798
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Anthocyanin in blood oranges: a review on postharvest approaches for its enhancement and preservation

, , , , & ORCID Icon
Pages 12089-12101 | Published online: 12 Jul 2022

References

  • Aharoni, Y., and L. G. Houck. 1982. Change in rind, flesh, and juice color of blood oranges stored in air supplemented with ethylene or in oxygen‐enriched atmospheres. Journal of Food Science 47 (6):2091–2. doi: 10.1111/j.1365-2621.1982.tb12961.x.
  • Ali, B. 2021a. Practical applications of jasmonates in the biosynthesis and accumulation of secondary metabolites in plants. Biocatalysis and Agricultural Biotechnology 38:102205. doi: 10.1016/j.bcab.2021.102205.
  • Ali, B. 2021b. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31:101884. doi: 10.1016/j.bcab.2020.101884.
  • Ayala-Zavala, J. F., S. Y. Wang, C. Y. Wang, and G. A. González-Aguilar. 2007. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology 45:166–73.
  • Bajguz, A., M. Chmur, and D. Gruszka. 2020. Comprehensive overview of the brassinosteroid biosynthesis pathways: Substrates, products, inhibitors, and connections. Frontiers in Plant Science 11:1034. doi: 10.3389/fpls.2020.01034.
  • Ballistreri, G., S. Fabroni, F. V. Romeo, N. Timpanaro, M. Amenta, and P. Rapisarda. 2019. anthocyanins and other polyphenols in Citrus genus: Biosynthesis, chemical profile, and biological activity. In Polyphenols in plants, 191–215. London, UK: Academic Press. doi: 10.1016/B978-0-12-813768-0.00014-1.
  • Barreca, D., E. Bellocco, S. Ficarra, G. Laganà, A. Galtieri, E. Tellone, and G. Gattuso. 2018. Analysis of c-glycosyl flavones and 3-hydroxy-3-methylglutaryl-glycosyl derivatives in blood oranges (Citrus sinensis (L.) Osbeck) juices and their influence on biological activity. ACS Symposium Series. 1286: 67–80. doi: 10.1021/bk-2018-1286.ch004.
  • Barreca, D., G. Gattuso, G. Lagana, U. Leuzzi, and E. Bellocco. 2016. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity. Food Chemistry 196:619–27. doi: 10.1016/j.foodchem.2015.09.098.
  • Belay, Z. A., O. J. Caleb, and U. L. Opara. 2017. Impacts of low and super-atmospheric oxygen concentrations on quality attributes, phytonutrient content and volatile compounds of minimally processed pomegranate arils (cv. Wonderful). Postharvest Biology and Technology 124:119–27. doi: 10.1016/j.postharvbio.2016.10.007.
  • Buscemi, S., G. Rosafio, G. Arcoleo, A. Mattina, B. Canino, M. Montana, S. Verga, and G. Rini. 2012. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. The American Journal of Clinical Nutrition 95 (5):1089–95. doi: 10.3945/ajcn.111.031088.
  • Butelli, E., C. Licciardello, Y. Zhang, J. Liu, S. Mackay, P. Bailey, G. Reforgiato-Recupero, and C. Martin. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. The Plant Cell 24 (3):1242–55. doi: 10.1105/tpc.111.095232.
  • Cardile, V., A. C. E. Graziano, and A. Venditti. 2015. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Natural Product Research 29 (23):2256–60. doi: 10.1080/14786419.2014.1000897.
  • Carmona, L., B. Alquezar, G. Diretto, F. Sevi, T. Malara, M. T. Lafuente, and L. Peña. 2021. Curing and low-temperature combined post-harvest storage enhances anthocyanin biosynthesis in blood oranges. Food Chemistry 342:128334. doi: 10.1016/j.foodchem.2020.128334.
  • Carmona, L., B. Alquézar, V. V. Marques, and L. Peña. 2017. Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry 237:7–14. doi: 10.1016/j.foodchem.2017.05.076.
  • Carmona, L., M. Sulli, G. Diretto, B. Alquézar, M. Alves, and L. Peña. 2022. Improvement of antioxidant properties in fruit from two blood and blond orange cultivars by postharvest storage at low temperature. Antioxidants 11 (3):547. 547. doi: 10.3390/antiox11030547.
