339
Views
2
CrossRef citations to date
0
Altmetric
Reviews

The role of dietary polyphenols in alternating DNA methylation in cancer

, , , , , & show all
Pages 12256-12269 | Published online: 18 Jul 2022

References

  • Abbaszadeh, S., M. Rashidipour, P. Khosravi, S. Shahryarhesami, B. Ashrafi, M. Kaviani, and M. Moradi Sarabi. 2020. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. International Journal of Nanomedicine 15:5963–75. doi: 10.2147/IJN.S263013.
  • Aggarwal, B. B., A. Kumar, and A. C. Bharti. 2003. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research 23 (1a):363–98.
  • Ali Hosseini, S., R. C. Sobti, K. Malekzadeh, S. K. Singh, and K. Joshi. 2010. Frequency of P16INK4a and P14ARF genes methylation and its impact on bladder cancer cases in north Indian population. Disease Markers 28 (6):361–8. doi: 10.3233/dma-2010-0716.
  • Alizadeh, M., A. Nafari, A. Safarzadeh, S. Veiskarami, M. Almasian, and A. Asghar Kiani. 2021. The impact of EGCG and RG108 on SOCS1 promoter DNA methylation and expression in U937 leukemia cells. Reports of Biochemistry & Molecular Biology 10 (3):455–61. doi: 10.52547/rbmb.10.3.455.
  • Alvarez, M. C., V. Maso, C. O. Torello, K. P. Ferro, and S. T. O. Saad. 2018. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clinical Epigenetics 10 (1):139. doi: 10.1186/s13148-018-0563-3.
  • Al-Yousef, N., Z. Shinwari, B. Al-Shahrani, M. Al-Showimi, and N. Al-Moghrabi. 2020. Curcumin induces re‑expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncology Reports 43 (3):827–38. doi: 10.3892/or.2020.7473.
  • Arai, T., Y. Miyoshi, S. J. Kim, T. Taguchi, Y. Tamaki, and S. Noguchi. 2006. Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers. Breast Cancer Research and Treatment 100 (2):169–76. doi: 10.1007/s10549-006-9241-9.
  • Bai, Y., C. Wei, Y. Zhong, Y. Zhang, J. Long, S. Huang, F. Xie, Y. Tian, X. Wang, and H. Zhao. 2020. Development and validation of a prognostic nomogram for gastric cancer based on DNA methylation-driven differentially expressed genes. International Journal of Biological Sciences 16 (7):1153–65. doi: 10.7150/ijbs.41587.
  • Beetch, M., C. Boycott, S. Harandi-Zadeh, T. Yang, B. J. E. Martin, T. Dixon-McDougall, K. Ren, A. Gacad, J. H. Dupuis, M. Ullmer, et al. 2021. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. The Journal of Nutritional Biochemistry 98:108815. doi: 10.1016/j.jnutbio.2021.108815.
  • Berman, A. Y., R. A. Motechin, M. Y. Wiesenfeld, and M. K. Holz. 2017. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precision Oncology. 1. doi: 10.1038/s41698-017-0038-6.
  • Bishop, K. S., and L. R. Ferguson. 2015. The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7 (2):922–47. doi: 10.3390/nu7020922.
  • Brovarets’, O. h. O., and D. M. Hovorun. 2019. Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study. Plos ONE 14 (11):e0224762. doi: 10.1371/journal.pone.0224762.
  • Brueckner, B., R. Garcia Boy, P. Siedlecki, T. Musch, H. C. Kliem, P. Zielenkiewicz, S. Suhai, M. Wiessler, and F. Lyko. 2005. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Research 65 (14):6305–11. doi: 10.1158/0008-5472.can-04-2957.
  • Calderón-Montaño, J. M., E. Burgos-Morón, C. Pérez-Guerrero, and M. López-Lázaro. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry 11 (4):298–344. doi: 10.2174/138955711795305335.
  • Celik, S., D. Akcora, T. Ozkan, N. Varol, S. Aydos, and A. Sunguroglu. 2015. Methylation analysis of the DAPK1 gene in imatinib-resistant chronic myeloid leukemia patients. Oncology Letters 9 (1):399–404. doi: 10.3892/ol.2014.2677.
