832
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium

, , & ORCID Icon
Pages 12036-12058 | Published online: 19 Jul 2022

References

  • Agroligne. 2018. Les légumineuses, un marché en plein croissance. Agroligne: L’essentiel de l’Agroalimentaire et de l’Agriculture.
  • Alcorta, A., A. Porta, A. Tárrega, M. D. Alvarez, and M. P. Vaquero. 2021. Foods for plant-based diets: Challenges and innovations. Foods 10 (2):293. doi: 10.3390/foods10020293.
  • Ali, F., D. Ippersiel, F. Lamarche, and M. Mondor. 2010. Characterization of low-phytate soy protein isolates produced by membrane technologies. Innovative Food Science & Emerging Technologies 11 (1):162–8. doi: 10.1016/j.ifset.2009.08.004.
  • Ayet, G., C. Burbano, C. Cuadrado, M. Pedrosa, L. Robredo, M. Muzquiz, C. De la Cuadra, A. Castano, and A. Osagie. 1997. Effect of germination, under different environmental conditions, on saponins, phytic acid and tannins in lentils (Lens culinaris). Journal of the Science of Food and Agriculture 74 (2):273–9. doi: 10.1002/(SICI)1097-0010(199706)74:2<273::AID-JSFA800>3.0.CO;2-L.
  • Bae, I. Y., J. H. Kim, and H. G. Lee. 2013. Combined Effect of Protease and Phytase on the Solubility of Modified Soy Protein. Journal of Food Biochemistry 37 (5):511–9. doi: 10.1111/jfbc.12001.
  • Barac, M., S. Cabrilo, M. Pesic, S. Stanojevic, S. Zilic, O. Macej, and N. Ristic. 2010. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences 11 (12):4973–90. doi: 10.3390/ijms11124973.
  • Bauman, A. T., G. M. Chateauneuf, B. R. Boyd, R. E. Brown, and P. P. Murthy. 1999. Conformational inversion processes in phytic acid: NMR spectroscopic and molecular modeling studies. Tetrahedron Letters 40 (24):4489–92. doi: 10.1016/S0040-4039(99)00816-3.
  • Bishnoi, S., N. Khetarpaul, and R. Yadav. 1994. Effect of domestic processing and cooking methods on phytic acid and polyphenol contents of pea cultivars (Pisum sativum). Plant Foods for Human Nutrition 45 (4):381–8. doi: 10.1007/BF01088088.
  • Boukid, F., C. M. Rosell, and M. Castellari. 2021. Pea protein ingredients: A mainstream ingredient to (re) formulate innovative foods and beverages. Trends in Food Science & Technology 110:729–42. doi: 10.1016/j.tifs.2021.02.040.
  • Brooks, J. R., and C. V. Morr. 1982. Phytate Removal from Soy Protein Isolates Using Ion Exchange Processing Treatments. Journal of Food Science 47 (4):1280–2. doi: 10.1111/j.1365-2621.1982.tb07666.x.
  • Cabahug, S., V. Ravindran, P. Selle, and W. Bryden. 1999. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus contents. I. Effects on bird performance and toe ash. British Poultry Science 40 (5):660–6. doi: 10.1080/00071669987052.
  • Camus, M.-C., J. Laporte, and P. Pocholle. 1976. Inhibition de la protéolyse in vitro par le Blé. Rôle de l’acide phytique des issues. Annales De Biologie Animale Biochimie Biophysique 16 (5):719–29. doi: 10.1051/rnd:19760509.
  • Carnovale, E., E. Lugaro, and G. Lombardi-Boccia. 1988. Phytic acid in faba bean and pea: Effect on protein availability. Cereal Chemistry 65:114–7.
  • Casey, R. 1979. Immunoaffinity chromatography as a means of purifying legumin from Pisum (pea) seeds. The Biochemical Journal 177 (2):509–20. doi: 10.1042/bj1770509.
  • Castro-Alba, V., C. E. Lazarte, B. Bergenståhl, and Y. Granfeldt. 2019. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Journal of Food Science and Nutrition 7:2854–65.
  • Champagne, E. T. 1988. Effects of pH on mineral-phytate, protein-mineral-phytate, and mineral-fiber interactions. Possible consequences of atrophic gastritis on mineral bioavailability from high-fiber foods. Journal of the American College of Nutrition 7 (6):499–508. doi: 10.1080/07315724.1988.10720266.
  • Chan, H. 2012. Protein. The Nutrition Source website
  • Chardigny, J.-M., and S. Walrand. 2016. Plant protein for food: Opportunities and bottlenecks. OCL 23 (4):D404. p. doi: 10.1051/ocl/2016019.
