. doi: 10.1093/gerona/61.2.107.
  • Quiles, J.-L., R. Pamplona, M.-C. Ramirez-Tortosa, A. Naudí, M. Portero-Otin, E. Araujo-Nepomuceno, M. López-Frías, M. Battino, and J.-J. Ochoa. 2010. Coenzyme Q addition to an N-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart. Mechanisms of Ageing and Development 131 (1):38–47. doi: 10.1016/j.mad.2009.11.004.
  • Quiles, J.-L., J.-M. Romero-Márquez, M.-D. Navarro-Hortal, M. Battino, and A. Varela-López. 2020. Chapter 17—The role of coenzyme Q10 in the protection of bone health during aging. In Aging, ed. V.-R. Preedy and V.-B. Patel, 2nd ed., 173–82. Cambridge, Massachusetts: Academic Press. doi: 10.1016/B978-0-12-818698-5.00017-1.
  • Quiles, J.-L., C. Sánchez-González, L. Vera-Ramírez, F. Giampieri, M.-D. Navarro-Hortal, J. Xiao, J. Llopis, M. Battino, and A. Varela-López. 2020. Reductive stress, bioactive compounds, redox-active metals, and dormant tumor cell biology to develop redox-based tools for the treatment of cancer. Antioxidants & Redox Signaling 33 (12):860–81. doi: 10.1089/ars.2020.8051.
  • Ramirez-Tortosa, C.-L., A. Varela-López, M.-D. Navarro-Hortal, F.-M. Ramos-Pleguezuelos, B. Márquez-Lobo, M.-C. Ramirez-Tortosa, J.-J. Ochoa, M. Battino, and J.-L. Quiles. 2020. Longevity and cause of death in male Wistar rats fed lifelong diets based on virgin olive oil, sunflower oil, or fish oil. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 75 (3):442–51. doi: 10.1093/gerona/glz091.
  • Rigacci, S., C. Miceli, C. Nediani, A. Berti, R. Cascella, D. Pantano, P. Nardiello, I. Luccarini, F. Casamenti, and M. Stefani. 2015. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: A mechanistic insight. Oncotarget 6 (34):35344–57. doi: 10.18632/oncotarget.6119.
  • Roche, E., C.-L. Ramírez-Tortosa, M.-I. Arribas, J.-J. Ochoa, J.-E. Sirvent-Belando, M. Battino, M.-C. Ramírez-Tortosa, A. González-Alonso, M.-P. Pérez-López, and J.-L. Quiles. 2014. Comparative analysis of pancreatic changes in aged rats fed life long with sunflower, fish, or olive oils. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 69 (8):934–44. doi: 10.1093/gerona/glt157.
  • Ruíz-Salinas, A.-K., R.-A. Vázquez-Roque, A. Díaz, G. Pulido, S. Treviño, B. Floran, and G. Flores. 2020. The treatment of goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. The Journal of Nutritional Biochemistry 83:108416. doi: 10.1016/j.jnutbio.2020.108416.
  • Rutledge, G.-A., D.-R. Fisher, M.-G. Miller, M.-E. Kelly, D.-F. Bielinski, and B. Shukitt-Hale. 2019. The effects of blueberry and strawberry serum metabolites on age-related oxidative and inflammatory signaling in vitro. Food & Function 10 (12):7707–13. doi: 10.1039/C9FO01913H.
  • Sakaki, J., M. Melough, S.-G. Lee, J. Kalinowski, S.-I. Koo, S.-K. Lee, and O.-K. Chun. 2018. Blackcurrant supplementation improves trabecular bone mass in young but not aged mice. Nutrients 10 (11):1671. doi: 10.3390/nu10111671.
  • Salminen, A., and K. Kaarniranta. 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews 11 (2):230–41. doi: 10.1016/j.arr.2011.12.005.
  • Saxena, A. K., H.-P. Phyu, I.-M. Al-Ani, and N.-A. Talib. 2014. Potential protective effect of honey against chronic cerebral hypoperfusion-induced neurodegeneration in rats. Journal of the Anatomical Society of India 63 (2):151–5. doi: 10.1016/j.jasi.2014.11.003.
