471
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods

, , , , , , & show all
Pages 12136-12149 | Published online: 25 Jul 2022

References

  • Amoikon, T. L. S., S. Marcotte, T. N’Dede Djeni, K. M. Celaire N’Sa, C. Grondin, C. Tinsley, S. Casaregola, and M. K. Dje. 2020. A study on the potential of yeasts isolated from palm wines to produce flavouring compounds. LWT 128:109506. doi: 10.1016/j.lwt.2020.109506.
  • Besada-Lombana, P. B., R. Fernandez-Moya, J. Fenster, and N. A. D. Silva. 2017. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnology and Bioengineering 114 (7):1531–8. doi: 10.1002/bit.26288.
  • Blanco, P., D. Castrillo, M. J. Graña, M. J. Lorenzo, and E. Soto. 2021. Evaluation of autochthonous non-Saccharomyces yeasts by sequential fermentation for wine differentiation in galicia (NW Spain). Fermentation 7 (3):183. doi: 10.3390/fermentation7030183.
  • Camara, A., P. A. Marechal, R. Tourdot-Marechal, and F. Husson. 2019. Oxidative stress resistance during dehydration of three non-Saccharomyces wine yeast strains. Food Research International (Ottawa, Ont.) 123:364–72. doi: 10.1016/j.foodres.2019.04.059.
  • Canonico, L., E. Galli, E. Ciani, F. Comitini, and M. Ciani. 2019. Exploitation of three non-conventional Yeast species in the brewing process. Microorganisms 7 (1):11–4. doi: 10.3390/microorganisms7010011.
  • Chaturvedi, S., A. Sadaf, A. Bhattacharya, P. K. Rout, L. Nain, and S. K. Khare. 2021. Environment-friendly synergistic abiotic stress for enhancing the yield of lipids from oleaginous yeasts. European Journal of Lipid Science and Technology 123 (11):2000376. doi: 10.1002/ejlt.202000376.
  • Cibrario, A., C. Miot-Sertier, M. Paulin, B. Bullier, L. Riquier, M.-C. Perello, G. de Revel, W. Albertin, I. Masneuf-Pomarède, P. Ballestra, et al. 2020. Brettanomyces brwcellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiology 87:103379. doi: 10.1016/j.fm.2019.103379.
  • Cordente, A. G., D. E. Nandorfy, M. Solomon, A. Schulkin, R. Kolouchova, I. L. Francis, and S. A. Schmidt. 2021. Aromatic higher alcohols in wine: implication on aroma and palate attributes during chardonnay aging. Molecules 26 (16):4979. doi: 10.3390/molecules26164979.
  • Dong, H, and K. Xiao. 2017. Modified QuEChERS combined with ultra high performance liquid chromatography tandem mass spectrometry to determine seven biogenic amines in Chinese traditional condiment soy sauce. Food Chemistry 229:502–8. doi: 10.1016/j.foodchem.2017.02.120.
  • Fan, G. S., L. J. Cheng, Z. L. Fu, B. G. Sun, C. Teng, X. Y. Jiang, and X. T. Li. 2020. Screening of yeasts isolated from Baijiu environments for 2-phenylethanol production and optimization of production conditions. 3 Biotech 10 (6):275. doi: 10.1007/s13205-020-02267-5.
  • Fan, G. S., C. Teng, D. Xu, Z. L. Fu, K. Minhazul, Q. H. Wu, P. X. Liu, R. Yang, and X. T. Li. 2019. Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 128 (5):564–70. doi: 10.1016/j.jbiosc.2019.05.002.
  • Flores, M., S. Corral, L. Cano-García, A. Salvador, and C. Belloch. 2015. Yeast strains as potential aroma enhancers in dry fermented sausages. International Journal of Food Microbiology 212:16–24. doi: 10.1016/j.ijfoodmicro.2015.02.028.
  • Flores, M., L. Perea-Sanz, J. J. López-Díez, and C. Belloch. 2021. Meaty aroma notes from free amino acids and thiamine in nitrite-reduced, dry-fermented, yeast-inoculated sausages. Food Chemistry 361:129997. doi: 10.1016/j.foodchem.2021.129997.
  • Fujimoto, A., K. Ito, N. Narushima, and T. Miyamoto. 2019. Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries. Journal of Bioscience and Bioengineering 127 (5):575–81. doi: 10.1016/j.jbiosc.2018.10.014.
