2,759
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Gut firmicutes: Relationship with dietary fiber and role in host homeostasis

, , , , , , , & ORCID Icon show all
Pages 12073-12088 | Published online: 12 Jul 2022

References

  • Amer, M., M. Nadeem, S. U. R. Nazir, M. Fakhar, F. Abid, Q.-U. Ain, and E. Asif. 2018. Probiotics and their use in inflammatory bowel disease. Alternative Therapies in Health and Medicine 24 (3):16–23.
  • de Andrade, R. M. S., S. Silva, C. d S. Costa, M. Veiga, E. Costa, M. S. L. Ferreira, E. C. B. Gonçalves, A. de, and M. E. Pintado. 2020. Potential prebiotic effect of fruit and vegetable byproducts flour using in vitro gastrointestinal digestion. Food Research International (Ottawa, Ont.) 137 (May):109354. doi: 10.1016/j.foodres.2020.109354.
  • Azad, M. A. K., M. Sarker, T. Li, and J. Yin. 2018. Probiotic species in the modulation of gut microbiota: An overview. BioMed Research International 2018:9478630. doi: 10.1155/2018/9478630.
  • Bai, Y., J. Zheng, X. Yuan, S. Jiao, C. Feng, Y. Du, H. Liu, and L. Zheng. 2018. Chitosan oligosaccharides improve glucolipid metabolism disorder in liver by suppression of obesity-related inflammation and restoration of peroxisome proliferator-activated receptor γ. Marine Drugs 16 (11).455. doi: 10.3390/md16110:.
  • Balakumar, M., D. Prabhu, C. Sathishkumar, P. Prabu, N. Rokana, R. Kumar, S. Raghavan, A. Soundarajan, S. Grover, V. K. Batish, et al. 2018. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. European Journal of Nutrition 57 (1):279–95. doi: 10.1007/s00394-016-1317-7.
  • Bendiks, Z. A., K. E. B. Knudsen, M. J. Keenan, and M. L. Marco. 2020. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research (New York, N.Y.) 77:12–28. doi: 10.1016/j.nutres.2020.02.009.
  • Blaak, E. E., E. E. Canfora, S. Theis, G. Frost, A. K. Groen, G. Mithieux, A. Nauta, K. Scott, B. Stahl, J. van Harsselaar, et al. 2020. Short chain fatty acids in human gut and metabolic health. Beneficial Microbes 11 (5):411–55. doi: 10.3920/BM2020.0057.
  • Breyner, N. M., C. Michon, C. S. de Sousa, P. B. Vilas Boas, F. Chain, V. A. Azevedo, P. Langella, and J. M. Chatel. 2017. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Frontiers in Microbiology 8:114. doi: 10.3389/fmicb.2017.00114.
  • Briggs, J. A., J. M. Grondin, and H. Brumer. 2021. Communal living: Glycan utilization by the human gut microbiota. Environmental Microbiology 23 (1):15–35. doi: 10.1111/1462-2920.15317.
  • Cai, Y., J. Folkerts, G. Folkerts, M. Maurer, and S. Braber. 2020. Microbiota-dependent and -independent effects of dietary fibre on human health. British Journal of Pharmacology 177 (6):1363–81. doi: 10.1111/bph.14871.
  • Cartmell, A., J. Muñoz-Muñoz, J. A. Briggs, D. A. Ndeh, E. C. Lowe, A. Baslé, N. Terrapon, K. Stott, T. Heunis, J. Gray, et al. 2018. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology 3 (11):1314–26. doi: 10.1038/s41564-018-0258-8.
  • Chassard, C., E. Delmas, C. Robert, and A. Bernalier-Donadille. 2010. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiology Ecology 74 (1):205–13. doi: 10.1111/j.1574-6941.2010.00941.x.
  • Chassard, C, and C. Lacroix. 2013. Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care 16 (4):453–60. doi: 10.1097/MCO.0b013e3283619e63.
  • Chen, H., X. Jiang, S. Li, W. Qin, Z. Huang, Y. Luo, H. Li, D. Wu, Q. Zhang, Y. Zhao, et al. 2020. Possible beneficial effects of xyloglucan from its degradation by gut microbiota. Trends in Food Science & Technology 97 (June 2019):65–75. doi: 10.1016/j.tifs.2020.01.001.
  • Chen, H., Q. Nie, J. Hu, X. Huang, K. Zhang, S. Pan, and S. Nie. 2019. Hypoglycemic and hypolipidemic effects of glucomannan extracted from Konjac on type 2 diabetic rats. Journal of Agricultural and Food Chemistry 67 (18):5278–88. doi: 10.1021/acs.jafc.9b01192.
  • Chi, L., P. Tu, H. Ru, and K. Lu. 2021. Studies of xenobiotic-induced gut microbiota dysbiosis: From correlation to mechanisms. Gut Microbes 13 (1):1921912. doi: 10.1080/19490976.2021.1921912.