  • Chatterjee, B., K. Ghosh, and S. R. Kanade. 2019. Curcumin-mediated demethylation of the proximal promoter CpG island enhances the KLF4 recruitment that leads to increased expression of p21Cip1 in vitro. Journal of Cellular Biochemistry 120 (1):809–20. doi: 10.1002/jcb.27442.
  • Chen, T., C. Yang, Z. Xi, F. Chen, and H. Li. 2020. Reduced caudal type homeobox 2 (CDX2) promoter methylation is associated with curcumin’s suppressive effects on epithelial-mesenchymal transition in colorectal cancer cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 26:e926443. doi: 10.12659/msm.926443.
  • Chen, X., J. Zhang, W. Ruan, M. Huang, C. Wang, H. Wang, Z. Jiang, S. Wang, Z. Liu, C. Liu, et al. 2020. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. The Journal of Clinical Investigation 130 (12):6278–89. doi: 10.1172/jci139597.
  • Christman, J. K. 2002. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21 (35):5483–95. doi:10.1038/sj.onc.1205699. 12154409
  • Constâncio, V., S. P. Nunes, R. Henrique, and C. Jerónimo. 2020. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells 9 (3):624. doi: 10.3390/cells9030624.
  • Cooper, D. N, and H. Youssoufian. 1988. The CpG dinucleotide and human genetic disease. Human Genetics 78 (2):151–5. doi: 10.1007/bf00278187.
  • Dawson, M. A., and T. Kouzarides. 2012. Cancer epigenetics: From mechanism to therapy. Cell 150 (1):12–27. doi: 10.1016/j.cell.2012.06.013.
  • Ding, W., G. Chen, and T. Shi. 2019. Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis. Epigenetics 14 (1):67–80. doi: 10.1080/15592294.2019.1568178.
  • Dong, X., J. Zhang, F. Yang, J. Wu, R. Cai, T. Wang, and J. Zhang. 2018. Effect of luteolin on the methylation status of the OPCML gene and cell growth in breast cancer cells. Experimental and Therapeutic Medicine 16 (4):3186–94. doi: 10.3892/etm.2018.6526.
  • Du, L., Z. Xie, L-c Wu, M. Chiu, J. Lin, K. K. Chan, S. Liu, and Z. Liu. 2012. Reactivation of RASSF1A in breast cancer cells by curcumin. Nutrition and Cancer 64 (8):1228–35. doi: 10.1080/01635581.2012.717682.
  • Fang, M. Z., D. Chen, Y. Sun, Z. Jin, J. K. Christman, and C. S. Yang. 2005. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 11 (19 Pt 1):7033–41. doi: 10.1158/1078-0432.ccr-05-0406.
  • Fang, M. Z., Y. Wang, N. Ai, Z. Hou, Y. Sun, H. Lu, W. Welsh, and C. S. Yang. 2003. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Research 63 (22):7563–70.
  • Fernández-Bedmar, Z., J. Anter, A. Alonso-Moraga, J. Martín de Las Mulas, Y. Millán-Ruiz, and S. Guil-Luna. 2017. Demethylating and anti-hepatocarcinogenic potential of hesperidin, a natural polyphenol of Citrus juices. Molecular Carcinogenesis 56 (6):1653–62. doi: 10.1002/mc.22621.
  • Filion, G. J., S. Zhenilo, S. Salozhin, D. Yamada, E. Prokhortchouk, and P.-A. Defossez. 2006. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Molecular and Cellular Biology 26 (1):169–81.
  • Fudhaili, A., N. A. Yoon, S. Kang, J. Ryu, J. Y. Jeong, D. H. Lee, and S. S. Kang. 2019. Resveratrol epigenetically regulates the expression of zinc finger protein 36 in non‑small cell lung cancer cell lines. Oncology Reports 41 (2):1377–86. doi: 10.3892/or.2018.6898.
  • Galiniak, S., D. Aebisher, and D. Bartusik-Aebisher. 2019. Health benefits of resveratrol administration. Acta Biochimica Polonica 66 (1):13–21. doi: 10.18388/abp.2018_2749.