  • Giardina, B. J., B. A. Stanley, and H. L. Chiang. 2012. Comparative proteomic analysis of transition of Saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Science 10 (1):40. doi: 10.1186/1477-5956-10-40.
  • Guerra-Moreno, A., J. Ang, H. Welsch, M. Jochem, and J. Hanna. 2019. Regulation of the unfolded protein response in yeast by oxidative stress. FEBS Letters 593 (10):1080–8. doi: 10.1002/1873-3468.13389.
  • Guo, Z., S. Khoomrung, J. Nielsen, and L. Olsson. 2018. Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnology for Biofuels 11:297. doi: 10.1186/s13068-018-1295-5.
  • Guyot, S., L. Pottier, L. Bertheau, J. Dumont, E. Dorelle, H. Miokono, S. Dupont, M. Ragon, E. Denimal, A. Marin, et al. 2021. Increased xerotolerance of Saccharomyces cerevisiae during an osmotic pressure ramp over several generations. Microbial Biotechnology 14 (4):1445–61. doi: 10.1111/1751-7915.13789.
  • He, G., J. Huang, R. Liang, C. Wu, and R. Zhou. 2016. Comparing the differences of characteristic flavour between natural maturation and starter culture for Mucor-type Douchi. International Journal of Food Science & Technology 51 (5):1252–9. doi: 10.1111/ijfs.13077.
  • He, X., B. Liu, Y. Xu, Z. Chen, and H. Li. 2021. Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 105 (6):2597–611. doi: 10.1007/s00253-021-11198-x.
  • Ianieva, O., and V. Podgorsky. 2021. Enological potential of non-Saccharomyces yeast strains of enological and brewery origin from Ukrainian Collection of Microorganisms. Mycology 12 (3):203–15. doi: 10.1080/21501203.2020.1837272.
  • Isogai, S., T. Matsushita, H. Imanishi, J. Koonthongkaew, Y. Toyokawa, A. Nishimura, X. Yi, R. Kazlauskas, and H. Takagi. 2021. High-level production of lysine in the yeast Saccharomyces cerevisiae by rational design of homocitrate synthase. Applied and Environmental Microbiology 87 (15):e00600–21. doi: 10.1128/AEM.00600-21.
  • Junior, G. C. A., N. R. Ferreira, M. Gloria, L. Martins, and A. S. Lopes. 2021. Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chemistry 338:127834. doi: 10.1016/j.foodchem.2020.127834.
  • Junker, K., A. Chailyan, A. Hesselbart, J. Forster, and J. Wendland. 2019. Multi-omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. PLoS Pathogens 15 (5):e1007692. doi: 10.1371/journal.ppat.1007692.
  • Kim, S., J. Kim, J. H. Song, Y. H. Jung, I. S. Choi, W. Choi, Y. C. Park, J. H. Seo, and K. H. Kim. 2016. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnology Journal 11 (9):1221–9. doi: 10.1002/biot.201500613.
  • Korhola, M., E. S. Naumova, E. Partti, M. Aittamaa, H. Turakainen, and G. I. Naumov. 2019. Exploiting heterozygosity in industrial yeasts to create new and improved baker’s yeasts. Yeast 36 (9):571–87. doi: 10.1002/yea.3428.
  • Lamour, J., C. Wan, M. Zhang, X. Zhao, and R. D. Haan. 2019. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. FEMS Yeast Research 19 (4):foz035. doi: 10.1093/femsyr/foz035.
  • Li, J., J. Huang, Y. Jin, C. Wu, D. Shen, S. Zhang, and R. Zhou. 2018. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. Journal of Hazardous Materials 359:382–7. doi: 10.1016/j.jhazmat.2018.05.053.
  • Lin, N. X., R. Z. He, Y. Xu, and X. W. Yu. 2021. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris. Biotechnology for Biofuels 14 (1):160. doi: 10.1186/s13068-021-02013-w.
  • Li, Y. C., J. W. Rao, F. B. Meng, Z. W. Wang, D. Y. Liu, and H. Yu. 2021. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation. Journal of the Science of Food and Agriculture 101 (10):4288–97. doi: 10.1002/jsfa.11068.
  • Li, P., X. Tan, X. Fu, Y. Dang, and S. Li. 2021b. Metabolomic analysis reveals Kluyveromyces marxianus’s stress responses during high-temperature ethanol fermentation. Process Biochemistry 102:386–92. doi: 10.1016/j.procbio.2021.01.024.