  • Cockburn, D. W, and N. M. Koropatkin. 2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of Molecular Biology 428 (16):3230–52. doi: 10.1016/j.jmb.2016.06.021.
  • Cockburn, D. W., N. I. Orlovsky, M. H. Foley, K. J. Kwiatkowski, C. M. Bahr, M. Maynard, B. Demeler, N. M. Koropatkin, A. Arbor, and S. Antonio. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Molecular Microbiology 95 (2):209–30. doi: 10.1111/mmi.12859.Molecular.
  • Cronin, P., S. A. Joyce, P. W. O’Toole, and E. M. O’Connor. 2021. Dietary fibre modulates the gut microbiota. Nutrients 13 (5):1655. doi: 10.3390/nu13051655.
  • Dagdeviren, S., D. Y. Jung, R. H. Friedline, H. L. Noh, J. H. Kim, P. R. Patel, N. Tsitsilianos, K. Inashima, D. A. Tran, X. Hu, et al. 2017. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. The FASEB Journal 31 (2):701–10. doi: 10.1096/fj.201600832R.
  • Devries, J., M. E. Camire, S. Cho, S. A. S. Craig, D. Gordon, J. M. Jones, B. Li, D. Lineback, L. Prosky, and B. Tungland. 2001. The definition of dietary fiber. Cereal Foods World 46 (3):112–29.
  • Dhingra, D., M. Michael, H. Rajput, and R. T. Patil. 2012. Dietary fibre in foods: A review. Journal of Food Science and Technology 49 (3):255–66. doi: 10.1007/s13197-011-0365-5.
  • Donaldson, G. P., S. M. Lee, and S. K. Mazmanian. 2016. Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology 14 (1):20–32. doi: 10.1038/nrmicro3552.
  • Espinosa, C. D., R. S. Fry, M. E. Kocher, and H. H. Stein. 2020. Effects of copper hydroxychloride and dietary fiber on intestinal permeability, growth performance, and blood characteristics of nursery pigs. Animal Feed Science and Technology 263 (February):114447. doi: 10.1016/j.anifeedsci.2020.114447.
  • Fan, S., Z. Zhang, Y. Zhong, C. Li, X. Huang, F. Geng, and S. Nie. 2021. Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: Short chain fatty acid production and gut commensal translocation. 12(16): 7343–57. doi: 10.1039/d1fo00410g.
  • Fernandez-Julia, P. J., J. Munoz-Munoz, and D. van Sinderen. 2021. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules 181:877–89. doi: 10.1016/j.ijbiomac.2021.04.069.
  • Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 (4):289–306. doi: 10.4161/gmic.19897.
  • Fu, X., Z. Liu, C. Zhu, H. Mou, and Q. Kong. 2019. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition 59 (Supp1):S130–S152. doi: 10.1080/10408398.2018.1542587.
  • Ganesan, K., S. K. Chung, J. Vanamala, and B. Xu. 2018. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. International Journal of Molecular Sciences 19 (12):3720. doi: 10.3390/ijms19123720.
  • Gao, H., J.-J. Wen, J.-L. Hu, Q.-X. Nie, H.-H. Chen, T. Xiong, S.-P. Nie, and M.-Y. Xie. 2018. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydrate Polymers 201:624–33. doi: 10.1016/j.carbpol.2018.08.075.
  • Gao, Z., J. Yin, J. Zhang, R. E. Ward, R. J. Martin, M. Lefevre, W. T. Cefalu, and J. Ye. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 (7):1509–17. doi: 10.2337/db08-1637.
  • Gill, R. K., A. Kumar, P. Malhotra, D. Maher, V. Singh, P. K. Dudeja, W. Alrefai, and S. Saksena. 2013. Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: Role of HDAC2. American Journal of Physiology. Cell Physiology 304 (4):C334–41. doi: 10.1152/ajpcell.00361.2012.
  • Guo, P., K. Zhang, X. Ma, and P. He. 2020. Clostridium species as probiotics: Potentials and challenges. Journal of Animal Science and Biotechnology 11:24. doi: 10.1186/s40104-019-0402-1.
  • Gurung, M., Z. Li, H. You, R. Rodrigues, D. B. Jump, A. Morgun, and N. Shulzhenko. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590–9. doi: 10.1016/j.ebiom.2019.11.051.
  • Haran, J. P., S. K. Bhattarai, S. E. Foley, P. Dutta, D. V. Ward, V. Bucci, and B. A. McCormick. 2019. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio 10 (3):1–14. doi: 10.1128/mBio.00632-19.
  • Hiippala, K., H. Jouhten, A. Ronkainen, A. Hartikainen, V. Kainulainen, J. Jalanka, and R. Satokari. 2018. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10 (8):988. doi: 10.3390/nu10080988.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology 11 (8):506–14. doi: 10.1038/nrgastro.2014.66.
