891
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Extraction methods, physiological activities and high value applications of tea residue and its active components: a review

, , & ORCID Icon
Pages 12150-12168 | Published online: 14 Jul 2022

References

  • Abdeltaif, S. A., K. A. Sirelkhatim, and A. B. Hassan. 2018. Estimation of phenolic and flavonoid compounds and antioxidant activity of spent coffee and black tea (Processing) waste for potential recovery and reuse in Sudan. Recycling 3 (2):27. doi: 10.3390/recycling3020027.
  • Abdullah, N., N. Ainirazali, and M. N. Mukhtar. 2022. Tea waste residue as low-cost biosorbent for treatment of 2 chlorophenol. Materials Today: Proceedings 57:1048–52. doi: 10.1016/j.matpr.2021.09.167.
  • Ahluwalia, S. S, and D. Goyal. 2005. Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in Life Sciences 5 (2):158–62. doi: 10.1002/elsc.200420066.
  • Ayim, I., H. Ma, E. A. Alenyorege, Z. Ali, P. O. Donkor, and C. Zhou. 2018. Integration of ultrasonic treatment in biorefinery of tea residue: Protein structural characteristics and functionality, and the generation of by-products. Journal of Food Measurement and Characterization 12 (4):2695–707. doi: 10.1007/s11694-018-9887-0.
  • Bangar, S. P, and W. S. Whiteside. 2021. Nano-cellulose reinforced starch bio composite films—A review on green composites. International Journal of Biological Macromolecules 185:849–60. doi: 10.1016/j.ijbiomac.2021.07.017.
  • Barathi, M., A. S. K. Kumar, J. Kodali, S. Mittal, G. D. Samhith, and N. Rajesh. 2017. Probing the interaction between fluoride and the polysaccharides in Al(III)- and Zr (IV)-modified tea waste by using diverse analytical characterization techniques. ChemistrySelect 2 (31):10123–35. doi: 10.1002/slct.201701774.
  • Bharti, R, and B. Singh. 2020. Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel 262:116658. doi: 10.1016/j.fuel.2019.116658.
  • Chaudhary, N., J. Bhardwaj, H. J. Seo, M. Y. Kim, T. S. Shin, and J. D. Kim. 2014. Camellia sinensis fruit peel extract inhibits angiogenesis and ameliorates obesity induced by high-fat diet in rats. Journal of Functional Foods 7 (1):479–86. doi: 10.1016/j.jff.2014.01.008.
  • Chen, J., H. Huang, Y. Chen, J. Xie, Y. Song, X. Chang, S. Liu, Z. Wang, X. Hu, and Q. Yu. 2020. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT - Food Science and Technology 131:109818. doi: 10.1016/j.lwt.2020.109818.
  • Chen, X., X. Jianchun, H. Wei, S. Shengrong, W. Zhengqi, W. Long, and L. Qian. 2019. Comparative analysis of physicochemical characteristics of green tea polysaccharide conjugates and its decolored fraction and their effect on HepG2 cell proliferation. Industrial Crops and Products 131 (28):243–9. doi: 10.1016/j.indcrop.2019.01.061.
  • Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99 (10):4044–64. doi: 10.1016/j.biortech.2007.01.057.
  • Cheng, T. H., Z. Y. Yang, R. C. Tang, and A. D. Zhai. 2020. Functionalization of silk by silver nanoparticles synthesized using the aqueous extract from tea stem waste. Journal of Materials Research and Technology 9 (3):4538–49. doi: 10.1016/j.jmrt.2020.02.081.
  • Correia, I. A. S., D. Borsato, F. Y. Savada, E. D. Pauli, A. C. G. Mantovani, H. Cremasco, and L. T. Chendynski. 2020. Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design. Renewable Energy. 160:288–96. doi: 10.1016/j.renene.2020.06.118.
  • Cui, Q., X. Ni, L. Zeng, Z. Tu, J. Li, K. Sun, X. Chen, and X. Li. 2017. Optimization of protein extraction and decoloration conditions for tea residues. Horticultural Plant Journal 3 (4):172–6. doi: 10.1016/j.hpj.2017.06.003.
  • Debnath, B., D. Haldar, and M. K. Purkait. 2021. Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering 9 (5):106179. doi: 10.1016/j.jece.2021.106179.