  • Gao, T., S. Wang, B. He, Y. Pan, G. Song, L. Gu, L. Chen, Z. Nie, Y. Xu, and R. Li. 2012. The association of RAS association domain family Protein1A (RASSF1A) methylation states and bladder cancer risk: A systematic review and meta-analysis. PloS One 7 (11):e48300. doi: 10.1371/journal.pone.0048300.
  • Gao, Z., Z. Xu, M.-S. Hung, Y.-C. Lin, T. Wang, M. Gong, X. Zhi, D. M. Jablon, and L. You. 2009. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Research 29 (6):2025–30.
  • Gupta, S. C., S. Patchva, and B. B. Aggarwal. 2013. Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal 15 (1):195–218. doi: 10.1208/s12248-012-9432-8.
  • Hanoun, N., Y. Delpu, A. A. Suriawinata, B. Bournet, C. Bureau, J. Selves, G. J. Tsongalis, M. Dufresne, L. Buscail, P. Cordelier, et al. 2010. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clinical Chemistry 56 (7):1107–18. doi: 10.1373/clinchem.2010.144709.
  • He, H., H. Zhang, Z. Li, R. Wang, N. Li, and L. Zhu. 2015. miRNA-214: Expression, therapeutic and diagnostic potential in cancer. Tumori 101 (4):375–83. doi: 10.5301/tj.5000318.
  • Hewlings, S. J., and D. S. Kalman. 2017. Curcumin: A review of its effects on human health. Foods 6 (10):92. doi: 10.3390/foods6100092.
  • Hou, Z., L. Sun, F. Xu, F. Hu, J. Lan, D. Song, Y. Feng, J. Wang, X. Luo, J. Hu, et al. 2020. Blocking histone methyltransferase SETDB1 inhibits tumorigenesis and enhances cetuximab sensitivity in colorectal cancer. Cancer Letters 487:63–73. doi: 10.1016/j.canlet.2020.05.029.
  • Izquierdo-Torres, E., A. Hernández-Oliveras, I. Meneses-Morales, G. Rodríguez, G. Fuentes-García, and Á. Zarain-Herzberg. 2019. Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. The International Journal of Biochemistry & Cell Biology 113:37–47. doi: 10.1016/j.biocel.2019.05.020.
  • Jia, W., F. Deng, W. Fu, J. Hu, G. Chen, X. Gao, X. Tan, G. Li, G. Liu, and S. Zhu. 2019. Curcumin suppresses wilms’ tumor metastasis by inhibiting RECK methylation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 111:1204–12. doi: 10.1016/j.biopha.2018.12.111.
  • Jiang, A., X. Wang, X. Shan, Y. Li, P. Wang, P. Jiang, and Q. Feng. 2015. Curcumin reactivates silenced tumor suppressor gene RARβ by reducing DNA methylation. Phytotherapy Research: PTR 29 (8):1237–45. doi: 10.1002/ptr.5373.
  • Kahkeshani, N., F. Farzaei, M. Fotouhi, S. S. Alavi, R. Bahramsoltani, R. Naseri, S. Momtaz, Z. Abbasabadi, R. Rahimi, M. H. Farzaei, et al. 2019. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences 22 (3):225–37. doi: 10.22038/ijbms.2019.32806.7897.
  • Kang, K. A., M. J. Piao, Y. J. Hyun, A. X. Zhen, S. J. Cho, M. J. Ahn, J. M. Yi, and J. W. Hyun. 2019. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Experimental & Molecular Medicine 51 (4):1–14. doi: 10.1038/s12276-019-0238-y.
  • Kato, K., N. K. Long, H. Makita, M. Toida, T. Yamashita, D. Hatakeyama, A. Hara, H. Mori, and T. Shibata. 2008. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer 99 (4):647–54. doi: 10.1038/sj.bjc.6604521.
  • Kawamoto, K., H. Enokida, T. Gotanda, H. Kubo, K. Nishiyama, M. Kawahara, and M. Nakagawa. 2006. p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochemical and Biophysical Research Communications 339 (3):790–6. doi: 10.1016/j.bbrc.2005.11.072.
  • Kedhari Sundaram, M., A. Hussain, S. Haque, R. Raina, and N. Afroze. 2019. Quercetin modifies 5’CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. Journal of Cellular Biochemistry 120 (10):18357–69. doi: 10.1002/jcb.29147.