  • Hills, R. D. J., B. A. Pontefract, H. R. Mishcon, C. A. Black, S. C. Sutton, and C. R. Theberge. 2019. Gut microbiome: Profound implications for diet and disease. Nutrients 11 (7):1613. doi: 10.3390/nu11071613.
  • Huang, P, and Y. Liu. 2019. A reasonable diet promotes balance of intestinal microbiota: Prevention of precolorectal cancer. BioMed Research International 2019:3405278. doi: 10.1155/2019/3405278.
  • Iino, C., T. Endo, K. Mikami, T. Hasegawa, M. Kimura, N. Sawada, S. Nakaji, and S. Fukuda. 2019. Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: A large BMI- and sex-matched population study. Hepatology International 13 (6):748–56. doi: 10.1007/s12072-019-09987-8.
  • Jandhyala, S. M., R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala, and D. N. Reddy. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology 21 (29):8787–847. doi: 10.3748/wjg.v21.i29.8787.
  • Ji, Y., S. Park, H. Park, E. Hwang, H. Shin, B. Pot, and W. H. Holzapfel. 2018. Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model. Frontiers in Microbiology 9:710. doi: 10.3389/fmicb.2018.00710.
  • Jiang, H., Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, W. Wang, W. Tang, Z. Tan, J. Shi, et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity 48:186–94. doi: 10.1016/j.bbi.2015.03.016.
  • Jones, J. M. 2014. CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutrition Journal 13 (1):1–10. doi: 10.1186/1475-2891-13-34.
  • Jung, D. H., Seo, D. H. Kim, Y. J. Chung, W. H. Nam, Y. Do, and Park, C. S. 2020. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. International Journal of Biological Macromolecules 161:389–97. doi: 10.1016/j.ijbiomac.2020.05.235.
  • Karcher, N., E. Pasolli, F. Asnicar, K. D. Huang, A. Tett, S. Manara, F. Armanini, D. Bain, S. H. Duncan, P. Louis, et al. 2020. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. Genome Biology 21 (1):138. doi: 10.1186/s13059-020-02042-y.
  • Kasahara, K., K. A. Krautkramer, E. Org, K. A. Romano, R. L. Kerby, E. I. Vivas, M. Mehrabian, J. M. Denu, F. Bäckhed, A. J. Lusis, et al. 2018. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology 3 (12):1461–71. doi: 10.1038/s41564-018-0272-x.
  • Kassem, I. A. A., T. Joshua Ashaolu, R. Kamel, N. A. Elkasabgy, S. M. Afifi, and M. A. Farag. 2021. Mucilage as a functional food hydrocolloid: Ongoing and potential applications in prebiotics and nutraceuticals. Food & Function 12 (11):4738–48. doi: 10.1039/d1fo00438g.
  • Kavadi, P. K., R. Pothuraju, J. Chagalamarri, G. Bhakri, A. Mallepogu, and R. K. Sharma. 2017. Dietary incorporation of whey protein isolate and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice. Journal of Intercultural Ethnopharmacology 6 (3):1–332. doi: 10.5455/jice.20170526091235.
  • Kawade, Y., M. Sakai, M. Okamori, M. Morita, K. Mizushima, T. Ueda, T. Takagi, Y. Naito, Y. Itoh, and T. Shimada. 2019. Administration of live, but not inactivated, Faecalibacterium prausnitzii has a preventive effect on dextran sodium sulfate‑induced colitis in mice. Molecular Medicine Reports 20 (1):25–32. doi: 10.3892/mmr.2019.10234.
  • Khalili, L., B. Alipour, M. Asghari Jafar-Abadi, I. Faraji, T. Hassanalilou, M. Mesgari Abbasi, E. Vaghef-Mehrabany, and M. Alizadeh Sani. 2019. The Effects of Lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-A levels in patients with type 2 Diabetes Mellitus: A randomized controlled trial. Iranian Biomedical Journal 23 (1):68–77. doi: 10.29252/.23.1.68.
  • Kim, M.-S., S.-S. Hwang, E.-J. Park, and J.-W. Bae. 2013. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environmental Microbiology Reports 5 (5):765–75. doi: 10.1111/1758-2229.12079.
  • Kim, S.-H., C.-S. Huh, I.-D. Choi, J.-W. Jeong, H.-K. Ku, J.-H. Ra, T.-Y. Kim, G.-B. Kim, J.-H. Sim, and Y.-T. Ahn. 2014. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. Journal of Applied Microbiology 117 (3):834–45. doi: 10.1111/jam.12573.
  • Kim, S.-J., B. Chandrasekar, A. C. Rea, L. Danhof, S. Zemelis-Durfee, N. Thrower, Z. S. Shepard, M. Pauly, F. Brandizzi, and K. Keegstra. 2020. The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proceedings of the National Academy of Sciences of the United States of America 117 (33):20316–24. doi: 10.1073/pnas.2007245117.