  • Scerbak, C., E. Vayndorf, A. Hernandez, C. McGill, and B. Taylor. 2018. Lowbush cranberry acts through DAF-16/FOXO signaling to promote increased lifespan and axon branching in aging posterior touch receptor neurons. GeroScience 40 (2):151–62. doi: 10.1007/s11357-018-0016-0.
  • Scerbak, C., E.-M. Vayndorf, A. Hernandez, C. McGill, and B.-E. Taylor. 2016. Mechanosensory neuron aging: Differential trajectories with lifespan-extending alaskan berry and fungal treatments in Caenorhabditis elegans. Frontiers in Aging Neuroscience 8:173. doi: 10.3389/fnagi.2016.00173.
  • Selim, A.-M., M.-M. Nooh, M.-M. El-Sawalhi, and N.-A. Ismail. 2020. Amelioration of age-related alterations in rat liver: Effects of curcumin C3 complex, Astragalus membranaceus and blueberry. Experimental Gerontology 137:110982. doi: 10.1016/j.exger.2020.110982.
  • Serreli, G., and M. Deiana. 2020. Extra virgin olive oil polyphenols: Modulation of cellular pathways related to oxidant species and inflammation in aging. Cells 9 (2):478. doi: 10.3390/cells9020478.
  • Shen, L.-R., F. Xiao, P. Yuan, Y. Chen, Q.-K. Gao, L.-D. Parnell, M. Meydani, J.-M. Ordovas, D. Li, and C.-Q. Lai. 2013. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age 35 (4):1133–42. doi: 10.1007/s11357-012-9438-2.
  • Shetty, S., N. Kapoor, J.-D. Bondu, N. Thomas, and T.-V. Paul. 2016. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian Journal of Endocrinology and Metabolism 20 (6):846–52. doi: 10.4103/2230-8210.192914.
  • Shih, P.-H., Y.-C. Chan, J.-W. Liao, M.-F. Wang, and G.-C. Yen. 2010. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. The Journal of Nutritional Biochemistry 21 (7):598–605. doi: 10.1016/j.jnutbio.2009.03.008.
  • Shukitt-Hale, B., D.-F. Bielinski, F.-C. Lau, L.-M. Willis, A.-N. Carey, and J.-A. Joseph. 2015. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. The British Journal of Nutrition 114 (10):1542–9. doi: 10.1017/S0007114515003451.
  • Shukitt-Hale, B., F.-C. Lau, and J.-A. Joseph. 2008. berry fruit supplementation and the aging brain. Journal of Agricultural and Food Chemistry 56 (3):636–41. doi: 10.1021/jf072505f.
  • Shukitt-Hale, B., N. Thangthaeng, M.-E. Kelly, D.-E. Smith, and M.-G. Miller. 2017. Raspberry differentially improves age-related declines in psychomotor function dependent on baseline motor ability. Food & Function 8 (12):4752–9. doi: 10.1039/C7FO00894E.
  • Shukitt-Hale, B., N. Thangthaeng, M.-G. Miller, S.-M. Poulose, A.-N. Carey, and D.-R. Fisher. 2019. Blueberries improve neuroinflammation and cognition differentially depending on individual cognitive baseline status. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 74 (7):977–83. doi: 10.1093/gerona/glz048.
  • Solfrizzi, V., A. M. Colacicco, A. D’Introno, C. Capurso, F. Torres, C. Rizzo, A. Capurso, and F. Panza. 2006. Dietary intake of unsaturated fatty acids and age-related cognitive decline: A 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiology of Aging 27 (11):1694–704. doi: 10.1016/j.neurobiolaging.2005.09.026.
  • Solfrizzi, V., F. Panza, F. Torres, F. Mastroianni, A. Del Parigi, A. Venezia, and A. Capurso. 1999. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 52 (8):1563– doi: 10.1212/WNL.52.8.1563.
  • Song, B., B. Zheng, T. Li, and R.-H. Liu. 2020. Raspberry extract promoted longevity and stress tolerance via the insulin/IGF signaling pathway and DAF-16 in Caenorhabditis elegans. Food & Function 11 (4):3598–609. doi: 10.1039/c9fo02845e.
  • Stancu, A.-L. 2015. AMPK activation can delay aging. Discoveries (Craiova, Romania) 3 (4):e53. doi: 10.15190/d.2015.45.