  • Cheryan, M., and J. J. Rackis. 1980. Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition 13 (4):297–335. doi: 10.1080/10408398009527293.
  • Chihi, M.-L., J-l. Mession, N. Sok, and R. Saurel. 2016. Heat-induced soluble protein aggregates from mixed pea globulins and β-lactoglobulin. Journal of Agricultural and Food Chemistry 64 (13):2780–91. doi: 10.1021/acs.jafc.6b00087.
  • Chitra, U., U. Singh, and P. V. Rao. 1996. Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 49 (4):307–16.
  • Ciabotti, S., A. Silva, A. Juhasz, C. Mendonça, O. Tavano, J. Mandarino, and C. Conçalves. 2016. Chemical composition, protein profile, and isoflavones content in soybean genotypes with different seed coat colors. Embrapa Soja-Artigo em Periódico Indexado (ALICE) 23 (2):621–9.
  • Cosgrove, D. J. 1980. Inositol phosphates. Their chemistry, biochemistry and physiology. New York, NY: Elsevier.
  • Coulibaly, A., B. Kouakou, and J. Chen. 2010. Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and Fertilization Technology 1 (1):1–22. doi: 10.3923/ajpnft.2011.1.22.
  • Crea, F., C. Stefano, D. Milea, and S. Sammartano. 2008. Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews 252 (10–11):1108–20. doi: 10.1016/j.ccr.2007.09.008.
  • Crean, D. E. C., and D. R. Haisman. 1963. The interaction between phytic acid and divalent cations during the cooking of dried peas. Journal of the Science of Food and Agriculture 14 (11):824–33. doi: 10.1002/jsfa.2740141109.
  • Crévieu-Gabriel, I. 1999. Digestion des protéines végétales chez les monogastriques. Exemple des protéines de pois.
  • Crévieu, I., S. Bérot, and J. Guéguen. 1996. Large scale procedure for fractionation of albumins and globulins from pea seeds. Die Nahrung 40 (5):237–44. doi: 10.1002/food.19960400502.
  • Croy, R., J. A. Gatehouse, M. Tyler, and D. Boulter. 1980a. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.). The Biochemical Journal 191 (2):509–16. doi: 10.1042/bj1910509.
  • Croy, R. R., M. S. Hoque, J. A. Gatehouse, and D. Boulter. 1984. The major albumin proteins from pea (Pisum sativum L). Purification and some properties. The Biochemical Journal 218 (3):795–803. doi: 10.1042/bj2180795.
  • Croy, R. R. D., J. A. Gatehouse, I. M. Evans, and D. Boulter. 1980b. Characterisation of the storage protein subunits synthesised in vitro by polyribosomes and RNA from developing pea (Pisum sativum L.): I. Legumin. Planta 148 (1):49–56. doi: 10.1007/BF00385441.
  • Daniel, C. R., A. J. Cross, C. Koebnick, and R. Sinha. 2011. Trends in meat consumption in the USA. Public Health Nutrition 14 (4):575–83. doi: 10.1017/S1368980010002077.
  • Danielssonn, E. 1946. Investigations of vicilin and leguminous. Acta Chemica Scandinavica 1976:762–71.
  • De Boland, A. R., G. B. Garner, and B. L. O’Dell. 1975. Identification and properties of phytate in cereal grains and oilseed products. Journal of Agricultural and Food Chemistry 23 (6):1186–9. doi: 10.1021/jf60202a038.
  • De Rham, O., and T. Jost. 1979. Phytate‐protein interactions in soybean extracts and low‐phytate soy protein products. Journal of Food Science 44 (2):596–600. doi: 10.1111/j.1365-2621.1979.tb03844.x.
  • Dendougui, F., and G. Schwedt. 2004. In vitro analysis of binding capacities of calcium to phytic acid in different food samples. European Food Research and Technology 219 (4):409–15. doi: 10.1007/s00217-004-0912-7.
  • Derbyshire, E., D. Wright, and D. Boulter. 1976. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 15 (1):3–24. doi: 10.1016/S0031-9422(00)89046-9.
  • Derbyshire, E. J. 2016. Flexitarian diets and health: A review of the evidence-based literature. Frontiers in Nutrition 3:55. doi: 10.3389/fnut.2016.00055.
  • Deshpande, S., and M. Cherya. 1984. Effects of phytic acid, divalent cations, and their interactions on α‐amylase activity. Journal of Food Science 49 (2):516–9. doi: 10.1111/j.1365-2621.1984.tb12456.x.