  • Krishnan, S., Y. Ding, N. Saedi, M. Choi, G. V. Sridharan, D. H. Sherr, M. L. Yarmush, R. C. Alaniz, A. Jayaraman, and K. Lee. 2018. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Reports 23 (4):1099–111. doi: 10.1016/j.celrep.2018.03.109.
  • Kunasegaran, T., V. Balasubramaniam, V. J. T. Arasoo, U. D. Palanisamy, and A. Ramadas. 2021. The modulation of gut microbiota composition in the pathophysiology of gestational diabetes mellitus: A systematic review. Biology 10 (10).1027. doi: 10.3390/biology1010:.
  • Kuo, S.-M. 2018. Does modification of the large intestinal microbiome contribute to the anti-inflammatory activity of fermentable fiber? Current Developments in Nutrition 2 (2):nzx004. doi: 10.3945/cdn.117.001180.
  • Laffin, M. R., H. Tayebi Khosroshahi, H. Park, L. J. Laffin, K. Madsen, H. S. Kafil, B. Abedi, S. Shiralizadeh, and N. D. Vaziri. 2019. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: Microbial analysis from a randomized placebo-controlled trial. Hemodialysis International. International Symposium on Home Hemodialysis 23 (3):343–7. doi: 10.1111/hdi.12753.
  • Larsen, N., C. B. de Souza, L. Krych, W. Kot, T. D. Leser, O. B. Sørensen, A. Blennow, K. Venema, and L. Jespersen. 2019. Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Research International (Ottawa, Ont.) 125 (August):108644. doi: 10.1016/j.foodres.2019.108644.
  • Le Bastard, Q., G. Chapelet, F. Javaudin, D. Lepelletier, E. Batard, and E. Montassier. 2020. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology39 (3):403–13. doi: 10.1007/s10096-019-03721-w.
  • Lee, E., S.-R. Jung, S.-Y. Lee, N.-K. Lee, H.-D. Paik, and S.-I. Lim. 2018. Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid Metabolism. Nutrients 10 (5):643. doi: 10.3390/nu10050643.
  • Leth, M. L., M. Ejby, C. Workman, D. A. Ewald, S. S. Pedersen, C. Sternberg, M. I. Bahl, T. R. Licht, F. L. Aachmann, B. Westereng, et al. 2018. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nature Microbiology 3 (5):570–80. doi: 10.1038/s41564-018-0132-8.
  • Leylabadlo, H. E., R. Ghotaslou, M. M. Feizabadi, S. Farajnia, S. Y. Moaddab, K. Ganbarov, E. Khodadadi, A. Tanomand, E. Sheykhsaran, B. Yousefi, et al. 2020. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis 149:104344. doi: 10.1016/j.micpath.2020.104344.
  • Li, J., F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, S. Wu, W. Liu, Q. Cui, B. Geng, et al. 2017a. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5 (1):14. doi: 10.1186/s40168-016-0222-x.
  • Li, W., X. Wu, X. Hu, T. Wang, S. Liang, Y. Duan, F. Jin, and B. Qin. 2017b. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Science China. Life Sciences 60 (11):1223–33. doi: 10.1007/s11427-016-9001-4.
  • Li, X., E. Wang, B. Yin, D. Fang, P. Chen, G. Wang, J. Zhao, H. Zhang, and W. Chen. 2017c. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Beneficial Microbes 8 (3):421–32. doi: 10.3920/BM2016.0167.
  • Lindstad, L. J., G. Lo, S. Leivers, Z. Lu, L. Michalak, G. V. Pereira, Å. K. Røhr, E. C. Martens, L. S. McKee, P. Louis, et al. 2021. Human gut Faecalibacterium prausnitzii deploys a highly efficient conserved system to cross-feed on β-mannan-derived oligosaccharides. mBio 12 (3):e0362820. doi: 10.1128/mBio.03628-20.
  • Liu, H., X. Zeng, J. Huang, X. Yuan, Q. Wang, and L. Ma. 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers 252 (June 2020):117186. doi: 10.1016/j.carbpol.2020.117186.
  • Liu, M., X. Li, S. Zhou, T. T. Y. Wang, S. Zhou, K. Yang, Y. Li, J. Tian, and J. Wang. 2020a. Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food & Function 11 (1):689–99. doi: 10.1039/c9fo01009b.
  • Liu, R., J. Hong, X. Xu, Q. Feng, D. Zhang, Y. Gu, J. Shi, S. Zhao, W. Liu, X. Wang, et al. 2017. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine 23 (7):859–68. doi: 10.1038/nm.4358.
  • Liu, Y., J. Chen, Q. Tan, X. Deng, P.-J. Tsai, P.-H. Chen, M. Ye, J. Guo, and Z. Su. 2020b. Nondigestible oligosaccharides with anti-obesity effects. Journal of Agricultural and Food Chemistry 68 (1):4–16. doi: 10.1021/acs.jafc.9b06079.