  • Cebadera-Miranda, L., L. Domínguez, M. I. Dias, L. Barros, I. C. F. R. Ferreira, M. Igual, N. Martínez-Navarrete, V. Fernández-Ruiz, P. Morales, and M. Cámara. 2019. Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry 270:395–402. doi: 10.1016/j.foodchem.2018.07.094.
  • Chen, C. 2020. Pigments in citrus fruit: Mutants, compounds, genes, and beyond. In The citrus genome, 195–209. Cham, Switzerland: Springer Nature. doi: 10.1007/978-3-030-15308-3_11.
  • Chen, C., A. R. Lo Piero, and F. Gmitter. 2015. Pigments in citrus. In Pigments in fruits and vegetables, 165–87. New York, USA: Springer Science + Business Media. doi: 10.1007/978-1-4939-2356-4_8.
  • Chen, J., F. Liu, B. B. Ismail, W. Wang, E. Xu, H. Pan, X. Ye, D. Liu, and H. Cheng. 2022. Effects of ethephon and low-temperature treatments on blood oranges (Citrus sinensis L. Osbeck): Anthocyanin accumulation and volatile profile changes during storage. Food Chemistry 393:133381. doi: 10.1016/j.foodchem.2022.133381.
  • Crifò, T., I. Puglisi, G. Petrone, G. R. Recupero, and A. R. Lo Piero. 2011. Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway. Gene 476 (1-2):1–9. doi: 10.1016/j.gene.2011.02.005.
  • Fabroni, S., G. Ballistreri, M. Amenta, and P. Rapisarda. 2016. Anthocyanins in different Citrus species: An UHPLC-PDA-ESI/MSn-assisted qualitative and quantitative investigation. Journal of the Science of Food and Agriculture 96 (14):4797–808. doi: 10.1002/jsfa.7916.
  • Gandhi, G. R., A. B. S. Vasconcelos, D. T. Wu, H. B. Li, P. J. Antony, H. Li, F. Geng, R. Q. Gurgel, N. Narain, and R. Y. Gan. 2020. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 12 (10):2907. doi: 10.3390/nu12102907.
  • Ghidelli, C., and M. B. Pérez-Gago. 2018. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition 58 (4):662–79. doi: 10.1080/10408398.2016.1211087.
  • Godoy, F., K. Olivos-Hernández, C. Stange, and M. Handford. 2021. abiotic stress in crop species: Improving tolerance by applying plant metabolites. Plants 10 (2):186. doi: 10.3390/plants10020186.
  • Habibi, F., and A. Ramezanian. 2017. Vacuum infiltration of putrescine enhances bioactive compounds and maintains quality of blood orange during cold storage. Food Chemistry 227:1–8. doi: 10.1016/j.foodchem.2017.01.057.
  • Habibi, F., M. E. García-Pastor, F. Guillén, M. Serrano, and D. Valero. 2021a. Fatty acid composition in relation to chilling susceptibility of blood orange cultivars at different storage temperatures. Plant Physiology and Biochemistry: PPB 166:770–6. doi: 10.1016/j.plaphy.2021.06.013.
  • Habibi, F., F. Guillén, M. Serrano, and D. Valero. 2021b. Physicochemical changes, peel colour and juice attributes of blood orange cultivars stored at different temperatures. Horticulturae 7 (9):320. doi: 10.3390/horticulturae7090320.
  • Habibi, F., A. Ramezanian, F. Guillén, S. Castillo, M. Serrano, and D. Valero. 2020a. Changes in bioactive compounds, antioxidant activity, and nutritional quality of blood orange cultivars at different storage temperatures. Antioxidants 9 (10):1016. doi: 10.3390/antiox9101016.
  • Habibi, F., A. Ramezanian, F. Guillén, D. Martínez-Romero, M. Serrano, and D. Valero. 2020b. Susceptibility of blood orange cultivars to chilling injury based on antioxidant system, physiological and biochemical responses at different storage temperatures. Foods 9 (11):1609. doi: 10.3390/foods9111609.
  • Habibi, F., A. Ramezanian, F. Guillén, M. Serrano, and D. Valero. 2020c. Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage. Food Chemistry 306:125634. doi: 10.1016/j.foodchem.2019.125634.
  • Habibi, F., A. Ramezanian, M. Rahemi, S. Eshghi, F. Guillén, M. Serrano, and D. Valero. 2019. Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture 99 (14):6408–17. doi: 10.1002/jsfa.9920.