  • Ebrahimian Pirbazari, A., E. Saberikhah, M. Badrouh, and M. S. Emami. 2014. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resources and Industry 6:64–80. doi: 10.1016/j.wri.2014.07.003.
  • Etxabide, A., J. Uranga, P. Guerrero, and K. de la Caba. 2017. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids. 68:192–8. doi: 10.1016/j.foodhyd.2016.08.021.
  • Gao, P, and Y. Ogata. 2020. CHAMU: An effective approach for improving the recycling of tea waste. IOP Conference Series: Materials Science and Engineering 711 (1):012024. doi: 10.1088/1757-899X/711/1/012024.
  • Gao, T., Y. Shi, Y. Xue, F. Yan, D. Huang, Y. Wu, and Z. Weng. 2020. Polyphenol extract from superheated steam processed tea waste attenuates the oxidative damage in vivo and in vitro. Journal of Food Biochemistry 44 (1):1–11. doi: 10.1111/jfbc.13096.
  • Guo, S., M. Kumar Awasthi, Y. Wang, and P. Xu. 2021. Current understanding in conversion and application of tea waste biomass: A review. Bioresource Technology 338 (July):125530. doi: 10.1016/j.biortech.2021.125530.
  • Guo, Y., Y. Zhang, D. Zheng, M. Li, and J. Yue. 2020. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. International Journal of Biological Macromolecules 163:927–33. doi: 10.1016/j.ijbiomac.2020.07.009.
  • Hu, X., J. Wang, and H. Huang. 2013. Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose 20 (6):2923–33. doi: 10.1007/s10570-013-0075-4.
  • Hu, Z., X. Y. Jiao, and L. Xu. 2020. The N,S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib. Microchemical Journal 154:104588. doi: 10.1016/j.microc.2019.104588.
  • Huang, H., J. Chen, Y. Chen, J. Xie, S. Liu, N. Sun, X. Hu, and Q. Yu. 2021. Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties. LWT - Food Science and Technology 145:111314. doi: 10.1016/j.lwt.2021.111314.
  • Huang, H., J. Chen, Y. Chen, J. Xie, P. Xue, T. Ao, X. Chang, X. Hu, and Q. Yu. 2022. Metabonomics combined with 16S rRNA sequencing to elucidate the hypoglycemic effect of dietary fiber from tea residues. Food Research International (Ottawa, Ont.) 155:111122. doi: 10.1016/j.foodres.2022.111122.
  • Huang, H., J. Chen, X. Hu, Y. Chen, J. Xie, T. Ao, H. Wang, J. Xie, and Q. Yu. 2022. Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber. Food & Function 13 (5):2710–28. doi: 10.1039/d1fo03682c.
  • Huang, Y., Y. Wei, J. Xu, and X. Wei. 2022. A comprehensive review on the prevention and regulation of Alzheimer’s disease by tea and its active ingredients. Critical Reviews in Food Science and Nutrition 2022:1–25. doi: 10.1080/10408398.2022.2081128.
  • Hussain, S., K. P. Anjali, S. T. Hassan, and P. B. Dwivedi. 2018. Waste tea as a novel adsorbent: A review. Applied Water Science 8 (6):1–16. doi: 10.1007/s13201-018-0824-5.
  • Ifelebuegu, A. O., J. E. Ukpebor, C. C. Obidiegwu, and B. C. Kwofi. 2015. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution. Global Journal of Environmental Science and Management 1 (3):205–14. doi: 10.7508/gjesm.2015.03.003.
  • Jadhav, R. V., A. Kannan, R. Bhar, O. P. Sharma, A. Gulati, K. Rajkumar, G. Mal, B. Singh, and M. R. Verma. 2018. Effect of tea (Camellia sinensis) seed saponins on in vitro rumen fermentation, methane production and true digestibility at different forage to concentrate ratios. Journal of Applied Animal Research 46 (1):118–24. doi: 10.1080/09712119.2016.1270823.
  • Jain, S. N., S. R. Tamboli, D. S. Sutar, S. R. Jadhav, J. V. Marathe, A. A. Shaikh, and A. A. Prajapati. 2020. Batch and continuous studies for adsorption of anionic dye onto waste tea residue: Kinetic, equilibrium, breakthrough and reusability studies. Journal of Cleaner Production 252:119778. doi: 10.1016/j.jclepro.2019.119778.