  • Liu, Z., L. Li, S. Ma, J. Ye, H. Zhang, Y. Li, A. T. Sair, J. Pan, X. Liu, X. Li, et al. 2020c. High-dietary fiber intake alleviates antenatal obesity-induced postpartum depression: Roles of gut microbiota and microbial metabolite short-chain fatty acid involved. Journal of Agricultural and Food Chemistry 68 (47):13697–710. doi: 10.1021/acs.jafc.0c04290.
  • Lopez-Siles, M., T. M. Khan, S. H. Duncan, H. J. M. Harmsen, L. J. Garcia-Gil, and H. J. Flint. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Applied and Environmental Microbiology 78 (2):420–8. doi: 10.1128/AEM.06858-11.
  • Lytrivi, M., A.-L. Castell, V. Poitout, and M. Cnop. 2020. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in Type 2 diabetes. Journal of Molecular Biology 432 (5):1514–34. doi: 10.1016/j.jmb.2019.09.016.
  • Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. Van Immerseel, K. Verbeke, et al. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63 (8):1275–83. doi: 10.1136/gutjnl-2013-304833.
  • Makki, K., E. C. Deehan, J. Walter, and F. Bäckhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–15. doi: 10.1016/j.chom.2018.05.012.
  • Mao, G., S. Li, C. Orfila, X. Shen, S. Zhou, R. J. Linhardt, X. Ye, and S. Chen. 2019. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food & Function 10 (12):7828–43. doi: 10.1039/c9fo01534e.
  • Marques, F. Z., E. Nelson, P.-Y. Chu, D. Horlock, A. Fiedler, M. Ziemann, J. K. Tan, S. Kuruppu, N. W. Rajapakse, A. El-Osta, et al. 2017. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and hearfailure in hypertensive mice. Circulation 135 (10):964–77. doi: 10.1161/CIRCULATIONAHA.116.024545.
  • Matsumoto, M., R. Kibe, T. Ooga, Y. Aiba, S. Kurihara, E. Sawaki, Y. Koga, and Y. Benno. 2012. Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports 2 (1):233. doi: 10.1038/srep00233.
  • McFarlane, H. E., A. Döring, and S. Persson. 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology 65:69–94. doi: 10.1146/annurev-arplant-050213-040240.
  • Michalak, L., J. C. Gaby, L. Lagos, S. L. La Rosa, T. R. Hvidsten, C. Tétard-Jones, W. G. T. Willats, N. Terrapon, V. Lombard, B. Henrissat, et al. 2020a. Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nature Communications 11 (1):5773. doi: 10.1038/s41467-020-19585-0.
  • Michalak, L., S. L. La Rosa, S. Leivers, L. J. Lindstad, Å. K. Røhr, F. Lillelund Aachmann, and B. Westereng. 2020b. A pair of esterases from a commensal gut bacterium remove acetylations from all positions on complex β-mannans. Proceedings of the National Academy of Sciences of the United States of America 117 (13):7122–30. doi: 10.1073/pnas.1915376117.
  • Miquel, S., M. Leclerc, R. Martin, F. Chain, M. Lenoir, S. Raguideau, S. Hudault, C. Bridonneau, T. Northen, B. Bowen, et al. 2015. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 6 (2):1–10. doi: 10.1128/mBio.00300-15.
  • Moens, F., S. Weckx, and L. De Vuyst. 2016. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology 231:76–85. doi: 10.1016/j.ijfoodmicro.2016.05.015.
  • Mudgil, D., S. Barak, A. Patel, and N. Shah. 2018. Partially hydrolyzed guar gum as a potential prebiotic source. International Journal of Biological Macromolecules 112:207–10. doi: 10.1016/j.ijbiomac.2018.01.164.
  • Mukherjee, A., C. Lordan, R. P. Ross, and P. D. Cotter. 2020. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 12 (1):1802866. doi: 10.1080/19490976.2020.1802866.
  • Munoz-Munoz, J., A. Cartmell, N. Terrapon, A. Baslé, B. Henrissat, and H. J. Gilbert. 2017. An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. The Journal of Biological Chemistry 292 (32):13271–83. doi: 10.1074/jbc.M117.794578.
  • Munukka, E., A. Rintala, R. Toivonen, M. Nylund, B. Yang, A. Takanen, A. Hänninen, J. Vuopio, P. Huovinen, S. Jalkanen, et al. 2017. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. The ISME Journal 11 (7):1667–79. doi: 10.1038/ismej.2017.24.
  • Murakami, R., Hashikura, N. Yoshida, K. Xiao, J. Zhong, and Odamaki, T. 2021. Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides. Food Research International (Ottawa, Ont.) 144:110326. doi: 10.1016/j.foodres.2021.110326.