  • Habibi, F., M. Serrano, L. Zacarias, D. Valero, and F. Guillén. 2021c. Postharvest application of 24-epibrassinolide reduces chilling injury symptoms and enhances bioactive compounds content and antioxidant activity of blood orange fruit. Frontiers in Plant Science 12:629733. doi: 10.3389/fpls.2021.629733.
  • Habibi, F., D. Valero, M. Serrano, and F. Guillén. 2022. exogenous application of glycine betaine maintains bioactive compounds, antioxidant activity, and physicochemical attributes of blood orange fruit during prolonged cold storage. Frontiers in Nutrition 9:873915. doi: 10.3389/fnut.2022.873915.
  • Hillebrand, S., M. Schwarz, and P. Winterhalter. 2004. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice. Journal of Agricultural and Food Chemistry 52 (24):7331–8. doi: 10.1021/jf0487957.
  • Hussain, I., A. Rab, N. U. Khan, Z. Bibi, S. M. Khan, N. Ali, M. Saeed, S. A. Khan, S. Ali, G. Dastagir, et al. 2019. Heat treatment effects on chilling injury and disease incidence in sweet orange fruits stored at chilling and non-chilling temperatures. Journal of Consumer Protection and Food Safety 14 (4):365–75. doi: 10.1007/s00003-019-01230-8.
  • Inglese, P., and G. Sortino. 2019. citrus history, taxonomy, breeding, and fruit quality. Oxford Research Encyclopedia of Environmental Science. doi: 10.1093/acrefore/9780199389414.013.221.
  • Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18 (9):477–83. doi: 10.1016/j.tplants.2013.06.003.
  • Kapoor, L., A. J. Simkin, C. George Priya Doss, and R. Siva. 2022. Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology 22 (1):27. doi: 10.1186/s12870-021-03411-w.
  • Kelebek, H., A. Canbas, and S. Selli. 2008. Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chemistry 107 (4):1710–6. doi: 10.1016/j.foodchem.2007.10.004.
  • Khan, M. T. A., M. Yousuf, F. Qazi, and A. Ahmat. 2022. Brassinosteroids signalling: Intervention with phytohormones and their relationship in plant adaptation to abiotic stresses. doi: 10.1007/978-981-16-5743-6.
  • Krifi, B., and M. Metche. 2000. Degradation of anthocyanins from blood orange juices. International Journal of Food Science and Technology 35 (3):275–83. doi: 10.1046/j.1365-2621.2000.00330.x.
  • Langgut, D. 2017. The citrus route revealed: From Southeast Asia into the Mediterranean. HortScience 52 (6):814–22. doi: 10.21273/HORTSCI11023-16.
  • Lee, H. S. 2002. Characterization of major anthocyanins and the color of red-fleshed Budd blood orange (Citrus sinensis). Journal of Agricultural and Food Chemistry 50 (5):1243–6. doi: 10.1021/jf011205. +.
  • Li, L., G. K. Lyall, J. A. Martinez-Blazquez, F. Vallejo, F. A. Tomas-Barberán, K. M. Birch, and C. Boesch. 2020. Blood orange juice consumption increases flow-mediated dilation in adults with overweight and obesity: A randomized controlled trial. The Journal of Nutrition 150 (9):2287–94. doi: 10.1093/jn/nxaa158.
  • Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Li, B., L. Wang, W. Bai, W. Chen, F. Chen, and C. Shu. 2021. Anthocyanins chemistry, processing & bioactivity. Singapore: Springer Nature. doi: 10.1007/978-981-16-7055-8.
  • Licciardello, C., N. D’Agostino, A. Traini, G. R. Recupero, L. Frusciante, and M. L. Chiusano. 2014. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC Plant Biology 14:39. doi: 10.1186/1471-2229-14-39.
  • Lin, Y., L. Fan, J. He, Z. Wang, Y. Yin, Y. Cheng, and Z. Li. 2021. Anthocyanins contribute to fruit defense against postharvest green mold. Postharvest Biology and Technology 181:111661. doi: 10.1016/j.postharvbio.2021.111661.
  • Liu, L. I. U., S. Q. Cao, and S. Y. Pan. 2011. Thermal degradation kinetics of three kinds of representative anthocyanins obtained from blood orange. Agricultural Sciences in China 10 (4):642–9. doi: 10.1016/S1671-2927(11)60046-1.