  • Jamróz, E., J. Tkaczewska, M. Kopeć, and A. Cholewa-Wójcik. 2022. Shelf-life extension of salmon using active total biodegradable packaging with tea ground waste and furcellaran-CMC double-layered films. Food Chemistry 383:132425. doi: 10.1016/j.foodchem.2022.132425.
  • Jasiewicz, B, and A. Sierakowska. 2020. Caffeine and its analogs, antioxidants and applications. In Aging, 155–64. Cambridge, MA: Academic Press. doi: 10.1016/b978-0-12-818698-5.00015-8.
  • Je, Y, and E. Giovannucci. 2012. Coffee consumption and risk of endometrial cancer: Findings from a large up-to-date meta-analysis. International Journal of Cancer 131 (7):1700–10. doi: 10.1002/ijc.27408.
  • Jemima Romola, C. V., M. Meganaharshini, S. P. Rigby, I. Ganesh Moorthy, R. Shyam Kumar, and S. Karthikumar. 2021. A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renewable and Sustainable Energy Reviews 145:111109. doi: 10.1016/j.rser.2021.111109.
  • Jung, S., M. Naidoo, S. Shairzai, and A. E. Navarro. 2014. On the adsorption of a cationic artificial dye on spent tea leaves. WIT Transactions on the Built Environment 139:231–41. doi: 10.2495/UW140201.
  • Khan, A., R. A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu. 2020. A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochimica Acta 335:135588. doi: 10.1016/j.electacta.2019.135588.
  • Khayum, N., S. Anbarasu, and S. Murugan. 2018. Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure. Energy 165:760–8. doi: 10.1016/j.energy.2018.09.163.
  • Kochman, J., K. Jakubczyk, J. Antoniewicz, H. Mruk, and K. Janda. 2020. Health benefits and chemical composition of matcha green tea: A review. Molecules 26 (1):85. doi: 10.3390/molecules26010085.
  • Kondo, M., K. Kita, and H. Yokota. 2004. The effects of supplementation with green tea waste on in vivo and in vitro rumen fermentation in cattle. Journal of Animal and Feed Sciences 13 (Suppl. 1):119–22. doi: 10.22358/jafs/73755/2004.
  • Kondo, M., K. Kita, and H. O. Yokota. 2004. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on sudangrass silage quality and in vitro gas production. Journal of the Science of Food and Agriculture 84 (7):721–7. doi: 10.1002/jsfa.1718.
  • Kondo, M., K. Kita, and H. O. Yokota. 2006. Evaluation of fermentation characteristics and nutritive value of green tea waste ensiled with byproducts mixture for ruminants. Asian-Australasian Journal of Animal Sciences 19 (4):533–40. doi: 10.5713/ajas.2006.533.
  • Kondo, M., K. Kita, and H. O. Yokota. 2007. Ensiled or oven-dried green tea by-product as protein feedstuffs: Effects of tannin on nutritive value in goats. Asian-Australasian Journal of Animal Sciences 20 (6):880–6. doi: 10.5713/ajas.2007.880.
  • Konwar, A., U. Baruah, M. J. Deka, A. A. Hussain, S. R. Haque, A. R. Pal, and D. Chowdhury. 2017. Tea-carbon dots-reduced graphene oxide: An efficient conducting coating material for fabrication of an e-textile. ACS Sustainable Chemistry & Engineering 5 (12):11645–51. doi: 10.1021/acssuschemeng.7b03021.
  • Kumar, S., I. B. Basumatary, H. P. K. Sudhani, V. K. Bajpai, L. Chen, S. Shukla, and A. Mukherjee. 2021. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends in Food Science & Technology 112:651–66. doi: 10.1016/j.tifs.2021.04.031.
  • Lai, X., S. Pan, W. Zhang, L. Sun, Q. Li, R. Chen, and S. Sun. 2020. Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity. Process Biochemistry 92:277–87. doi: 10.1016/j.procbio.2020.01.021.
  • Leung, H. W., L. Jin, S. Wei, M. M. P. Tsui, B. Zhou, L. Jiao, P. C. Cheung, Y. K. Chun, M. B. Murphy, and P. K. S. Lam. 2013. Pharmaceuticals in tap water: Human health risk assessment and proposed monitoring framework in China. Environmental Health Perspectives 121 (7):839–46. doi: 10.1289/ehp.1206244.