  • Khan, N., F. Afaq, M. Saleem, N. Ahmad, and H. Mukhtar. 2006. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Research 66 (5):2500–5. doi: 10.1158/0008-5472.can-05-3636.
  • Khor, T. O., Y. Huang, T. Y. Wu, L. Shu, J. Lee, and A. N. Kong. 2011. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochemical Pharmacology 82 (9):1073–8. doi: 10.1016/j.bcp.2011.07.065.
  • Klutstein, M., D. Nejman, R. Greenfield, and H. Cedar. 2016. DNA methylation in cancer and aging. Cancer Research 76 (12):3446–50. doi: 10.1158/0008-5472.can-15-3278.
  • Kulis, M, and M. Esteller. 2010. DNA methylation and cancer. Advances in Genetics 70:27–56. doi: 10.1016/b978-0-12-380866-0.60002-2.
  • Kumar, U., U. Sharma, and G. Rathi. 2017. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 39 (2):1010428317692258. doi: 10.1177/1010428317692258.
  • Kuo, H. D., R. Wu, S. Li, A. Y. Yang, and A. N. Kong. 2019. Anthocyanin delphinidin prevents neoplastic transformation of mouse skin JB6 P + Cells: Epigenetic Re-activation of Nrf2-ARE pathway. The AAPS Journal 21 (5):83. doi: 10.1208/s12248-019-0355-5.
  • Lakhanpal, P., and D. K. Rai. 2007. Quercetin: A versatile flavonoid. Internet Journal of Medical Update 2 (2):22–37.
  • Lao, V. V., and W. M. Grady. 2011. Epigenetics and colorectal cancer. Nature Reviews. Gastroenterology & Hepatology 8 (12):686–700. doi: 10.1038/nrgastro.2011.173.
  • LaPak, K. M., and C. E. Burd. 2014. The molecular balancing act of p16(INK4a) in cancer and aging. Molecular Cancer Research: MCR 12 (2):167–83. doi: 10.1158/1541-7786.mcr-13-0350.
  • Lasabova, Z., P. Tilandyova, K. Kajo, P. Zubor, T. Burjanivova, J. Danko, and L. Plank. 2010. Hypermethylation of the GSTP1 promoter region in breast cancer is associated with prognostic clinicopathological parameters. Neoplasma 57 (1):35–40. doi: 10.4149/neo_2010_01_035.
  • Lee, W. J., and B. T. Zhu. 2006. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27 (2):269–77. doi: 10.1093/carcin/bgi206.
  • Liang, W., Z. Chen, C. Li, J. Liu, J. Tao, X. Liu, … J. He. 2021. Accurate diagnosis of pulmonary nodules using a noninvasive DNA methylation test. Journal of Clinical Investigation 131 (10). doi: 10.1172/jci145973.
  • Li, E., T. H. Bestor, and R. Jaenisch. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (6):915–26.
  • Li, Y., F. Jiang, L. Chen, Y. Yang, S. Cao, Y. Ye, X. Wang, J. Mu, Z. Li, and L. Li. 2015. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio 5:466–75. doi: 10.1016/j.fob.2015.05.009.
  • Li, S., W. Li, C. Wang, R. Wu, R. Yin, H.-C. Kuo, L. Wang, and A.-N. Kong. 2019. Pelargonidin reduces the TPA induced transformation of mouse epidermal cells -potential involvement of Nrf2 promoter demethylation. Chemico-Biological Interactions 309:108701. doi: 10.1016/j.cbi.2019.06.014.
  • Li, C.-L., H. Nie, M. Wang, L.-P. Su, J.-F. Li, Y.-Y. Yu, M. Yan, Q.-L. Qu, Z.-G. Zhu, and B.-Y. Liu. 2012. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncology Reports 27 (6):1960–6. doi: 10.3892/or.2012.1719.
  • Link, A., F. Balaguer, Y. Shen, J. J. Lozano, H. C. Leung, C. R. Boland, and A. Goel. 2013. Curcumin modulates DNA methylation in colorectal cancer cells. PloS One 8 (2):e57709. doi: 10.1371/journal.pone.0057709.