  • Lo Piero, A. R. 2015. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges [(Citrus sinensis) L. Osbeck]. Journal of Agricultural and Food Chemistry 63 (16):4031–41. doi: 10.1021/acs.jafc.5b01123.
  • Lo Piero, A. R., I. Puglisi, and G. Petrone. 2006. Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]. Journal of Agricultural and Food Chemistry 54 (24):9227–33. doi: 10.1021/jf0616816.
  • Lo Piero, A. R., I. Puglisi, P. Rapisarda, and G. Petrone. 2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. Journal of Agricultural and Food Chemistry 53 (23):9083–8. doi: 10.1021/jf051609s.
  • Lu, X., C. Zhao, H. Shi, Y. Liao, F. Xu, G. Du, H. Xiao, and J. Zheng. 2021. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition :1–24. doi: 10.1080/10408398.2021.1969891.
  • Mannino, G., C. Gentile, A. Ertani, G. Serio, and C. M. Bertea. 2021. Anthocyanins: Biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods-A Review. Agriculture 11 (3):212. doi: 10.3390/agriculture11030212.
  • Modica, G., C. Pannitteri, M. Di Guardo, S. La Malfa, A. Gentile, G. Ruberto, L. Pulvirenti, L. Parafati, A. Continella, and L. Siracusa. 2022. Influence of rootstock genotype on individual metabolic responses and antioxidant potential of blood orange cv. Tarocco Scirè. Journal of Food Composition and Analysis 105:104246. doi: 10.1016/j.jfca.2021.104246.
  • Molinu, M. G., A. Dore, A. Palma, S. D’Aquino, E. Azara, V. Rodov, and G. D’hallewin. 2016. Effect of superatmospheric oxygen storage on the content of phytonutrients in ‘Sanguinello Comune’ blood orange. Postharvest Biology and Technology 112:24–30. doi: 10.1016/j.postharvbio.2015.09.037.
  • Montalbano, G., M. Mania, M. C. Guerrera, R. Laurà, F. Abbate, M. Levanti, A. Maugeri, A, A. Germanà, and M. Navarra. 2019. Effects of a flavonoid-rich extract from Citrus sinensis juice on a diet-induced obese zebrafish. International Journal of Molecular Sciences 20 (20):5116. doi: 10.3390/ijms20205116.
  • Moriguchi, T., M. Kita, Y. Tomono, T. Y. Endo-Inagaki, and M. Omura. 1999. One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures. Plant & Cell Physiology 40 (6):651–5. doi: 10.1093/oxfordjournals.pcp.a029589.
  • Oketch-Rabah, H. A., E. F. Madden, A. L. Roe, and J. M. Betz. 2021. United States Pharmacopeia (USP) safety review of gam-ma-aminobutyric acid (GABA). Nutrients 13 (8):2742. doi: 10.3390/nu13082742.
  • Ordoñez-Díaz, J. L., A. Hervalejo, G. Pereira-Caro, J. M. Muñoz-Redondo, E. Romero-Rodríguez, F. J. Arenas-Arenas, and J. M. Moreno-Rojas. 2020. Effect of rootstock and harvesting period on the bioactive compounds and antioxidant activity of two orange cultivars (‘Salustiana’ and ‘Sanguinelli’) widely used in juice industry. Processes 8 (10):1212. doi: 10.3390/pr8101212.
  • Palma, A., S. D’Aquino, S. Vanadia, A. Angioni, and M. Schirra. 2013. Cold quarantine responses of ‘Tarocco’ oranges to short hot water and thiabendazole postharvest dip treatments. Postharvest Biology and Technology 78:24–33. doi: 10.1016/j.postharvbio.2012.12.002.
  • Pan, Y., S. Zhang, M. Yuan, H. Song, T. Wang, W. Zhang, and Z. Zhang. 2019. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage. Food Science & Nutrition 7 (3):1123–30. doi: 10.1002/fsn3.957.
  • Pannitteri, A., L. Continella, A. Lo Cicero, S. Gentile, E. L. Malfa, E. M. Sperlinga, T. Napoli, G. Strano, L. Ruberto, and L. Siracusa. 2017. Influence of postharvest treatments on qualitative and chemical parameters of Tarocco blood orange fruits to be used for fresh chilled juice. Food Chemistry 230:441–7. doi: 10.1016/j.foodchem.2017.03.041.
  • Pareek, S., D. Valero, and M. Serrano. 2015. Postharvest Biology and Technology of Pomegranate. Journal of the Science of Food and Agriculture 95 (12):2360–79. doi: 10.1002/jsfa.7069.