  • Liu, G., X. Bi, C. Tao, Y. Fei, S. Gao, J. Liang, and W. Bai. 2021. Comparative transcriptomics analysis of Zygosaccharomyces mellis under high-glucose stress. Food Science and Human Wellness 10 (1):54–62. doi: 10.1016/j.fshw.2020.05.006.
  • Liu, Y., L. H. Yi, C. Q. Ruan, S. X. Yao, L. L. Deng, and K. F. Zeng. 2019. Proline increases pigment production to improve oxidative stress tolerance and biocontrol ability of metschnikowia citriensis. Frontiers in Microbiology 10:1273. doi: 10.3389/fmicb.2019.01273.
  • Li, Y., Y. J. Zhang, M. L. Liu, Y. Qin, and Y. L. Liu. 2019. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiology 79:147–55. doi: 10.1016/j.fm.2018.10.021.
  • Li, C. J., D. Zhao, P. Cheng, L. Zheng, and G. H. Yu. 2020. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism. BMC Genomics 21 (1):834. doi: 10.1186/s12864-020-07244-z.
  • Li, C., D. Zhao, J. Yan, N. Zhang, and B. Li. 2021a. Metabolomics integrated with transcriptomics: Assessing the central metabolism of marine red yeast Sporobolomyces pararoseus under salinity stress. Archives of Microbiology 203 (3):889–99. doi: 10.1007/s00203-020-02082-9.
  • Luchini, A., R. Delhom, V. Cristiglio, W. Knecht, H. Wacklin-Knecht, and G. Fragneto. 2020. Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chemistry and Physics of Lipids 227:104873. doi: 10.1016/j.chemphyslip.2020.104873.
  • Magalhaes, R. S. S., B. Popova, G. H. Braus, T. F. Outeiro, and E. C. A. Eleutherio. 2018. The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: The roles of Ath1 and Agt1. FEMS Yeast Research 18 (6):foy066. doi: 10.1093/femsyr/foy066.
  • Ming, X., Y. Wang, and Y. Sui. 2020. Pretreatment of the antagonistic yeast, Debaryomyces hansenii, with mannitol and sorbitol improves stress tolerance and biocontrol efficacy. Frontiers in Microbiology 11:601. doi: 10.3389/fmicb.2020.00601.
  • Mo, W., M. Wang, R. Zhan, Y. Yu, Y. He, and H. Lu. 2019. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnology for Biofuels 12:63. doi: 10.1186/s13068-019-1393-z.
  • Navarro-Tapia, E., A. Querol, and R. Perez-Torrado. 2018. Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microbial Biotechnology 11 (3):465–75. doi: 10.1111/1751-7915.13032.
  • Niu, L., K. Nomura, H. Iwahashi, H. Matsuoka, S. Kawachi, Y. Suzuki, and K. Tamura. 2017. Petit-high pressure carbon dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae. Biophysical Chemistry 231:79–86. doi: 10.1016/j.bpc.2017.03.003.
  • Oh, H., H. J. Lee, J. Lee, C. Jo, and Y. Yoon. 2019. Identification of microorganisms associated with the quality improvement of dry-aged beef through microbiome analysis and DNA sequencing, and evaluation of their effects on beef quality. Journal of Food Science 84 (10):2944–54. doi: 10.1111/1750-3841.14813.
  • Opalek, M, and D. Wloch-Salamon. 2020. Aspects of multicellularity in Saccharomyces cerevisiae yeast: a review of evolutionary and physiological mechanisms. Genes 11 (6):690. doi: 10.3390/genes11060690.
  • Pan, D., N. Wiedemann, and B. Kammerer. 2019. Heat stress-induced metabolic remodeling in Saccharomyces cerevisiae. Metabolites 9 (11):266. doi: 10.3390/metabo9110266.
  • Payen, C, and D. Thompson. 2019. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast (Chichester, England) 36 (12):685–700. doi: 10.1002/yea.3439.
  • Pérez-Torrado, R., B. M. Oliveira, J. Zemancíková, H. Sychrová, and A. Querol. 2016. Alternative glycerol balance strategies among Saccharomyces species in response to winemaking stress. Frontiers in Microbiology 7:435. doi: 10.3389/fmicb.2016.00435.
  • Ponsone, M. L., M. C. N. Nally, M. L. Chiotta, M. Combina, J. Köhl, and S. N. Chulze. 2016. Evaluation of the effectiveness of potential biocontrol yeasts against black sur rot and ochratoxin A occurring under greenhouse and field grape production conditions. Biological Control 103:78–85. doi: 10.1016/j.biocontrol.2016.07.012.