  • Liu, X., H. Li, M. L. Wu, J. Wu, Y. Sun, K. L. Zhang, and J. Liu. 2019. Resveratrol reverses retinoic acid resistance of anaplastic thyroid cancer cells via demethylating CRABP2 gene. Frontiers in Endocrinology 10:734. doi: 10.3389/fendo.2019.00734.
  • Liu, Y., J. Zhou, Y. Hu, J. Wang, and C. Yuan. 2017. Curcumin inhibits growth of human breast cancer cells through demethylation of DLC1 promoter. Molecular and Cellular Biochemistry 425 (1–2):47–58. doi: 10.1007/s11010-016-2861-4.
  • Li, K., Z. Wu, J. Yao, J. Fan, and Q. Wei. 2021. DNA methylation patterns-based subtype distinction and identification of soft tissue sarcoma prognosis. Medicine, 100 (5):e23787. doi: 10.1097/md.0000000000023787.
  • Li, D., L. Zhang, Y. Liu, H. Sun, J. U. Onwuka, Z. Zhao, W. Tian, J. Xu, Y. Zhao, and H. Xu. 2019. Specific DNA methylation markers in the diagnosis and prognosis of esophageal cancer. Aging 11 (23):11640–58. doi: 10.18632/aging.102569.
  • Luger, K. 2003. Structure and dynamic behavior of nucleosomes. Current Opinion in Genetics & Development 13 (2):127–35. doi: 10.1016/S0959-437X(03)00026-1.
  • Luo, H., Q. Zhao, W. Wei, L. Zheng, S. Yi, G. Li, … R. H. Xu. 2020. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Science Translational Medicine 12 (524). doi: 10.1126/scitranslmed.aax7533.
  • Ma, L., J. M. Feugang, P. Konarski, J. Wang, J. Lu, S. Fu, B. Ma, B. Tian, C. Zou, and Z. Wang. 2006. Growth inhibitory effects of quercetin on bladder cancer cell. Frontiers in Bioscience: A Journal and Virtual Library 11:2275–85. doi: 10.2741/1970.
  • Medina-Aguilar, R., C. Pérez-Plasencia, L. A. Marchat, P. Gariglio, J. García Mena, S. Rodríguez Cuevas, E. Ruíz-García, H. Astudillo-de la Vega, J. Hernández Juárez, A. Flores-Pérez, et al. 2016. Methylation landscape of human breast cancer cells in response to dietary compound resveratrol. Plos ONE 11 (6):e0157866. doi: 10.1371/journal.pone.0157866.
  • Morgan, A. E., T. J. Davies, and M. T. Mc Auley. 2018. The role of DNA methylation in ageing and cancer. The Proceedings of the Nutrition Society 77 (4):412–22. doi: 10.1017/s0029665118000150.
  • Morris, J., V. R. Moseley, A. B. Cabang, K. Coleman, W. Wei, E. Garrett-Mayer, and M. J. Wargovich. 2016. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget 7 (23):35313–26. doi: 10.18632/oncotarget.9204.
  • Moseley, V. R., J. Morris, R. W. Knackstedt, and M. J. Wargovich. 2013. Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Research 33 (12):5325–33.
  • Nandakumar, V., M. Vaid, and S. K. Katiyar. 2011. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32 (4):537–44. doi: 10.1093/carcin/bgq285.
  • Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 (3):247–57. doi: 10.1016/S0092-8674(00)81656-6.
  • Pan, Y., G. Liu, F. Zhou, B. Su, and Y. Li. 2018. DNA methylation profiles in cancer diagnosis and therapeutics. Clinical and Experimental Medicine 18 (1):1–14. doi: 10.1007/s10238-017-0467-0.
  • Panni, S., R. C. Lovering, P. Porras, and S. Orchard. 2020. Non-coding RNA regulatory networks. Biochimica et Biophysica Acta. Gene Regulatory Mechanisms 1863 (6):194417. doi: 10.1016/j.bbagrm.2019.194417.
  • Paredes-Gonzalez, X., F. Fuentes, Z. Y. Su, and A. N. Kong. 2014. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. The AAPS Journal 16 (4):727–35. doi: 10.1208/s12248-014-9613-8.