  • Passeri, V., R. Koes, and F. M. Quattrocchio. 2016. New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science 7:153. doi: 10.3389/fpls.2016.00153.
  • Pinheiro de Lima, L., and A. de Paula Barbosa. 2021. A review of the lipolytic effects and the reduction of abdominal fat from bioactive compounds and Moro orange extracts. Heliyon 7 (8):e07695. e07695. doi: 10.1016/j.heliyon.2021.e07695.
  • Rapisarda, P., S. E. Bellomo, and S. Intelisano. 2001. Storage temperature effects on blood orange fruit quality. Journal of Agricultural and Food Chemistry 49 (7):3230–5. doi: 10.1021/jf010032l.
  • Pucker, B., and D. Selmar. 2022. Biochemistry and molecular basis of intracellular flavonoid transport in plants. Plants 11 (7):963. doi: 10.3390/plants11070963.
  • Raghavan, S., and J. Gurunathan. 2021. Citrus species – A golden treasure box of metabolites that is beneficial against disorders. Journal of Herbal Medicine 28:100438. doi: 10.1016/j.hermed.2021.100438.
  • Razavi, F., R. Mahmoudi, V. Rabiei, M. S. Aghdam, and A. Soleimani. 2018. Glycine betaine treatment attenuates chilling injury and maintains nutritional quality of hawthorn fruit during storage at low temperature. Scientia Horticulturae 233:188–94. doi: 10.1016/j.scienta.2018.01.053.
  • Rennie, T. J, and P. S. Sunjka. 2018. modified atmosphere for storage, transportation, and packaging. In Novel postharvest treatments of fresh produce. 432–79. Boca Raton, USA: CRC Press - Taylor & Francis. doi: 10.1201/9781315370149.
  • Russo, M., I. L. Bonaccorsi, A. Arigò, F. Cacciola, L. De Gara, P. Dugo, and L. Mondello. 2021. Blood orange (Citrus sinensis) as a rich source of nutraceuticals: Investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Natural Product Research 35 (22):4606–10. doi: 10.1080/14786419.2019.1696329.
  • Scora, R. W. 1975. On the history and origin of citrus. Bulletin of the Torrey Botanical Club 102 (6):369–75. doi: 10.2307/2484763.
  • Serradilla, M. J., M. F. Akšic, G. A. Manganaris, S. Ercisli, D. González-Gómez, and D. Valero. 2017. fruit chemistry, nutritional benefits and social aspects of cherries. In Cherries: Botany, production and uses, 420–41. Boston, MA: CABI.
  • Serrano, M, and D. Valero. 2018. Application of polyamines to maintain functional properties in stored fruits. In Polyamines: Methods and protocols, methods in molecular biology, 449–57. Oxford, UK: Springer Science + Business Media. doi: 10.1007/978-1-4939-7398-9_37.
  • Sharma, R. R., H. R. Raghavendra, and S. Sethi. 2021. Recent advances in postharvest handling and management of citrus diseases. In Postharvest treatments for horticultural produce, 175–87. Boca Raton, USA: CRC Press. doi: 10.1201/9781003045502.
  • Sicilia, A., E. Scialò, I. Puglisi, and A. R. Lo Piero. 2020. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (Osbeck)] under cold stress. Journal of Agricultural and Food Chemistry 68 (26):7024–31. doi: 10.1021/acs.jafc.0c02360.
  • Signorelli, S., L. P. Tarkowski, B. O’Leary, S. Tabares-da Rosa, O. Borsani, and J. Monza. 2021. GABA and proline metabolism in response to stress. In Hormones and plant response. Plant in challenging environments, 291–314. Cham, Switzerland: Springer. doi: 10.1007/978-3-030-77477-6_12.
  • Simons, T. J., C. J. McNeil, V. D. Pham, J. H. Suh, Y. Wang, C. M. Slupsky, and J. X. Guinard. 2019. Evaluation of California‐grown blood and Cara Cara oranges through consumer testing, descriptive analysis, and targeted chemical profiling. Journal of Food Science 84 (11):3246–63. doi: 10.1111/1750-3841.14820.