  • Deshpande, S., and M. Cheryan. 1983. Changes in phytic acid, tannins, and trypsin inhibitory activity on soaking of dry beans (Phaseolus vulgaris L.). Nutrition Report International 27:371–7.
  • Deshpande, S., and S. Damodaran. 1989. Effect of phytate on solubility, activity and conformation of trypsin and chymotrypsin. Journal of Food Science 54 (3):695–9. doi: 10.1111/j.1365-2621.1989.tb04684.x.
  • Djoullah, A., F. Husson, and R. Saurel. 2018. Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocolloids. 77:636–45. doi: 10.1016/j.foodhyd.2017.11.005.
  • Duc, G., J. M. Aleksić, P. Marget, A. Mikic, J. Paull, R. J. Redden, O. Sass, F. L. Stoddard, A. Vandenberg, and M. Vishnyakova. 2015. Faba bean. Grain Legumes 2015:141–78.
  • Duhan, A. 2002. Content of phytic acid and HCl-extractability of calcium, phosphorus and iron as affected by various domestic processing and cooking methods. Food Chemistry 78 (2001):9–14.
  • Dumoulin, L., N. Jacquet, P. Malumba, A. Richel, and C. Blecker. 2021. Dry and wet fractionation of plant proteins: How a hybrid process increases yield and impacts nutritional value of faba beans proteins. Innovative Food Science & Emerging Technologies 72:102747. doi: 10.1016/j.ifset.2021.102747.
  • Dziuba, J., I. Szerszunowicz, D. Nałęcz, and M. Dziuba. 2014. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds. Acta Scientiarum Polonorum. Technologia Alimentaria 13 (2):181–90. doi: 10.17306/j.afs.2014.2.7.
  • Ealing, P. M., K. R. Hancock, and D. W. White. 1994. Expression of the pea albumin 1 gene in transgenic white clover and tobacco. Transgenic Research 3 (6):344–54. doi: 10.1007/BF01976766.
  • Earle, F., and R. Milner. 1938. The occurrence of phosphorus in soybeans. Oil & Soap 15 (2):41–2. doi: 10.1007/BF02637007.
  • ElMaki, H. B., S. M. AbdelRahaman, W. H. Idris, A. B. Hassan, E. E. Babiker, and A. H. El Tinay. 2007. Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) cultivars: Influence of soaking and/or cooking. Food Chemistry 100 (1):362–8. doi: 10.1016/j.foodchem.2005.09.060.
  • Feil, B. 2001. Phytic acid. Journal of New Seeds 3 (3):1–35. doi: 10.1300/J153v03n03_01.
  • Feng, J.-L., J.-R. Qi, S.-W. Yin, J.-M. Wang, J. Guo, J.-Y. Weng, Q.-R. Liu, and X.-Q. Yang. 2015. Fabrication and characterization of stable soy β-conglycinin–dextran core–shell nanogels prepared via a self-assembly approach at the isoelectric point. Journal of Agricultural and Food Chemistry 63 (26):6075–83. doi: 10.1021/acs.jafc.5b01778.
  • Ferreira, D. R., and C. P. Schulthess. 2011. The nanopore inner sphere enhancement effect on cation adsorption: sodium, potassium, and calcium. Soil Science Society of America Journal 75 (2):389–96. doi: 10.2136/sssaj2010.0130nps.
  • Ferreira, R. B., E. Franco, and A. R. Teixeira. 1999. Calcium- and magnesium-dependent aggregation of legume seed storage proteins. Journal of Agricultural and Food Chemistry 47 (8):3009–15.
  • Fischer, E., R. Cachon, and N. Cayot. 2020. Pisum sativum vs Glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses. Trends in Food Science & Technology 95:196–204. doi: 10.1016/j.tifs.2019.11.021.
  • Foisnet, E. 2020. Acide Phytique: Fermentation et réduction de la quantité d’acide phytique dans les produits alimentaires à base de céréales ou de protéagineux. Université de Rennes 1, INRAE, STLO, Institut Agro Rennes, p. 23.
  • Fredlund, K., M. Isaksson, L. Rossander-Hulthén, A. Almgren, and A.-S. Sandberg. 2006. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology 20 (1):49–57. doi: 10.1016/j.jtemb.2006.01.003.
  • Gatehouse, J. A., J. Gilroy, M. S. Hoque, and R. R. Croy. 1985. Purification, properties and amino acid sequence of a low-Mr abundant seed protein from pea (Pisum sativum L.). The Biochemical Journal 225 (1):239–47.