  • Prasher, D., S. C. Greenway, and R. B. Singh. 2020. The impact of epigenetics on cardiovascular disease. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 98 (1):12–22. doi: 10.1139/bcb-2019-0045.
  • Qiao, G., W. Zhuang, B. Dong, C. Li, J. Xu, G. Wang, L. Xie, Z. Zhou, D. Tian, G. Chen, et al. 2021. Discovery and validation of methylation signatures in circulating cell-free DNA for early detection of esophageal cancer: A case-control study. BMC Medicine 19 (1):243. doi: 10.1186/s12916-021-02109-y.
  • Qiu, W., J. Lin, Y. Zhu, J. Zhang, L. Zeng, M. Su, and Y. Tian. 2017. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cellular Physiology and Biochemistry: international Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 41 (4):1325–35. doi: 10.1159/000464435.
  • Remely, M., F. Ferk, S. Sterneder, T. Setayesh, S. Roth, T. Kepcija, R. Noorizadeh, I. Rebhan, M. Greunz, J. Beckmann, et al. 2017. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Oxidative Medicine and Cellular Longevity 2017:3079148. doi: 10.1155/2017/3079148.
  • Sadoughi, F., P. Maleki Dana, Z. Asemi, and B. Yousefi. 2021. Targeting microRNAs by curcumin: Implication for cancer therapy. Critical Reviews in Food Science and Nutrition:1–12. doi: 10.1080/10408398.2021.1916876.
  • Sharma, V., A. K. Jha, A. Kumar, A. Bhatnagar, G. Narayan, and J. Kaur. 2015. Curcumin-mediated reversal of p15 gene promoter methylation: Implication in anti-neoplastic action against acute lymphoid leukaemia cell line. Folia Biologica (Praha) 61 (2):81–9.
  • Sharma, V., L. Kumar, S. K. Mohanty, J. P. Maikhuri, S. Rajender, and G. Gupta. 2016. Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin. Molecular and Cellular Endocrinology 431:12–23. doi: 10.1016/j.mce.2016.04.024.
  • Sheng, J., W. Shi, H. Guo, W. Long, Y. Wang, J. Qi, J. Liu, and Y. Xu. 2019. The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules 24 (16):2899. doi: 10.3390/molecules24162899.
  • Shi, X., H. Y. Gao, W. Yan, X. W. He, and W. Yang. 2018. [Effects of EGCG on proliferation, cell cycle and DAPK1 gene methylation of acute promyelocytic leukemia NB4 cell line]. Zhongguo Shi Yan Xue ye Xue za Zhi 26 (5):1288–93. doi: 10.7534/j.issn.1009-2137.2018.05.006.
  • Shu, L., T. O. Khor, J.-H. Lee, S. S. S. Boyanapalli, Y. Huang, T.-Y. Wu, C. L.-L. Saw, K.-L. Cheung, and A.-N T. Kong. 2011. Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. The AAPS Journal 13 (4):606–14. doi: 10.1208/s12248-011-9300-y.
  • Siddiqui, I. A., M. Asim, B. B. Hafeez, V. M. Adhami, R. S. Tarapore, and H. Mukhtar. 2011. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25 (4):1198–207. doi: 10.1096/fj.10-167924.
  • Singh, B. N., S. Shankar, and R. K. Srivastava. 2011. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical Pharmacology 82 (12):1807–21. doi: 10.1016/j.bcp.2011.07.093.
  • Tamaru, H, and E. U. Selker. 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414 (6861):277–83.
  • Tan, S., C. Wang, C. Lu, B. Zhao, Y. Cui, X. Shi, and X. Ma. 2009. Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55 (1):6–10. doi: 10.1159/000166383.
  • Tong, R., X. Wu, Y. Liu, Y. Liu, J. Zhou, X. Jiang, L. Zhang, X. He, and L. Ma. 2020. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxidative Medicine and Cellular Longevity 2020:2543504. doi: 10.1155/2020/2543504.
  • Wang, K., Z. Chen, J. Shi, Y. Feng, M. Yu, Y. Sun, Q. Zhuang, B. Liang, G. Luo, X. Xu, et al. 2020. Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells. The Prostate 80 (12):977–85. doi: 10.1002/pros.24029.