  • Strano, M. C., C. Restuccia, R. De Leo, S. Mangiameli, E. Bedin, M. Allegra, A. Quartieri, G. Cirvilleri, and A. Pulvirenti. 2021. Efficacy of an antifungal edible coating for the quality maintenance of Tarocco orange fruit during cold storage. Crop Protection 148:105719. doi: 10.1016/j.cropro.2021.105719.
  • Sunil, L., and N. P. Shetty. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology 106 (5-6):1783–98. doi: 10.1007/s00253-022-11835-z.
  • Tadeo, F. R., J. Terol, M. J. Rodrigo, C. Licciardello, and A. Sadka. 2020. fruit growth and development. In The genus citrus, 245–69. Oxford, UK: Woohead Publishing. doi: 10.1016/B978-0-12-812163-4.00012-7.
  • Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal: For Cell and Molecular Biology 54 (4):733–49. doi: 10.1111/j.1365-313X.2008.03447.x.
  • Tarancón, P., B. Cebrián, P. Fernández-Serrano, and C. Besada. 2022. Relation between rind pigmentation and internal quality of blood orange ‘Sanguinelli’: Physicochemical and sensory studies. Horticulturae 8 (5):448. doi: 10.3390/horticulturae8050448.
  • Tiburcio, A. F, and R. Alcázar. 2018. Potential applications of polyamines in agriculture and plant biotechnology. In Polyamines: Methods and protocols, methods in molecular biology, 489–508. Oxford, UK: Springer Science + Business Media. doi: 10.1007/978-1-4939-7398-9_40.
  • Trinei, M., A. Carpi, R. Menabo, M. Storto, M. Fornari, A. Marinelli, M. Si. Minardi, F. Riboni, F. Casciaro, K. DiLisa, et al. 2022. Dietary intake of cyanidin 3-glucoside induces a long-lasting cardioprotection from ischemia/reperfusion injury by altering the microbiota. The Journal of Nutritional Biochemistry 101:108921. doi: 10.1016/j.jnutbio.2021.108921.
  • Valero, D, and M. Serrano. 2010. Postharvest biology and technology for preserving fruit quality. Boca Raton, USA: CRC Press. doi: 10.1201/9781439802670.
  • Wang, J. H., J. J. Liu, K. L. Chen, H. W. Li, J. He, B. Guan, and L. He. 2016. Anthocyanin biosynthesis regulation in the fruit of Citrus sinensis cv. Tarocco. Plant Molecular Biology Reporter 34 (6):1043–55. doi: 10.1007/s11105-016-0984-0.
  • Wang, S. Y., X. C. Shi, F. Q. Liu, and P. Laborda. 2021. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chemistry 353:129482. doi: 10.1016/j.foodchem.2021.129482.
  • Wen, W., S. Alseekh, and A. R. Fernie. 2020. Conservation and diversification of flavonoid metabolism in the plant kingdom. Current Opinion in Plant Biology 55:100–8. doi: 10.1016/j.pbi.2020.04.004.
  • Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126 (2):485–93.
  • Yadav, A., N. Kumar, A. Upadhyay, and R. K. Anurag. 2021. edible packaging from fruit processing waste: A comprehensive review. Food Reviews International :1–32. doi: 10.1080/87559129.2021.1940198.
  • Yahia, E. M., M. Serrano, D. Valero, and G. A. González-Aguilar. 2018. Influence of postharvest technologies and handling practices on phytochemicals in fruits and vegetables. In Fruit and vegetable phytochemicals: Chemistry and human health, 611–28. Hoboken, USA: John Wiley & Sons. doi: 10.1002/9781119158042.
  • Zanoni, B., E. Pagliarini, A. Galli, and M. Laureati. 2005. Shelf-life prediction of fresh blood orange juice. Journal of Food Engineering 70 (4):512–7. doi: 10.1016/j.jfoodeng.2004.10.019.
  • Zhao, Y. W., C. K. Wang, X. Y. Huang, and D. G. Hu. 2021. Anthocyanin stability and degradation in plants. Plant Signaling & Behavior 16 (12):1987767. doi: 10.1080/15592324.2021.1987767.
  • Zhao, C. L., Y. Q. Yu, Z. J. Chen, G. S. Wen, F. G. Wei, Q. Zheng, C. D. Wang, and X. L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, C., F. Wang, Y. Lian, H. Xiao, and J. Zheng. 2020. Biosynthesis of citrus flavonoids and their health effects. Critical Reviews in Food Science and Nutrition 60 (4):566–83. doi: 10.1080/10408398.2018.1544885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.