  • Gifford, S. R., and F. M. Clydesdale. 1990. Interactions among calcium, zinc and phytate with three protein sources. Journal of Food Science 55 (6):1720–4. doi: 10.1111/j.1365-2621.1990.tb03608.x.
  • Graf, E. 1986. Chemistry and applications of phytic acid: An overview. Phytic Acid: Chemistry & Applications 1986:1–21.
  • Greiner, R., and U. Konietzny. 2006. Phytase for food application. Food Technology & Biotechnology 44 (2):125–40.
  • Greiner, R., U. Konietzny, and K. D. Jany. 1998. Purification and properties of a phytase from rye. Journal of Food Biochemistry 22 (2):143–61. doi: 10.1111/j.1745-4514.1998.tb00236.x.
  • Grynspan, F, and M. Cheryan. 1989. Phytate-calcium interactions with soy protein. Journal of the American Oil Chemists’ Society 66 (1):93–7. doi:10.1007/BF02661792.
  • Gueguen, J. 1983. Legume seed protein extraction, processing, and end product characteristics. Qualitas Plantarum Plant Foods for Human Nutrition 32 (3–4):267–303. doi: 10.1007/BF01091191.
  • Gueguen, J., and J. Barbot. 1988. Quantitative and qualitative variability of pea (Pisum sativum L.) protein composition. Journal of the Science of Food and Agriculture 42 (3):209–24. doi: 10.1002/jsfa.2740420304.
  • Gueguen, L., and A. Pointillart. 2000. The bioavailability of dietary calcium. Journal of the American College of Nutrition 19 (sup2):119S–36S. doi: 10.1080/07315724.2000.10718083.
  • Hartman, R. J., and L. T. Cheng. 1936. Isoelectric point of glycinin. The Journal of Physical Chemistry 40 (4):453–9. doi: 10.1021/j150373a004.
  • Heaney, R. P., C. M. Weaver, and M. L. Fitzsimmons. 1991. Soybean phytate content: Effect on calcium absorption. The American Journal of Clinical Nutrition 53 (3):745–7.
  • Hidvégi, M., and R. Lásztity. 2002. Phytic Acid content of cereals and legumes and interaction with proteins. Periodica Polytechnica Chemical Engineering 46:59–64.
  • Higgins, T. 1984. Synthesis and regulation of major proteins in seeds. Annual Review of Plant Physiology 35 (1):191–221. doi: 10.1146/annurev.pp.35.060184.001203.
  • I’Anson, K., M. Miles, J. Bacon, H. Carr, N. Lambert, V. Morris, and D. Wright. 1988. Structure of the 7S globulin (vicilin) from pea (Pisum sativum). International Journal of Biological Macromolecules 10 (5):311–7. doi: 10.1016/0141-8130(88)90010-4.
  • Inagawa, J., I. Kiyosawa, and T. Nagasawa. 1987. Effects of phytic acid on the digestion of casein and soybean protein with trypsin, pancreatin or pepsin. Nippon Eiyo Shokuryo Gakkaishi 40 (5):367–73. doi: 10.4327/jsnfs.40.367.
  • Jackman, R., and C. Black. 1951. Solubility of iron, aluminum, calcium, and magnesium inositol phosphates at different pH values. Soil Science 72:179–86.
  • Johnson, L., and M. Tate. 1969. Structure of “phytic acids.” Canadian Journal of Chemistry 47 (1):63–73. doi: 10.1139/v69-008.
  • Kamchan, A., P. Puwastien, P. P. Sirichakwal, and R. Kongkachuichai. 2004. In vitro calcium bioavailability of vegetables, legumes and seeds. Journal of Food Composition and Analysis 17 (3-4):311–20. doi: 10.1016/j.jfca.2004.03.002.
  • Kaspchak, E., L. Igarashi-Mafra, and M. R. Mafra. 2018. Influence of ternary complexation between bovine serum albumin, sodium phytate, and divalent salts on turbidity and in vitro digestibility of protein. Journal of Agricultural and Food Chemistry 66 (40):10543–51.
  • Khalil, A. H., and E. H. Mansour. 1995. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chemistry 54 (2):177–82. doi: 10.1016/0308-8146(95)00024-D.
  • Kimura, A., T. Fukuda, M. Zhang, S. Motoyama, N. Maruyama, and S. Utsumi. 2008. Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean—French bean 7S globulin exhibits excellent properties. Journal of Agricultural and Food Chemistry 56 (21):10273–9.