  • Tahir, A.-A., N.-F.-A. Sani, N.-A. Murad, S. Makpol, W.-Z.-W. Ngah, and Y.-A.-M. Yusof. 2015. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutrition Journal 14 (1):31. doi: 10.1186/s12937-015-0015-2.
  • Takano, K., J. Tatebe, N. Washizawa, and T. Morita. 2018. Curcumin inhibits age-related vascular changes in aged mice fed a high-fat diet. Nutrients 10 (10):1476. doi: 10.3390/nu10101476.
  • Talebi, M., M. Talebi, T. Farkhondeh, and S. Samarghandian. 2020. Molecular mechanism-based therapeutic properties of honey. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 130:110590. doi: 10.1016/j.biopha.2020.110590.
  • Tan, L., H.-P. Yang, W. Pang, H. Lu, Y.-D. Hu, J. Li, S.-J. Lu, W.-Q. Zhang, and Y.-G. Jiang. 2014. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomedical and Environmental Sciences 27 (3):186–96. doi: 10.3967/bes2014.007.
  • Tavakol, S., S. Zare, E. Hoveizi, B. Tavakol, and S.-M. Rezayat. 2019. The impact of the particle size of curcumin nanocarriers and the ethanol on Beta_1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations. Daru 27 (1):159–68. doi: 10.1007/s40199-019-00258-3.
  • Thangthaeng, N., S.-M. Poulose, M.-G. Miller, and B. Shukitt-Hale. 2016. Preserving brain function in aging: The anti-glycative potential of berry fruit. Neuromolecular Medicine 18 (3):465–73. doi: 10.1007/s12017-016-8400-3.
  • Thayyullathil, F., S. Chathoth, A. Hago, M. Patel, and S. Galadari. 2008. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radical Biology & Medicine 45 (10):1403–12. doi: 10.1016/j.freeradbiomed.2008.08.014.
  • Tower, J. 2015. Programmed cell death in aging. Ageing Research Reviews 23 (Pt A):90–100. doi: 10.1016/j.arr.2015.04.002.
  • Ulgherait, M., A. Rana, M. Rera, J. Graniel, and D.-W. Walker. 2014. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Reports 8 (6):1767–80. doi: 10.1016/j.celrep.2014.08.006.
  • Varela-López, A., J.-J. Ochoa, J.-M. Llamas-Elvira, M. López-Frías, E. Planells, L. Speranza, M. Battino, and J.-L. Quiles. 2017. Loss of bone mineral density associated with age in male rats fed on sunflower oil is avoided by virgin olive oil intake or coenzyme Q supplementation. International Journal of Molecular Sciences 18 (7):1397. doi: 10.3390/ijms18071397.
  • Varela-Lopez, A., M.-P. Pérez-López, C.-L. Ramirez-Tortosa, M. Battino, S. Granados-Principal, M.-C. Ramirez-Tortosa, J.-J. Ochoa, L. Vera-Ramirez, F. Giampieri, and J.-L. Quiles. 2018. Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. The Journal of Nutritional Biochemistry 52:36–44. doi: 10.1016/j.jnutbio.2017.09.007.
  • Vauzour, D., C. Rendeiro, A. D’Amato, P. Waffo-Téguo, T. Richard, J. M. Mérillon, M. G. Pontifex, E. Connell, M. Müller, L. T. Butler, et al. 2021. Anthocyanins promote learning through modulation of synaptic plasticity related proteins in an animal model of ageing. Antioxidants 10 (8):1235. doi: 10.3390/antiox10081235.
  • Villarreal, A., B.-J. Stoecker, C. Garcia, K. Garcia, R. Rios, C. Gonzales, K. Mandadi, B. Faraji, B.-S. Patil, and F. Deyhim. 2007. Cranberry juice improved antioxidant status without affecting bone quality in orchidectomized male rats. Phytomedicine 14 (12):815–20. doi: 10.1016/j.phymed.2007.04.004.
  • Wan Ghazali, W.-S., M. Mohamed, S.-A. Sulaiman, A.-A. Aziz, and H.-M. Yusoff. 2015. Tualang honey supplementation improves oxidative stress status among chronic smokers. Toxicological & Environmental Chemistry 97 (8):1–1024. doi: 10.1080/02772248.2015.1077959.