  • Natividad, J. M., A. Agus, J. Planchais, B. Lamas, A. C. Jarry, R. Martin, M.-L. Michel, C. Chong-Nguyen, R. Roussel, M. Straube, et al. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metabolism 28 (5):737–49.e4. doi: 10.1016/j.cmet.2018.07.001.
  • Navab-Moghadam, F., M. Sedighi, M. E. Khamseh, F. Alaei-Shahmiri, M. Talebi, S. Razavi, and N. Amirmozafari. 2017. The association of type II diabetes with gut microbiota composition. Microbial Pathogenesis 110:630–6. doi: 10.1016/j.micpath.2017.07.034.
  • Ndeh, D, and H. J. Gilbert. 2018. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews 42 (2):146–64. doi: 10.1093/femsre/fuy002.
  • Ndeh, D., A. Rogowski, A. Cartmell, A. S. Luis, A. Baslé, J. Gray, I. Venditto, J. Briggs, X. Zhang, A. Labourel, et al. 2017. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544 (7648):65–70. doi: 10.1038/nature21725.
  • Nie, Q., H. Chen, J. Hu, H. Tan, S. Nie, and M. Xie. 2020. Effects of nondigestible oligosaccharides on obesity. Annual Review of Food Science and Technology 11:205–33. doi: 10.1146/annurev-food-032519-051743.
  • Nie, Q., J. Hu, H. Gao, M. Li, Y. Sun, H. Chen, S. Zuo, Q. Fang, X. Huang, J. Yin, et al. 2021. Bioactive dietary fibers selectively promote gut microbiota to exert antidiabetic effects. Journal of Agricultural and Food Chemistry 69 (25):7000–15. doi: 10.1021/acs.jafc.1c01465.
  • Nie, Q., M. Xing, H. Chen, J. Hu, and S. Nie. 2019. Metabolomics and lipidomics profiling reveals hypocholesterolemic and hypolipidemic effects of arabinoxylan on Type 2 diabetic rats. Journal of Agricultural and Food Chemistry 67 (38):10614–23. doi: 10.1021/acs.jafc.9b03430.
  • Nie, Y., Q. Lin, and F. Luo. 2017. Effects of non-starch polysaccharides on inflammatory bowel disease. International Journal of Molecular Sciences 18 (7):1372. doi: 10.3390/ijms18071372.
  • Nozu, T., S. Miyagishi, R. Nozu, K. Takakusaki, and T. Okumura. 2019. Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Scientific Reports 9 (1):19603. doi: 10.1038/s41598-019-56132-4.
  • O’Grady, J., E. M. O’Connor, and F. Shanahan. 2019. Review article: Dietary fibre in the era of microbiome science. Alimentary Pharmacology & Therapeutics 49 (5):506–15. doi: 10.1111/apt.15129.
  • O Sheridan, P., J. C. Martin, T. D. Lawley, H. P. Browne, H. M. B. Harris, A. Bernalier-Donadille, S. H. Duncan, P. W. O’Toole, K. P Scott, and H. J Flint. 2016. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microbial Genomics 2 (2):e000043. doi: 10.1099/mgen.0.000043.
  • Petersen, K. F., A. Impellizeri, G. W. Cline, and G. I. Shulman. 2019. The effects of increased acetate turnover on glucose-induced insulin secretion in lean and obese humans. Journal of Clinical and Translational Science 3 (1):18–20. doi: 10.1017/cts.2018.342.
  • Petersen, M. C, and G. I. Shulman. 2018. Mechanisms of insulin action and insulin resistance. Physiological Reviews 98 (4):2133–223. doi: 10.1152/physrev.00063.2017.
  • Quan, Y., K. Song, Y. Zhang, C. Zhu, Z. Shen, S. Wu, W. Luo, B. Tan, Z. Yang, and X. Wang. 2018. Roseburia intestinalis-derived flagellin is a negative regulator of intestinal inflammation. Biochemical and Biophysical Research Communications 501 (3):791–9. doi: 10.1016/j.bbrc.2018.05.075.
  • Quévrain, E., M. A. Maubert, C. Michon, F. Chain, R. Marquant, J. Tailhades, S. Miquel, L. Carlier, L. G. Bermúdez-Humarán, B. Pigneur, et al. 2016. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65 (3):415–25. doi: 10.1136/gutjnl-2014-307649.
  • Rajani, C, and W. Jia. 2018. Bile acids and their effects on diabetes. Frontiers of Medicine 12 (6):608–23. doi: 10.1007/s11684-018-0644-x.
  • Ralli, T., Y. R. Neupane, Z. Saifi, and K. Kohli. 2021. Gut microbiota as an emerging therapeutic avenue for the treatment of nonalcoholic fatty liver disease. Current Pharmaceutical Design 27 (46):4677–85. doi: 10.2174/1389201022666210625141526.
  • Ramsay, A. G., K. P. Scott, J. C. Martin, M. T. Rincon, and H. J. Flint. 2006. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology (Reading, England) 152 (Pt 11):3281–90. doi: 10.1099/mic.0.29233-0.