  • Li, Y., Y. Jin, J. Li, H. Li, Z. Yu, and Y. Nie. 2017. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 118:377–86. doi: 10.1016/j.energy.2016.12.041.
  • Liu, M., M. Arshadi, F. Javi, P. Lawrence, S. M. Davachi, and A. Abbaspourrad. 2020. Green and facile preparation of hydrophobic bioplastics from tea waste. Journal of Cleaner Production 276:123353. doi: 10.1016/j.jclepro.2020.123353.
  • Malakahmad, A., S. Tan, and S. Yavari. 2016. Valorization of wasted black tea as a low-cost adsorbent for nickel and zinc removal from aqueous solution. Journal of Chemistry 2016:1–8. doi: 10.1155/2016/5680983.
  • Mu, Y., H. Du, W. He, and H. Ma. 2022. Functionalized mesoporous magnetic biochar for methylene blue removal: Performance assessment and mechanism exploration. Diamond and Related Materials 121:108795. doi: 10.1016/j.diamond.2021.108795.
  • Nasehi, M., N. M. Torbatinejad, M. Rezaie, and T. Ghoorchi. 2018. Effects of partial substitution of alfalfa hay with green tea waste on growth performance and in vitro methane emission of fat-tailed lambs. Small Ruminant Research 168:52–9. doi: 10.1016/j.smallrumres.2018.09.006.
  • Negi, T., Y. Kumar, R. Sirohi, S. Singh, A. Tarafdar, S. Pareek, M. Kumar Awasthi, and N. Alok Sagar. 2022. Advances in bioconversion of spent tea leaves to value-added products. Bioresource Technology 346:126409. doi: 10.1016/j.biortech.2021.126409.
  • Pan, S.-Y., Q. Nie, H.-C. Tai, X.-L. Song, Y.-F. Tong, L.-J.-F. Zhang, X.-W. Wu, Z.-H. Lin, Y.-Y. Zhang, D.-Y. Ye, et al. 2022. Tea and tea drinking: China’s outstanding contributions to the mankind. Chinese Medicine 17 (1):1–40. doi: 10.1186/s13020-022-00571-1.
  • Park, H. S., H. J. Lee, M. H. Shin, K. W. Lee, H. Lee, Y. S. Kim, K. O. Kim, and K. H. Kim. 2007. Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chemistry 105 (3):1011–7. doi: 10.1016/j.foodchem.2007.04.064.
  • Parthasarathy, P, and S. K. Narayanan. 2014. Effect of Hydrothermal Carbonization Reaction Parameters on. Environmental Progress & Sustainable Energy 33 (3):676–80. doi: 10.1002/ep.
  • Patil, C. S., D. B. Gunjal, V. M. Naik, N. S. Harale, S. D. Jagadale, A. N. Kadam, P. S. Patil, G. B. Kolekar, and A. H. Gore. 2019. Waste tea residue as a low cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: An environmental remediation. Journal of Cleaner Production 206:407–18. doi: 10.1016/j.jclepro.2018.09.140.
  • Rajapaksha, S, and N. Shimizu. 2022. Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction. Food Chemistry: X 13:100200. doi: 10.1016/j.fochx.2021.100200.
  • Ramdani, D., A. S. Chaudhry, I. Hernaman, and C. J. Seal. 2017. Comparing tea leaf products and other forages for in-vitro degradability, fermentation, and methane for their potential use as natural additives for ruminants. KnE Life Sciences 2 (6):63. doi: 10.18502/kls.v2i6.1020.
  • Ramdani, D., A. S. Chaudhry, and C. J. Seal. 2013. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. Journal of Agricultural and Food Chemistry 61 (20):4961–7. doi: 10.1021/jf4002439.
  • Rashid, U., Ahmad, J. Ibrahim, M. L. Nisar, J. Shean, M. A. H. T. Y. C. Hanif, M. A, and Shean, T. Y. C. 2019. Single-pot synthesis of biodiesel using efficient sulfonated-derived tea waste-heterogeneous catalyst. Materials 12 (14):2293. doi: 10.3390/ma12142293.
  • Raziq, M., Kooh, R. Muhammad, Dahri, K. Lim, L. B. L. Lee, Lim, H. Chin, and Chan, M. 2018. Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies. Applied Water Science 8:61. doi: 10.1007/s13201-018-0714-x.