  • Weng, Y.-P., P.-F. Hung, W.-Y. Ku, C.-Y. Chang, B.-H. Wu, M.-H. Wu, J.-Y. Yao, J.-R. Yang, and C.-H. Lee. 2018. The inhibitory activity of gallic acid against DNA methylation: Application of gallic acid on epigenetic therapy of human cancers. Oncotarget 9 (1):361–74. doi: 10.18632/oncotarget.23015.
  • Wu, M., M. Jiang, M. Xue, Q. Li, B. Cheng, M. Huang, … Y. Zhang. 2020. [ Epigallocatechin gallate induces CHD5 gene demethylation to promote acute myeloid leukemia cell apoptosis in vitro by regulating p19(Arf)-p53-p21(Cip1) signaling pathway. ]. Nan Fang Yi Ke Da Xue Xue Bao 40 (9):1230–8. doi: 10.12122/j.issn.1673-4254.2020.09.02.
  • Wu, Y., M. Sarkissyan, and J. V. Vadgama. 2015. Epigenetics in breast and prostate cancer. Methods in Molecular Biology (Clifton, NJ) 1238:425–66. doi: 10.1007/978-1-4939-1804-1_23.
  • Xu, Q., Y. Jiang, Y. Yin, Q. Li, J. He, Y. Jing, Y.-T. Qi, Q. Xu, W. Li, B. Lu, et al. 2013. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. Journal of Molecular Cell Biology 5 (1):3–13. doi: 10.1093/jmcb/mjs049.
  • Yin, L., N. Zhang, and Q. Yang. 2021. DNA methylation subtypes for ovarian cancer prognosis. FEBS Open Bio 11 (3):851–65. doi: 10.1002/2211-5463.13056.
  • Yu, J., Y. Peng, L.-C. Wu, Z. Xie, Y. Deng, T. Hughes, S. He, X. Mo, M. Chiu, Q.-E. Wang, et al. 2013. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PloS One 8 (2):e55934. doi: 10.1371/journal.pone.0055934.
  • Zhan, L., B. Zhang, Y. Tan, C. Yang, C. Huang, Q. Wu, Y. Zhang, X. Chen, M. Zhou, and A. Shu. 2017. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA). Medicine 96 (7):e6097. doi: 10.1097/md.0000000000006097.
  • Zhang, S., Y. Wang, Y. Gu, J. Zhu, C. Ci, Z. Guo, C. Chen, Y. Wei, W. Lv, H. Liu, et al. 2018. Specific breast cancer prognosis-subtype distinctions based on DNA methylation patterns. Molecular Oncology 12 (7):1047–60. doi: 10.1002/1878-0261.12309.
  • Zhang, Y., X. Wang, L. Han, Y. Zhou, and S. Sun. 2015. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 69:285–90. doi: 10.1016/j.biopha.2014.12.016.
  • Zhao, R., F. Meng, N. Wang, W. Ma, and Q. Yan. 2014. Silencing of CHD5 gene by promoter methylation in leukemia. PloS One 9 (1):e85172. doi: 10.1371/journal.pone.0085172.
  • Zheng, N. G., J. L. Wang, S. L. Yang, and J. L. Wu. 2014. Aberrant epigenetic alteration in Eca9706 cells modulated by nanoliposomal quercetin combined with butyrate mediated via epigenetic-NF-κB signaling. Asian Pacific Journal of Cancer Prevention: APJCP 15 (11):4539–43. doi: 10.7314/apjcp.2014.15.11.4539.
  • Zhou, X. Q., X. N. Xu, L. Li, J. J. Ma, E. M. Zhen, and C. B. Han. 2015. Epigallocatechin‑3‑gallate inhibits the invasion of salivary adenoid cystic carcinoma cells by reversing the hypermethylation status of the RECK gene. Molecular Medicine Reports 12 (4):6031–6. doi: 10.3892/mmr.2015.4213.
  • Zhu, W., W. Qin, K. Zhang, G. E. Rottinghaus, Y. C. Chen, B. Kliethermes, and E. R. Sauter. 2012. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutrition and Cancer 64 (3):393–400. doi: 10.1080/01635581.2012.654926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.