  • Kinsella, J. E. 1979. Functional properties of soy proteins. Journal of the American Oil Chemists’ Society 56 (3Part1):242–58. doi: 10.1007/BF02671468.
  • Kłosowski, G., D. Mikulski, and O. Jankowiak. 2018. Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules 23 (4):848. doi: 10.3390/molecules23040848.
  • Klupšaitė, D., and G. Juodeikienė. 2015. Legume: Composition, protein extraction and functional properties. A review. Chemical Technology 66 (1):5–12. doi: 10.5755/j01.ct.66.1.12355.
  • Knuckles, B. 1988. Effect of phytate and other myo‐inositol phosphate esters on lipase activity. Journal of Food Science 53 (1):250–2. doi: 10.1111/j.1365-2621.1988.tb10221.x.
  • Knuckles, B., D. Kuzmicky, and A. Betschart. 1985. Effect of phytate and partially hydrolyzed phytate on in vitro protein digestibility. Journal of Food Science 50 (4):1080–2. doi: 10.1111/j.1365-2621.1985.tb13016.x.
  • Knuckles, B. E., D. D. Kuzmicky, M. R. Gumbmann, and A. A. Betschart. 1989. Effect of myoinositol phosphate esters on in vitro and in vivo digestion of protein. Journal of Food Science 54 (5):1348–50. doi: 10.1111/j.1365-2621.1989.tb05989.x.
  • Koivunen, E., K. Partanen, S. Perttilä, S. Palander, P. Tuunainen, and J. Valaja. 2016. Digestibility and energy value of pea (Pisum sativum L.), faba bean (Vicia faba L.) and blue lupin (narrow-leaf)(Lupinus angustifolius) seeds in broilers. Animal Feed Science and Technology 218:120–7. doi: 10.1016/j.anifeedsci.2016.05.007.
  • Koshiyama, I. 1968. Factors influencing conformation changes in a 7S protein of soybean globulins by ultracentrifugal investigations. Agricultural and Biological Chemistry 32 (7):879–87. doi: 10.1080/00021369.1968.10859151.
  • Kroll, R. D. 1984. Effect of pH on the binding of calcium ions by soybean proteins. Cereal Chemistry 61:490–5.
  • Kukić, D. V., M. B. Šćiban, J. M. Prodanović, A. N. Tepić, and M. A. Vasić. 2015. Extracts of fava bean (Vicia faba L.) seeds as natural coagulants. Ecological Engineering 84:229–32. doi: 10.1016/j.ecoleng.2015.09.008.
  • Kumar, V., A. Sinha, H. Makkar, and K. Becker. 2010. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry 120 (4):945–59. doi: 10.1016/j.foodchem.2009.11.052.
  • Kumar, V, and A. K. Sinha. 2018. General aspects of phytases. In Enzymes in human and animal nutrition, 53–72. New York, NY: Elsevier.
  • Lagarda, M. J., A. Cilla, and R. Barberá. 2016. Bioaccessibility of calcium in legumes. Calcium: Chemistry, Analysis, Function and Effects 47:237–55.
  • Lam, A. C. Y., A. Can Karaca, R. T. Tyler, and M. T. Nickerson. 2018. Pea protein isolates: Structure, extraction, and functionality. Food Reviews International 34 (2):126–47. doi: 10.1080/87559129.2016.1242135.
  • Lasztity, L., and R. Lasztity. 1988. Investigation of the formation of phytate-metal complexes. Periodica Polytechnica Chemical Engineering 32:299–304.
  • Lolas, G. M., and P. Markakis. 1975. Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 23 (1):13–5. doi: 10.1021/jf60197a016.
  • Lombardi-Boccia, G., M. Lucarini, G. Di Lullo, E. Del Puppo, A. Ferrari, and E. Carnovale. 1998. Dialysable, soluble and fermentable calcium from beans (Phaseolus vulgaris L.) as model for in vitro assessment of the potential calcium availability. Food Chemistry 61 (1-2):167–71. doi: 10.1016/S0308-8146(97)00040-X.
  • Lopez, H. W., F. Leenhardt, C. Coudray, and C. Remesy. 2002. Minerals and phytic acid interactions: Is it a real problem for human nutrition? International Journal of Food Science and Technology 37 (7):727–39. doi: 10.1046/j.1365-2621.2002.00618.x.
  • Mamadou, C. 1988. Les lectines du Phosphocarpus palustris localisation, évolution au cours du développement des plantules. Les légumineuses à graines de Madagascar. Prof y Dermaly, 252–350.