  • Ren, Z., Z. Chen, Y. Zhang, X. Lin, and B. Li. 2019. Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues. Food Hydrocolloids 96:322–30. doi: 10.1016/j.foodhyd.2019.05.015.
  • Ren, Z., Z. Chen, Y. Zhang, X. Lin, and B. Li. 2020. Characteristics and rheological behavior of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles via high-pressure homogenization. International Journal of Biological Macromolecules 151:247–56. doi: 10.1016/j.ijbiomac.2020.02.090.
  • Ren, Z., Z. Chen, Y. Zhang, T. Zhao, X. Ye, X. Gao, X. Lin, and B. Li. 2019. Functional properties and structural profiles of water-insoluble proteins from three types of tea residues. LWT - Food Science and Technology 110:324–31. doi: 10.1016/j.lwt.2019.04.101.
  • Roofigarihaghighat, S., A. Shirinfekr, R. Azadigonbad, and A. Seraji. 2020. Investigation on natural color extraction from black tea waste. Journal of Medicinal Plants and by-Products 1:1–6.
  • Sankar, S., S. Saravanan, A. T. A. Ahmed, A. I. Inamdar, H. Im, S. Lee, and D. Y. Kim. 2019. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery. Materials Letters 240:189–92. doi: 10.1016/j.matlet.2018.12.143.
  • Selahvarzi, A., M. R. Sanjabi, Y. Ramezan, H. Mirsaeedghazi, F. Azarikia, and A. Abedinia. 2021. Evaluation of physicochemical, functional, and antimicrobial properties of a functional energy drink produced from agricultural wastes of melon seed powder and tea stalk caffeine. Journal of Food Processing and Preservation 45 (9):1–13. doi: 10.1111/jfpp.15726.
  • Senevirathne, N. D., T. Okamoto, J. Takahashi, K. Umetsu, and T. Nishida. 2012. Effect of mixed microbial culture treatment on the nutritive value of coffee, green tea and oolong tea residues and the effect of the fermented residues on in vitro rumen fermentation. APCBEE Procedia 4:66–72. doi: 10.1016/j.apcbee.2012.11.012.
  • Senol, A, and A. Aydin. 2006. Solid–liquid extraction of caffeine from tea waste using battery type extractor: Process optimization. Journal of Food Engineering 75 (4):565–73. doi: 10.1016/j.jfoodeng.2005.04.039.
  • Serdar, G., E. Demir, and M. Sökmen. 2017. Recycling of tea waste: Simple and effective separation of caffeine and catechins by microwave assisted extraction (MAE). International Journal of Secondary Metabolite 4 (2):78. doi: 10.21448/ijsm.288226.
  • Shah, J., M. R. Jan, A. Ul Haq, and M. Zeeshan. 2015. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. Journal of Saudi Chemical Society 19 (3):301–10. doi: 10.1016/j.jscs.2012.04.004.
  • Shalmashi, A., M. Abedi, F. Golmohammad, and M. H. Eikani. 2007. Isolation of caffeine from tea waste using subcritical water extraction. Journal of Food Process Engineering 33 (4):701–11. doi: 10.1111/j.1745-4530.2008.00297.x.
  • Shang, A., J. Li, D. D. Zhou, R. Y. Gan, and H. B. Li. 2021. Molecular mechanisms underlying health benefits of tea compounds. Free Radical Biology & Medicine 172:181–200. doi: 10.1016/j.freeradbiomed.2021.06.006.
  • Shao, J., Y. Wei, and X. Wei. 2022. A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Research International 158:111540. doi: 10.1016/j.foodres.2022.111540.
  • Song, X., X. Ma, Y. Li, L. Ding, and R. Jiang. 2019. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science 487:189–97. doi: 10.1016/j.apsusc.2019.04.277.
  • Sui, W., Y. Xiao, R. Liu, T. Wu, and M. Zhang. 2019. Steam explosion modification on tea waste to enhance bioactive compounds’ extractability and antioxidant capacity of extracts. Journal of Food Engineering 261:51–9. doi: 10.1016/j.jfoodeng.2019.03.015.
  • Sun, K., B. Gao, Z. Zhang, G. Zhang, X. Liu, Y. Zhao, and B. Xing. 2010. Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments. Chemosphere 80 (7):709–15. doi: 10.1016/j.chemosphere.2010.05.028.