  • Punt, M., T. V. D. Brule, W. R. Teertstra, J. Dijksterhuis, H. Besten, R. A. Ohm, and H. A. B. Wösten. 2020. Impact of maturation and growth temperature on cell-size distribution, heat-resistance, compatible solute composition and transcription profiles of Penicillium roqueforti conidia. Food Research International (Ottawa, Ont.) 136:109287. doi: 10.1016/j.foodres.2020.109287.
  • Qi, Q., J. Huang, R. Zhou, M. Yang, L. Zhang, C. Peng, Y. Jin, and C. Wu. 2021. Exploring a degradation strategy for biogenic amines based on the Cantonese soy sauce production method. Food Control. 130:108281. doi: 10.1016/j.foodcont.2021.108281.
  • Qin, L., S. Dong, J. Yu, X. Ning, K. Xu, S. Zhang, L. Xu, B. Li, J. Li, Y. Yuan, et al. 2020. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metabolic Engineering 61:160–70. doi: 10.1016/j.ymben.2020.06.003.
  • Qiu, X., J. Zhang, J. Zhou, Z. Fang, Z. Zhu, J. Li, and G. Du. 2019. Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Applied Microbiology and Biotechnology 103 (16):6449–62. doi: 10.1007/s00253-019-09993-8.
  • Reich, S., D. Chi, C. Has, S. Steltgens, H. Soni, C. Coman, M. Freyberg, A. Bichler, N. Seifert, D. Conrad, et al. 2020. A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nature Communications 11 (1):2936. doi: 10.1038/s41467-020-16747-y.
  • Ruan, L., M. Meng, C. Wang, and L. Hou. 2019. Draft genome sequence of Candida versatilis and osmotolerance ability analysis in soy sauce fermentation. Journal of the Science of Food and Agriculture 99 (6):3168–75. doi: 10.1002/jsfa.9532.
  • Saad-Hussein, A., G. Moubarz, S. A. Mohgah, G. S. Wafaa, and H. M. Aya. 2019. Role of antioxidant supplementation in oxidant/antioxidant status and hepatotoxic effects due to aflatoxin B1 in wheat miller workers. Journal of Complementary and Integrative Medicine 16 (4):1–7. doi: 10.1515/jcim-2018-0218.
  • Samakkarn, W., K. Ratanakhanokchai, and N. Soontorngun. 2021. Reprogramming of the ethanol stress response in Saccharomyces cerevisiae by the transcription factor Znf1 and its effect on the biosynthesis of glycerol and ethanol. Applied and Environmental Microbiology 87 (16):e00588-21. doi: 10.1128/AEM.00588-21.
  • Sekova, V. Y., D. I. Dergacheva, V. M. Tereshina, E. P. Isakova, and Y. I. Deryabina. 2018. Carbohydrate spectrum of extremophilic yeasts Yarrowia lipolytica under pH Stress. Microbiology 87 (2):173–82. doi: 10.1134/S0026261718020133.
  • Silva, I. L. D., M. A. Pagliarini, T. E. Chagas, M. Frühauf, and R. C. P. Dornelles. 2017. Effect of supplementation with pollen and brewer’s yeast in the fermentation and in the physicochemical properties of honey spirits. International Food Research Journal 24 (3):1124–34.
  • Sokolov, S. S., N. I. Trushina, F. F. Severin, and D. A. Knorre. 2019. Ergosterol turnover in yeast: an interplay between biosynthesis and transport. Biochemistry. Biokhimiia 84 (4):346–57. doi: 10.1134/S0006297919040023.
  • Solieri, L. 2021. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World Journal of Microbiology and Biotechnology 37 (6):96. doi: 10.1007/s11274-021-03066-7.
  • Song, Z., H. Du, M. Zhang, Y. Nie, and Y. Xu. 2019a. Schizosaccharomyces pombe can reduce acetic acid produced by Baijiu spontaneous fermentation microbiota. Microorganisms 7 (12):606. doi: 10.3390/microorganisms7120606.
  • Song, N. E., D. Y. Jeong, and S. H. Baik. 2019b. Application of indigenous Saccharomyces cerevisiae to improve the black raspberry (Rubus coreanus Miquel) vinegar fermentation process and its microbiological and physicochemical analysis. Food Science and Biotechnology 28 (2):481–9. doi: 10.1007/s10068-018-0489-8.