  • Mayer Labba, I.-C., H. Frøkiaer, and A.-S. Sandberg. 2021. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International (Ottawa, Ont.) 140:110038.
  • Meiners, C. R., N. L. Derise, H. C. Lau, M. G. Crews, S. J. Ritchey, and E. W. Murphy. 1976. The content of nine mineral elements in raw and cooked mature dry legumes. Journal of Agricultural and Food Chemistry 24 (6):1126–30. doi: 10.1021/jf60208a036.
  • Millar, K. A., E. Gallagher, R. M. Burke, S. N. McCarthy, and C. Barry-Ryan. 2019. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. Journal of Food Composition and Analysis 82:103233. doi: 10.1016/j.jfca.2019.103233.
  • Mo, X., Z. Zhong, D. Wang, and X. Sun. 2006. Soybean glycinin subunits: Characterization of physicochemical and adhesion properties. Journal of Agricultural and Food Chemistry 54 (20):7589–93. doi: 10.1021/jf060780g.
  • Mondor, M., S. Aksay, H. Drolet, S. Roufik, E. Farnworth, and J. I. Boye. 2009. Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innovative Food Science & Emerging Technologies 10 (3):342–7. doi: 10.1016/j.ifset.2009.01.007.
  • Multari, S., D. Stewart, and W. R. Russell. 2015. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Comprehensive Reviews in Food Science and Food Safety 14 (5):511–22. doi: 10.1111/1541-4337.12146.
  • Nävert, B., B. Sandström, and A. Cederblad. 1985. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. The British Journal of Nutrition 53 (1):47–53. doi: 10.1079/bjn19850009.
  • Nolan, K. B., P. A. Duffin, and D. J. McWeeny. 1987. Effects of phytate on mineral bioavailability. In vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. Journal of the Science of Food and Agriculture 40 (1):79–85. doi: 10.1002/jsfa.2740400110.
  • O dell, B. L., and A. R. d. Boland. 1976. Complexation of phytate with proteins and cations in corn germ and oil seed meals. Journal of Agricultural and Food Chemistry. 24:804–8.
  • O’Neill, H. M., M. Rademacher, I. Mueller-Harvey, E. Stringano, S. Kightley, and J. Wiseman. 2012. Standardised ileal digestibility of crude protein and amino acids of UK-grown peas and faba beans by broilers. Animal Feed Science and Technology 175 (3–4):158–67. doi: 10.1016/j.anifeedsci.2012.05.004.
  • Okubo, K., A. B. Waldrop, G. A. Iacobucci, and D. V. Myers. 1975. Preparation of low-phytate soybean protein isolate and concentrate by ultrafiltration. Cereal Chemistry 52:263–71.
  • Omosaiye, O., and M. Cheryan. 1979. Low-phytate, full-fat soy protein product by Ultrafiltration of aqueous extracts of whole soybeans. Cereal Chemistry 56:58–62.
  • Osborne, T. B. 1924. The vegetable proteins. Longmans, Green, London.
  • Perrot, C. 1995. Les protéines de pois: De leur fonction dans la graine à leur utilisation en alimentation animale. INRAE Productions Animales 8 (3):151–64. doi: 10.20870/productions-animales.1995.8.3.4122.
  • Persson, H., M. Türk, M. Nyman, and A.-S. Sandberg. 1998. Binding of Cu2+, Zn2+, and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates. Journal of Agricultural and Food Chemistry 46 (8):3194–200. doi: 10.1021/jf971055w.
  • Petruccelli, S., and M. C. Anon. 1995. Soy protein isolate components and their interactions. Journal of Agricultural and Food Chemistry 43 (7):1762–7. doi: 10.1021/jf00055a004.
  • Pointillart, A. 1994. Phytates and phytases: Their relevance in the feeding of pigs and poultry Phytates, phytases: Leur importance dans l’alimentation des monogastriques. INRAE Productions Animales 7 (1):29–39. doi: 10.20870/productions-animales.1994.7.1.4155.
  • Pramitha, J. L., S. Rana, P. R. Aggarwal, R. Ravikesavan, A. J. Joel, and M. Muthamilarasan. 2021. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Advance Genetic 107:89–120.
  • Prattley, C. A., and D. W. Stanley. 1982. Protein-Phytate Interactions in Soybeans. I. Localization of phytate in protein bodies and globoids. Journal of Food Biochemistry 6 (4):243–54. doi: 10.1111/j.1745-4514.1982.tb00305.x.