  • Wang, H., J. Liu, T. Li, and R.-H. Liu. 2018. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food & Function 9 (10):5273–82. doi: 10.1039/c8fo01680a.
  • Wang, R., Y.-H. Li, Y. Xu, Y.-B. Li, H.-L. Wu, H. Guo, J.-Z. Zhang, J.-J. Zhang, X.-Y. Pan, and X.-J. Li. 2010. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Progress in Neuro-Psychopharmacology & Biological Psychiatry 34 (1):147–53. doi: 10.1016/j.pnpbp.2009.10.016.
  • Wang, W., Y. Yagiz, T.-J. Buran, C-d-N. Nunes, and L. Gu. 2011. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Research International 44 (9):2666–73. doi: 10.1016/j.foodres.2011.05.022.
  • Williams, C.-M., M.-A. El Mohsen, D. Vauzour, C. Rendeiro, L.-T. Butler, J.-A. Ellis, M. Whiteman, and J.-P.-E. Spencer. 2008. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical Biology & Medicine 45 (3):295–305. doi: 10.16/j.freeradbiomed.2008.04.008.
  • Wilson, M.-A., B. Shukitt-Hale, W. Kalt, D.-K. Ingram, J.-A. Joseph, and C.-A. Wolkow. 2006. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5 (1):59–68. doi: 10.1111/j.1474-9726.2006.00192.x.
  • World Health Organization. 2003. Diet, nutrition and the prevention of chronic diseases: Report of a Joint WHO/FAO Expert Consultation. Accessed October 8, 2021. http://www.fao.org/3/AC911E/ac911e00.htm.
  • World Health Organization. 2021. Ageing and health. Accessed October 7, 2021. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
  • Wu, X., G.-Y. Koh, Y. Huang, J.-W. Crott, R.-T. Bronson, and J.-B. Mason. 2019. The Combination of curcumin and salsalate is superior to either agent alone in suppressing pro‐cancerous molecular pathways and colorectal tumorigenesis in obese mice. Molecular Nutrition & Food Research 63 (8):1801097. doi: 10.1002/mnfr.201801097.
  • Xiang, L., Y. Nakamura, Y.-M. Lim, Y. Yamasaki, Y. Kurokawa-Nose, W. Maruyama, T. Osawa, A. Matsuura, N. Motoyama, and L. Tsuda. 2011. Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging 3 (11):1098–109. doi: 10.18632/aging.100396.
  • Xiong, L., N. Deng, B. Zheng, T. Li, and R.-H. Liu. 2021. HSF-1 and SIR-2.1 linked insulin-like signaling is involved in goji berry (Lycium Spp.) extracts promoting lifespan extension of Caenorhabditis elegans. Food & Function 12 (17):7851–66. doi: 10.1039/d0fo03300f.
  • Yang, L., Z. Zheng, C. Qian, J. Wu, Y. Liu, S. Guo, G. Li, M. Liu, X. Wang, and D.-L. Kaplan. 2017. Curcumin-functionalized silk biomaterials for anti-aging utility. Journal of Colloid and Interface Science 496:66–77. doi: 10.1016/j.jcis.2017.01.115.
  • Yang, S.-B., A.-C. Tien, G. Boddupalli, A.-W. Xu, Y.-N. Jan, and L.-Y. Jan. 2012. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75 (3):425–36. doi: 10.1016/j.neuron.2012.03.043.
  • Zečić, A., and B.-P. Braeckman. 2020. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells 9 (1):109. doi: 10.3390/cells9010109.
  • Zhang, G., J. Cao, E. Yang, B. Liang, J. Ding, J. Liang, and J. Xu. 2018. Curcumin improves age-related and surgically induced osteoarthritis by promoting autophagy in mice. Bioscience Reports 38 (4):20171691. doi: 10.1042/BSR20171691.
  • Zhang, J., O.-P. Lazarenko, M.-L. Blackburn, K. Shankar, T.-M. Badger, M.-J.-J. Ronis, and J.-R. Chen. 2011. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. PLoS One 6 (9):e24486. doi: 10.1371/journal.pone.0024486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.