  • La Rosa, S. L., M. L. Leth, L. Michalak, M. E. Hansen, N. A. Pudlo, R. Glowacki, G. Pereira, C. T. Workman, M. Ø. Arntzen, P. B. Pope, et al. 2019. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nature Communications 10 (1):1–14. doi: 10.1038/s41467-019-08812-y.
  • Roychowdhury, S., J. Cadnum, B. Glueck, M. Obrenovich, C. Donskey, and G. A. M. Cresci. 2018. Faecalibacterium prausnitzii and a prebiotic protect intestinal health in a mouse model of antibiotic and Clostridium difficile exposure. JPEN. Journal of Parenteral and Enteral Nutrition 42 (7):1156–67. doi: 10.1002/jpen.1053.
  • Sanchez, M., C. Darimont, V. Drapeau, S. Emady-Azar, M. Lepage, E. Rezzonico, C. Ngom-Bru, B. Berger, L. Philippe, C. Ammon-Zuffrey, et al. 2014. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. The British Journal of Nutrition 111 (8):1507–19. doi: 10.1017/S0007114513003875.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews. Gastroenterology & Hepatology 16 (10):605–16. doi: 10.1038/s41575-019-0173-3.
  • Scheller, H. V, and P. Ulvskov. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263–89. doi: 10.1146/annurev-arplant-042809-112315.
  • Seo, B., K. Jeon, S. Moon, K. Lee, W.-K. Kim, H. Jeong, K. H. Cha, M. Y. Lim, W. Kang, M.-N. Kweon, et al. 2020. Roseburia spp. abundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host & Microbe 27 (1):25–40.e6. doi: 10.1016/j.chom.2019.11.001.
  • O. Sheridan, P., J. C. Martin, T. D. Lawley, H. P. Browne, H. M. B. Harris, A. Bernalier-Donadille, S. H. Duncan, P. W. O’Toole, K. P. Scott, and H. J. Flint. 2016. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microbial Genomics 2 (2):1–16. doi: 10.1099/mgen.0.000043.
  • Shi, X.-D., J.-Y. Yin, L.-J. Zhang, O.-Y. Li, X.-J. Huang, and S.-P. Nie. 2019. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocolloids. 86:50–61. doi: 10.1016/j.foodhyd.2018.01.038.
  • Shi, Y., J. Liu, Q. Yan, X. You, S. Yang, and Z. Jiang. 2018. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β-d-glucan oligosaccharides in Lactobacillus species. Carbohydrate Polymers 188:17–26. doi: 10.1016/j.carbpol.2018.01.085.
  • Simpson, H. L, and B. J. Campbell. 2015. Review article: Dietary fibre-microbiota interactions. Alimentary Pharmacology & Therapeutics 42 (2):158–79. doi: 10.1111/apt.13248.
  • Sitkin, S, and J. Pokrotnieks. 2019. Clinical potential of anti-inflammatory effects of Faecalibacterium prausnitzii and butyrate in inflammatory bowel disease. Inflammatory Bowel Diseases 25 (4):E40–E41. doi: 10.1093/ibd/izy258.
  • So, D., K. Whelan, M. Rossi, M. Morrison, G. Holtmann, J. T. Kelly, E. R. Shanahan, H. M. Staudacher, and K. L. Campbell. 2018. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. The American Journal of Clinical Nutrition 107 (6):965–83. doi: 10.1093/ajcn/nqy041.
  • Song, H., Y. Yoo, J. Hwang, Y. C. Na, and H. S. Kim. 2016. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. The Journal of Allergy and Clinical Immunology 137 (3):852–60. doi: 10.1016/j.jaci.2015.08.021.
  • Sun, Y., J. Hu, S. Zhang, H. He, Q. Nie, Y. Zhang, C. Chen, F. Geng, and S. Nie. 2021. Prebiotic characteristics of arabinogalactans during in vitro fermentation through multi-omics analysis. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 156:112522. doi: 10.1016/j.fct.2021.112522.
  • Swennen, K., C. M. Courtin, and J. A. Delcour. 2006. Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition 46 (6):459–71. doi: 10.1080/10408390500215746.
  • Tamura, K, and H. Brumer. 2021. Glycan utilization systems in the human gut microbiota: A gold mine for structural discoveries. Current Opinion in Structural Biology 68:26–40. doi: 10.1016/j.sbi.2020.11.001.
  • Tan, H, and S. Nie. 2020. Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends in Food Science & Technology 106 (September):171–81. doi: 10.1016/j.tifs.2020.10.010.
  • Tang, W., D. Liu, J. Yin, and S. Nie. 2020. Consecutive and progressive purification of food-derived natural polysaccharide : Based on material, extraction process and crude polysaccharide. Trends in Food Science & Technology 99 (March):76–87. doi: 10.1016/j.tifs.2020.02.015.