  • Priyodip, P., and S. Balaji. 2019. An in vitro chicken gut model for the assessment of phytase producing bacteria. 3 Biotech. 9 (8):1–6. doi: 10.1007/s13205-019-1825-2.
  • Rabobank. 2018. Annual Report 2017 Rabobank.
  • Raboy, V. 1997. Accumulation and storage of phosphate and minerals. In Cellular and molecular biology of plant seed development, 441–77. New York, NY: Springer.
  • Rao, A. A., and M. N. Rao. 1975. Binding of magnesium (II) by the 11S fraction of soybean proteins. Journal of Agricultural and Food Chemistry 23 (4):657–61. doi: 10.1021/jf60200a001.
  • Rosa-Sibakov, N., M. Re, A. Karsma, A. Laitila, and E. Nordlund. 2018. Phytic acid reduction by bioprocessing as a tool to improve the in vitro digestibility of faba bean protein. Journal of Agricultural and Food Chemistry 66 (40):10394–9. doi: 10.1021/acs.jafc.8b02948.
  • Saio, K., E. Koyama, and T. Watanabe. 1968. Protein-calcium-phytic acid relationships in soybean: Part II. effects of phytic acid on combination of calcium with soybean meal protein. Agricultural and Biological Chemistry 32 (4):448–52. doi: 10.1080/00021369.1968.10859080.
  • Saio, K., E. Koyama, S. Yamazaki, and T. Watanabe. 1969. Protein-calcium-phytic acid relationships in soybean. Part III. Effect of phytic acid on coagulative reaction in tofu-making. Agricultural and Biological Chemistry 33 (1):36–42. doi: 10.1080/00021369.1969.10859277.
  • Sakakibara, M., and H. Noguchi. 1977. Interaction of 11S fraction of soybean protein with calcium ion. Agricultural and Biological Chemistry 41 (9):1575–80. doi: 10.1080/00021369.1977.10862744.
  • Sandberg, A.-S., L. R. Hulthén, and M. Türk. 1996. Dietary Aspergillus niger phytase increases iron absorption in humans. The Journal of Nutrition 126 (2):476–80. doi: 10.1093/jn/126.2.476.
  • Sandberg, A. S., and U. Svanberg. 1991. Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. Journal of Food Science 56 (5):1330–3. doi: 10.1111/j.1365-2621.1991.tb04765.x.
  • Schlemmer, U., W. Frølich, R. M. Prieto, and F. Grases. 2009. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research 53 (S2):S330–S375. doi: 10.1002/mnfr.200900099.
  • Schlemmer, U., H. Müller, and K. D. Jany. 1995. The degradation of phytic acid in legumes prepared by different methods. European Journal of Clinical Nutrition 49 (Suppl 3):S207–S210.
  • Schmitt, C., L. Bovetto, J. Buczkowski, G. de oliveira reis, P. Pibarot, L. Amagliani, and J. Dombrowski. 2021. Plant proteins and their colloidal state. Current Opinion in Colloid & Interface Science 56:101510. doi: 10.1016/j.cocis.2021.101510.
  • Sebastiá, V., R. Barberá, R. Farré, and M. J. Lagarda. 2001. Effects of legume processing on calcium, iron and zinc contents and dialysabilities. Journal of the Science of Food and Agriculture 81 (12):1180–5. doi: 10.1002/jsfa.927.
  • Sen, D., and D. K. Mandal. 2011. Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie 93 (3):409–17. doi: 10.1016/j.biochi.2010.10.013.
  • Sharan, S., G. Zanghelini, J. Zotzel, D. Bonerz, J. Aschoff, A. Saint‐Eve, and M. N. Maillard. 2021. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Comprehensive Reviews in Food Science and Food Safety 20 (1):401–28. doi: 10.1111/1541-4337.12687.
  • Sharma, N., S. Angural, M. Rana, N. Puri, K. K. Kondepudi, and N. Gupta. 2020. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends in Food Science & Technology 96:1–12. doi: 10.1016/j.tifs.2019.12.001.
  • Shevkani, K., N. Singh, Y. Chen, A. Kaur, and L. Yu. 2019. Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology 56:2787–98.
  • Singh, M., and A. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. Journal of Agricultural and Food Chemistry 30 (4):799–800. doi: 10.1021/jf00112a049.
  • Smith, A. K., and J. J. Rackis. 1957. Phytin elimination in soybean protein isolation. Journal of the American Chemical Society 79 (3):633–7. doi: 10.1021/ja01560a034.