  • Tan, H., H. Li, H. Song, W. Xu, C. Guan, and L. Ran. 2012. A novel way of separation and preparation noncaffeine tea polyphenols from green tea waste. Advanced Materials Research 550–553:1875–80. doi: 10.4028/www.scientific.net/AMR.550-553.1875.
  • Tang, G.-Y., X. Meng, R.-Y. Gan, C.-N. Zhao, Q. Liu, Y.-B. Feng, S. Li, X.-L. Wei, A. G. Atanasov, H. Corke, et al. 2019. Health functions and related molecular mechanisms of tea components: An update review. International Journal of Molecular Sciences 20 (24):6196. doi: 10.3390/ijms20246196.
  • Temple, J. L., C. Bernard, S. E. Lipshultz, J. D. Czachor, J. A. Westphal, and M. A. Mestre. 2017. The safety of ingested caffeine: A comprehensive review. Frontiers in Psychiatry 8:80–9. doi: 10.3389/fpsyt.2017.00080.
  • Thanarasu, A., K. Periyasamy, K. Devaraj, P. Periyaraman, S. Palaniyandi, and S. Subramanian. 2018. Tea powder waste as a potential co-substrate for enhancing the methane production in Anaerobic Digestion of carbon-rich organic waste. Journal of Cleaner Production 199:651–8. doi: 10.1016/j.jclepro.2018.07.225.
  • Truong, V. L, and W. S. Jeong. 2021. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. International Journal of Molecular Sciences 22 (17):9109. doi: 10.3390/ijms22179109.
  • Tsubaki, S., M. Sakamoto, and J. i Azuma. 2010. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chemistry 123 (4):1255–8. doi: 10.1016/j.foodchem.2010.05.088.
  • Vuong, Q. V., C. E. Stathopoulos, M. H. Nguyen, J. B. Golding, and P. D. Roach. 2011. Isolation of green tea catechins and their utilization in the food industry. Food Reviews International 27 (3):227–47. doi: 10.1080/87559129.2011.563397.
  • Wang, N., J. Wang, Y. Li, L. Li, and X. a Xie. 2020. Reverse microemulsion prepared by AOT/CTAB/SDS/Tween80 for extraction of tea residues protein. Journal of Molecular Liquids 320:114474. doi: 10.1016/j.molliq.2020.114474.
  • Wasewar, K. L., M. Atif, B. Prasad, and I. M. Mishra. 2009. Batch adsorption of zinc on tea factory waste. Desalination 244 (1–3):66–71. doi: 10.1016/j.desal.2008.04.036.
  • Wei, Y., J. Xu, S. Miao, K. Wei, L. Peng, Y. Wang, and X. Wei. 2022. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Critical Reviews in Food Science and Nutrition 2022:1–29. doi: 10.1080/10408398.2022.2048291.
  • Wen, Y., M. Niu, B. Zhang, S. Zhao, and S. Xiong. 2017. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT - Food Science and Technology 75:344–51. doi: 10.1016/j.lwt.2016.09.012.
  • Wu, L., Y. Luo, S. Zhou, Z. Wu, and X. Chen. 2021. Fabrication of Ag-TiO2 functionalized activated carbon for dyes degradation based on tea residues. Colloids and Surfaces A: Physicochemical and Engineering Aspects 627:127130. doi: 10.1016/j.colsurfa.2021.127130.
  • Xie, L.-W., S. Cai, T.-S. Zhao, M. Li, and Y. Tian. 2020. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radical Biology and Medicine 161:175–86. doi: 10.1016/j.freeradbiomed.2020.10.012.
  • Xu, J., Y. Wei, Y. Huang, X. Weng, and X. Wei. 2022. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Critical Reviews in Food Science and Nutrition 2022:1–23. doi: 10.1080/10408398.2022.2093327.
  • Xu, J., W. Gu, C. Li, X. Li, G. Xing, Y. Li, Y. Song, and W. Zheng. 2016. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. Journal of Natural Medicines 70 (3):584–91. doi: 10.1007/s11418-016-0980-6.
  • Xu, Q., Y. Yang, K. Hu, J. Chen, S. N. Djomo, X. Yang, and M. T. Knudsen. 2021. Economic, environmental, and emergy analysis of China’s green tea production. Sustainable Production and Consumption 28:269–80. doi: 10.1016/j.spc.2021.04.019.