  • Sui, Y., Z. Wang, D. Zhang, and Q. Wang. 2021. Oxidative stress adaptation of the antagonistic yeast, Debaryomyces hansenii, increases fitness in the microenvironment of kiwifruit wound and biocontrol efficacy against postharvest diseases. Biological Control 152:104428. doi: 10.1016/j.biocontrol.2020.104428.
  • Sun, M., B. Shen, W. Li, P. Samir, C. M. Browne, A. J. Link, and J. Frank. 2021. A time-resolved cryo-EM study of Saccharomyces cerevisiae 80S ribosome protein composition in response to a change in carbon Source. Proteomics 21 (2):2000125. doi: 10.1002/pmic.202000125.
  • Swamy, K., and N. Zhou. 2019. Experimental evolution: its principles and applications in developing stress-tolerant yeasts. Applied Microbiology and Biotechnology 103 (5):2067–77. doi: 10.1007/s00253-019-09616-2.
  • Synos, K., A. G. Reynolds, and A. J. Bowen. 2015. Effect of yeast strain on aroma compounds in Cabernet franc icewines. LWT - Food Science and Technology 64 (1):227–35. doi: 10.1016/j.lwt.2015.05.044.
  • Takagi, H. 2021. Molecular mechanisms and highly-functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry 85 (5):1017–37. doi: 10.1089/omi.2020.0144.
  • Takagi, H., J. Taguchi, and T. Kaino. 2016. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast (Chichester, England) 33 (8):355–63. doi: 10.1002/yea.3154.
  • Tantratian, S., A. Sae-ngow, C. Pradistsuwan, C. Prakitchaiwattana, and C. Pukahuta. 2019. Survival of Kluyveromyces marxianus with stigmasterol as subjected to freezing stress. Journal of Bioscience and Bioengineering 128 (1):39–43. doi: 10.1016/j.jbiosc.2018.12.003.
  • Taymaz-Nikerel, H., S. Eraslan, and B. Kırdar. 2020. Insights into the mechanism of anticancer drug imatinib revealed through multi-omic analyses in Yeast. Omics: A Journal of Integrative Biology 24 (11):667–78. doi: 10.1089/omi.2020.0144.
  • Udom, N., P. Chansongkrow, V. Charoensawan, and C. Auesukaree. 2019. Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology 85 (15):e00551–19. doi: 10.1128/AEM.00551-19.
  • Vázquez, J., K. Grillitsch, G. Daum, A. Mas, G. Beltran, and M. J. Torija. 2019. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiology 78:143–54. doi: 10.1016/j.fm.2018.10.001.
  • Vergara-Alvarez, I., F. Quiroz-Figueroa, M. C. Tamayo-Ordonez, A. A. Oliva-Hernandez, C. P. Larralde-Corona, and J. A. Narvaez-Zapata. 2019. Flocculation and expression of FLO genes of a Saccharomyces cerevisiae mezcal strain with high stress tolerance. Food Technology and Biotechnology 57 (4):544–53. doi: 10.17113/ftb.57.04.19.6063.
  • Wang, D., H. Chen, H. Yang, S. Yao, and C. Wu. 2021. Incorporation of exogenous fatty acids enhances the salt tolerance of food yeast Zygosaccharomyces rouxii. Journal of Agricultural and Food Chemistry 69 (35):10301–10. doi: 10.1021/acs.jafc.1c03896.
  • Wang, N., P. Chi, Y. Zou, Y. Xu, S. Xu, M. Bilal, P. Fickers, and H. Cheng. 2020b. Metabolic engineering of Yarrowia lipolyticafor thermoresistance and enhanced erythritol productivity. Biotechnology for Biofuels 13:176. doi: 10.1186/s13068-020-01815-8.
  • Wang, D., Z. Hao, J. Zhao, Y. Jin, J. Huang, R. Zhou, and C. Wu. 2019. Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii. Process Biochemistry 82:59–67. doi: 10.1016/j.procbio.2019.04.009.
  • Wang, D., M. Zhang, J. Huang, R. Zhou, Y. Jin, and C. Wu. 2020a. Zygosaccharomyces rouxii combats salt stress by maintaining cell membrane structure and functionality. Journal of Microbiology and Biotechnology 30 (1):62–70. doi: 10.4014/jmb.1904.04006.