  • Thompson, S. V., M. A. Bailey, A. M. Taylor, J. L. Kaczmarek, A. R. Mysonhimer, C. G. Edwards, G. E. Reeser, N. A. Burd, N. A. Khan, and H. D. Holscher. 2021. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: A randomized controlled trial. The Journal of Nutrition 151 (4):753–62. doi: 10.1093/jn/nxaa219.
  • Trent, C. M, and M. J. Blaser. 2016. Microbially produced acetate: A “missing link” in understanding obesity? Cell Metabolism 24 (1):9–10. doi: 10.1016/j.cmet.2016.06.023.
  • Verhaar, B. J. H., A. Prodan, M. Nieuwdorp, and M. Muller. 2020. Gut microbiota in hypertension and atherosclerosis: A review. Nutrients 12 (10):2982. doi: 10.3390/nu12102982.
  • Wang, K., X. Liang, Y. Pang, and C. Jiang. 2020. The role of gut microbiota in host lipid metabolism: An eye on causation and connection. Small Methods. 4 (7)1–18.1900604. doi: 10.1002/smtd.20:.
  • Wang, K., M. Liao, N. Zhou, L. Bao, K. Ma, Z. Zheng, Y. Wang, C. Liu, W. Wang, J. Wang, et al. 2019. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports 26 (1):222–35.e5. doi: 10.1016/j.celrep.2018.12.028.
  • Rivière, A., M. Gagnon, S. Weckx, D. Roy, and L. De Vuyst. 2015. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656. Applied and Environmental Microbiology 81 (22):7767–81. doi: 10.1128/AEM.02089-15.Editor.
  • Wong, V. W.-S., G. L.-H. Won, A. M.-L. Chim, W. C.-W. Chu, D. K.-W. Yeung, K. C.-T. Li, and H. L.-Y. Chan. 2013. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Annals of Hepatology 12 (2):256–62. doi: 10.1016/S1665-2681(19)31364-X.
  • Wu, W., J. Hu, H. Gao, H. Chen, X. Fang, H. Mu, Y. Han, and R. Liu. 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry 332 (May):127372. doi: 10.1016/j.foodchem.2020.127372.
  • Xiao, S., S. Jiang, D. Qian, and J. Duan. 2020. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Applied Microbiology and Biotechnology 104 (2):589–601. doi: 10.1007/s00253-019-10312-4.
  • Xu, J., R. Liang, W. Zhang, K. Tian, J. Li, X. Chen, T. Yu, and Q. Chen. 2020. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes 12 (3):224–36. doi: 10.1111/1753-0407.12986.
  • Yang, L., Q. Lin, L. Han, Z. Wang, M. Luo, W. Kang, J. Liu, J. Wang, T. Ma, and H. Liu. 2020a. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food & Function 11 (7):5965–75. doi: 10.1039/d0fo01102a.
  • Yang, Q., Q. Liang, B. Balakrishnan, D. P. Belobrajdic, Q.-J. Feng, and W. Zhang. 2020b. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients 12 (2)381. doi: 10.3390/nu12020:.
  • Yin, J., H. Lin, J. Li, Y. Wang, S. W. Cui, S. Nie, and M. Xie. 2012. Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L. Carbohydrate Polymers 87 (4):2416–24. doi: 10.1016/j.carbpol.2011.11.009.
  • Ying, M., B. Zheng, Q. Yu, K. Hou, H. Wang, M. Zhao, Y. Chen, J. Xie, S. Nie, and M. Xie. 2020. Ganoderma atrum polysaccharide ameliorates intestinal mucosal dysfunction associated with autophagy in immunosuppressed mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association138:111244. doi: 10.1016/j.fct.2020.111244.
  • Ze, X., Y. Ben David, J. A. Laverde-Gomez, B. Dassa, P. O. Sheridan, S. H. Duncan, P. Louis, B. Henrissat, N. Juge, N. M. Koropatkin, et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes Bacterium Ruminococcus bromii. mBio 6 (5):e01058-15–e01015. doi: 10.1128/mBio.01058-15.
  • Zhang, X., M. Zhang, L. Dong, X. Jia, L. Liu, Y. Ma, F. Huang, and R. Zhang. 2019. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation. Journal of Agricultural and Food Chemistry 67 (46):12796–805. doi: 10.1021/acs.jafc.9b06477.
  • Zhao, H., H. Xu, S. Chen, J. He, Y. Zhou, and Y. Nie. 2021. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. Journal of Gastroenterology and Hepatology 36 (2):320–8. doi: 10.1111/jgh.15222.
  • Zou, J., B. Chassaing, V. Singh, M. Pellizzon, M. Ricci, M. D. Fythe, M. V. Kumar, and A. T. Gewirtz. 2018. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host & Microbe 23 (1):41–53.e4. doi: 10.1016/j.chom.2017.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.