  • Xue, Z., J. Wang, Z. Chen, Q. Ma, Q. Guo, X. Gao, and H. Chen. 2018. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. Journal of Food Biochemistry 42 (6):e12690. doi: 10.1111/jfbc.12690.
  • Yan, Z., Y. Zhong, Y. Duan, Q. Chen, and F. Li. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition (Zhongguo xu mu shou yi xue hui) 6 (2):115–23. doi: 10.1016/j.aninu.2020.01.001.
  • Yuan, L., W. Hong, Y. Fei, L. Hai, and S. Shi. 2013. Optimization of the enzymatic extraction process of protein in tea residue by response surface methodology. Science and Technology of Food Industry 7:247–251. doi: 10.13386/j.issn1002-0306.2013.07.079.
  • Zhang, C., E. Bozileva, F. van de Klis, Y. Dong, J. P. M. Sanders, and M. E. Bruins. 2016. Integration of galacturonic acid extraction with alkaline protein extraction from green tea leaf residue. Industrial Crops and Products 89:95–102. doi: 10.1016/j.indcrop.2016.04.074.
  • Zhang, C., M. M. van Krimpen, J. P. M. Sanders, and M. E. Bruins. 2016. Improving yield and composition of protein concentrates from green tea residue in an agri-food supply chain: Effect of pre-treatment. Food and Bioproducts Processing 100:92–101. doi: 10.1016/j.fbp.2016.06.001.
  • Zhang, D., Chen, L. Cai, J. Dong, Q. Din, Z. ud, Hu, Z. Z. Wang, G. Z. Ding, W. P. He, J. R. Cheng, S. Y, et al. 2021. Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties. Food Chemistry 360:129922. doi: 10.1016/j.foodchem.2021.129922.
  • Zhang, L., T. You, L. Zhang, H. Yang, and F. Xu. 2014. Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Bioresource Technology 164:292–8. doi: 10.1016/j.biortech.2014.04.075.
  • Zhang, S., C. Liu, Y. Yuan, M. Fan, D. Zhang, D. Wang, and Y. Xu. 2020. Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. Bioresource Technology 311:123520. doi: 10.1016/j.biortech.2020.123520.
  • Zhao, M., Y. Yu, L. M. Sun, J. Q. Xing, T. Li, Y. Zhu, M. Wang, Y. Yu, W. Xue, T. Xia, et al. 2021. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications 12 (1):1–14. doi: 10.1038/s41467-021-22297-8.
  • Zhao, T., Z. Chen, X. Lin, Z. Ren, B. Li, and Y. Zhang. 2018. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate Polymers 184:164–70. doi: 10.1016/j.carbpol.2017.12.024.
  • Zheng, X., X. Xie, C. Yu, Q. Zhang, Y. Wang, J. Cong, N. Liu, Z. He, B. Yang, and J. Liu. 2019. Unveiling the activating mechanism of tea residue for boosting the biological decolorization performance of refractory dye. Chemosphere 233:110–9. doi: 10.1016/j.chemosphere.2019.05.205.
  • Zhong, R. Z., C. Y. Tan, X. F. Han, S. X. Tang, Z. L. Tan, and B. Zeng. 2009. Effect of dietary tea catechins supplementation in goats on the quality of meat kept under refrigeration. Small Ruminant Research 87 (1-3):122–5. doi: 10.1016/j.smallrumres.2009.10.012.
  • Zhu, D., Y. Wang, W. Lu, H. Zhang, Z. Song, D. Luo, L. Gan, M. Liu, and D. Sun. 2017. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon 111:667–74. doi: 10.1016/j.carbon.2016.10.016.
  • Zhu, J., F. Zhu, X. Yue, P. Chen, Y. Sun, L. Zhang, D. Mu, and F. Ke. 2019. Waste utilization of synthetic carbon quantum dots based on tea and peanut shell. Journal of Nanomaterials 2019 (1):1–7. doi: 10.1155/2019/7965756.
  • Zuo, A. R., H. H. Dong, Y. Y. Yu, Q. L. Shu, L. X. Zheng, X. Y. Yu, and S. W. Cao. 2018. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Medicine 13 (1):1–12. doi: 10.1186/s13020-018-0206-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.