  • Wang, D., M. Zhang, J. Huang, R. Zhou, Y. Jin, D. Zhao, J. Zheng, and C. Wu. 2021a. Heat preadaptation improved the ability of Zygosaccharomyces rouxii to salt stress: a combined physiological and transcriptomic analysis. Applied Microbiology and Biotechnology 105 (1):259–70. doi: 10.1007/s00253-020-11005-z.
  • Wang, R., T. Zhao, J. Zhuo, C. Zhan, F. Zhang, R. J. Linhardt, Z. Bai, and Y. Yang. 2021b. MAPK/HOG signaling pathway induced stress‐responsive damage repair is a mechanism for Pichia pastoris to survive from hyperosmotic stress. Journal of Chemical Technology & Biotechnology 96 (2):412–22. doi: 10.1002/jctb.6553.
  • Watcharawipas, A., D. Watanabe, and H. Takagi. 2017. Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Research 17 (8):fox083. doi: 10.1093/femsyr/fox083.
  • Wu, Q., J. C. Lin, K. X. Cui, R. B. Du, Y. Zhu, and Y. Xu. 2017. Effect of microbial interaction on urea metabolism in Chinese liquor fermentation. Journal of Agricultural and Food Chemistry 65 (50):11133–9. doi: 10.1021/acs.jafc.7b04099.
  • Wu, C. C., T. Ohashi, R. Misaki, S. Limtong, and K. Fujiyama. 2020. Ethanol and H2O2 stresses enhance lipid production in an oleaginous Rhodotorula toruloides thermotolerant mutant L1-1. FEMS Yeast Research 20 (4):foaa030. doi: 10.1093/femsyr/foaa030.
  • Wu, C., J. Zheng, J. Huang, and R. Zhou. 2014. Reduced nitrite and biogenic amine concentrations and improved flavor components of Chinese sauerkraut via co-culture of Lactobacillus plantarum and Zygosaccharomyces rouxii. Annals of Microbiology 64 (2):847–57. doi: 10.1007/s13213-013-0724-8.
  • Xu, W., J. Wang, and Q. Li. 2014. Comparative proteome and transcriptome analysis of lager brewer’s yeast in the autolysis process. FEMS Yeast Research 14 (8):1273–85. doi: 10.1111/1567-1364.12223.
  • Xu, Y., H. Yang, C. S. Brennan, T. E. Coldea, and H. Zhao. 2020. Cellular mechanism for the improvement of multiple stress tolerance in brewer’s yeast by potassium ion supplementation. International Journal of Food Science & Technology 55 (6):2419–27. doi: 10.1111/ijfs.14491.
  • Yang, L., W. Kong, W. Yang, D. Li, S. Zhao, Y. Wu, and S. Zheng. 2021. High D-arabitol production with osmotic pressure control fed-batch fermentation by Yarrowia lipolytica and proteomic analysis under nitrogen source perturbation. Enzyme and Microbial Technology 152:109936. doi: 10.1016/j.enzmictec.2021.109936.
  • Yang, Y., Y. Xia, W. Hu, L. Tao, L. Ni, J. Yu, and L. Ai. 2019. Membrane fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese rice wine) is variably regulated by OLE1 to offset the disruptive effect of ethanol. Applied and Environmental Microbiology 85 (23):e01620-19. doi: 10.1128/AEM.01620-19.
  • Yi, C., F. Wang, S. Dong, and H. Li. 2016. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Canadian Journal of Microbiology 62 (10):827–35. doi: 10.1139/cjm-2015-0832.
  • Yin, N., G. Zhu, Q. Luo, J. Liu, X. Chen, and L. Liu. 2020. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae. Biotechnology and Bioengineering 117 (3):710–20. doi: 10.1002/bit.27244.
  • Yoshiyama, Y., K. Tanaka, K. Yoshiyama, M. Hibi, J. Ogawa, and J. Shima. 2015. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. Journal of Bioscience and Bioengineering 119 (2):172–5. doi: 10.1016/j.jbiosc.2014.06.021.
  • Zhang, R., H. Yuan, S. Wang, Q. Ouyang, Y. Chen, N. Hao, and C. Luo. 2017. High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response. Scientific Reports 7:42200. doi: 10.1038/srep42200.
  • Zhou, N., A. J. Schifferdecker, A. Gamero, C. Compagno, T. Boekhout, J. Piskur, and W. Knecht. 2017. Kazachstania gamospora and Wickerhamomyces subpelliculosus: two alternative baker’s yeasts in the modern bakery. International Journal of Food Microbiology 250:45–58. doi: 10.1016/j.ijfoodmicro.2017.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.