  • Song, Y., J. E. Manson, J. E. Buring, and S. Liu. 2004. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: The women’s health study. Diabetes Care 27 (9):2108–15. doi: 10.2337/diacare.27.9.2108.
  • Sumner, A. K., M. A. Nielsen, and C. G. Youngs. 1981. Production and evaluation of pea protein isolate. Journal of Food Science 46 (2):364–6. doi: 10.1111/j.1365-2621.1981.tb04862.x.
  • Swanson, B. G. 1990. Pea and lentil protein extraction and functionality. Journal of the American Oil Chemists’ Society 67 (5):276–80. doi: 10.1007/BF02539676.
  • Taherian, A. R., M. Mondor, J. Labranche, H. Drolet, D. Ippersiel, and F. Lamarche. 2011. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International 44 (8):2505–14. doi: 10.1016/j.foodres.2011.01.030.
  • Tang, C.-H., and X. Sun. 2011. A comparative study of physicochemical and conformational properties in three vicilins from Phaseolus legumes: Implications for the structure–function relationship. Food Hydrocolloids. 25 (3):315–24. doi: 10.1016/j.foodhyd.2010.06.009.
  • Tanger, C., J. Engel, and U. Kulozik. 2020. Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids. 107:105949. doi: 10.1016/j.foodhyd.2020.105949.
  • Theodoropoulos, V. C. T., M. A. Turatti, R. Greiner, G. A. Macedo, and J. A. L. Pallone. 2018. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink. Food Research International (Ottawa, Ont.) 108:68–73. doi: 10.1016/j.foodres.2018.03.018.
  • Torres, J., S. Domínguez, M. F. Cerdá, G. Obal, A. Mederos, R. F. Irvine, A. Díaz, and C. Kremer. 2005. Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neut. Journal of Inorganic Biochemistry 99 (3):828–40. doi: 10.1016/j.jinorgbio.2004.12.011.
  • Tzitzikas, E. N., J. P. Vincken, J. de Groot, H. Gruppen, and R. G. Visser. 2006. Genetic variation in pea seed globulin composition. Journal of Agricultural and Food Chemistry 54 (2):425–33. doi: 10.1021/jf0519008.
  • Urbano, G., M. Lopez-Jurado, P. Aranda, C. Vidal-Valverde, E. Tenorio, and J. Porres. 2000. The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry 56 (3):283–94. doi: 10.1007/BF03179796.
  • USDA. 2008. Soy stats 2008, a reference guide to important soybean facts & figures.
  • Vogelsang-O’Dwyer, M., I. L. Petersen, M. S. Joehnke, J. C. Sørensen, J. Bez, A. Detzel, M. Busch, M. Krueger, J. A. O’Mahony, E. K. Arendt, et al. 2020. Comparison of faba bean protein ingredients produced using dry fractionation and isoelectric precipitation: Techno-functional, nutritional and environmental performance. Foods 9 (3):322. doi: 10.3390/foods9030322.
  • Walker, P., P. Rhubart-Berg, S. McKenzie, K. Kelling, and R. S. Lawrence. 2005. Public health implications of meat production and consumption. Public Health Nutrition 8 (4):348–56. doi: 10.1079/phn2005727.
  • Wang, N., and J. Daun. 2004. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas (Pisum sativum). Journal of the Science of Food and Agriculture 84 (9):1021–9. doi: 10.1002/jsfa.1742.
  • Wang, R., and S. Guo. 2021. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Comprehensive Reviews in Food Science and Food Safety 20 (2):2081–105. doi: 10.1111/1541-4337.12714.
  • Warsame, A. O., N. Michael, D. M. O’Sullivan, and P. Tosi. 2020. Identification and quantification of major faba bean seed proteins. Journal of Agricultural and Food Chemistry 68 (32):8535–44. doi: 10.1021/acs.jafc.0c02927.
  • Wright, D. J., and D. Boulter. 1972. The characterisation of vicilin during seed development in Vicia faba (L.). Planta 105 (1):60–5. doi: 10.1007/BF00385164.
  • Yang, Y., Q. Wang, L. Lei, F. Li, J. Zhao, Y. Zhang, L. Li, Q. Wang, and J. Ming. 2020. Molecular interaction of soybean glycinin and β-conglycinin with (−)-epigallocatechin gallate induced by pH changes. Food Hydrocolloids. 108:106010. doi: 10.1016/j.foodhyd.2020.106010.
  • Zhou, J. R., and J. W. ErdmanJr. 1995. Phytic acid in health and disease. Critical Reviews in Food Science and Nutrition 35 (6):495–508. doi: 10.1080/10408399509527712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.