430
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for short-chain fatty acids?

, , , &
Pages 12285-12293 | Published online: 14 Jul 2022

References

  • Aoki, R., K. Kamikado, W. Suda, H. Takii, Y. Mikami, N. Suganuma, M. Hattori, and Y. Koga. 2017. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports 7:43522. doi: 10.1038/srep43522.
  • Armougom, F., M. Henry, B. Vialettes, D. Raccah, and D. Raoult. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 4 (9):e7125. doi: 10.1371/journal.pone.0007125.
  • Baboota, R. K., P. Khare, P. Mangal, D. P. Singh, K. K. Bhutani, K. K. Kondepudi, J. Kaur, and M. Bishnoi. 2018. Dihydrocapsiate supplementation prevented high-fat diet-induced adiposity, hepatic steatosis, glucose intolerance, and gut morphological alterations in mice. Nutrition Research 51:40–56. doi: 10.1016/j.nutres.2017.11.006.
  • Baothman, O. A., M. A. Zamzami, I. Taher, J. Abubaker, and M. Abu-Farha. 2016. The role of gut microbiota in the development of obesity and diabetes. Lipids in Health and Disease 15:108. doi: 10.1186/s12944-016-0278-4.
  • Boets, E., S. V. Gomand, L. Deroover, T. Preston, K. Vermeulen, V. De Preter, H. M. Hamer, G. Van den Mooter, L. De Vuyst, C. M. Courtin, et al. 2017. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study. The Journal of Physiology 595 (2):541–55. doi: 10.1113/JP272613.
  • Brahe, L. K., A. Astrup, and L. H. Larsen. 2016. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Advances in Nutrition 7 (1):90–101. doi: 10.3945/an.115.010587.
  • Brooks, L., A. Viardot, A. Tsakmaki, E. Stolarczyk, J. K. Howard, P. D. Cani, A. Everard, M. L. Sleeth, A. Psichas, J. Anastasovskaj, et al. 2017. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Molecular Metabolism 6 (1):48–60. doi: 10.1016/j.molmet.2016.10.011.
  • Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, et al. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry 278 (13):11312–9. doi: 10.1074/jbc.M211609200.
  • Cani, P. D. 2018. Human gut microbiome: Hopes, threats and promises. Gut 67 (9):1716–25. doi: 10.1136/gutjnl-2018-316723.
  • Cani, P. D. 2019. Microbiota and metabolites in metabolic diseases. Nature Reviews. Endocrinology 15 (2):69–70. doi: 10.1038/s41574-018-0143-9.
  • Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7):1761–72. doi: 10.2337/db06-1491.
  • Cardona, F., C. Andres-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuno. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/j.jnutbio.2013.05.001.
  • Clifford, M. N. 2004. Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica 70 (12):1103–14. doi: 10.1055/s-2004-835835.
  • De Vadder, F., P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, F. Backhed, and G. Mithieux. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1-2):84–96. doi: 10.1016/j.cell.2013.12.016.
  • den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 (9):2325–40. doi: 10.1194/jlr.R036012.
  • Ding, Y., Z. Song, H. Li, L. Chang, T. Pan, X. Gu, X. He, and Z. Fan. 2019. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota. Frontiers in Immunology 10:2800. doi: 10.3389/fimmu.2019.02800.
  • Dominguez-Bello, M. G., E. K. Costello, M. Contreras, M. Magris, G. Hidalgo, N. Fierer, and R. Knight. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences 107 (26):11971–5. doi: 10.1073/pnas.1002601107.
  • Duenas, M., I. Munoz-Gonzalez, C. Cueva, A. Jimenez-Giron, F. Sanchez-Patan, C. Santos-Buelga, M. V. Moreno-Arribas, and B. Bartolome. 2015. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International 2015:850902. doi: 10.1155/2015/850902.
  • Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308 (5728):1635–8. doi: 10.1126/science.1110591.
  • Everard, A., C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110 (22):9066–71. doi: 10.1073/pnas.1219451110.
  • Freeland, K. R, and T. M. Wolever. 2010. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. British Journal of Nutrition 103 (3):460–6. doi: 10.1017/S0007114509991863.
  • Frost, G., M. L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5:3611. doi: 10.1038/ncomms4611.
  • Furet, J.-P., L.-C. Kong, J. Tap, C. Poitou, A. Basdevant, J.-L. Bouillot, D. Mariat, G. Corthier, J. Doré, C. Henegar, et al. 2010. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes 59 (12):3049–57. doi: 10.2337/db10-0253.
  • Gao, X., S.-H. Lin, F. Ren, J.-T. Li, J.-J. Chen, C.-B. Yao, H.-B. Yang, S.-X. Jiang, G.-Q. Yan, D. Wang, et al. 2016. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications 7:11960. doi: 10.1038/ncomms11960.
  • Gao, Z., J. Yin, J. Zhang, R. E. Ward, R. J. Martin, M. Lefevre, W. T. Cefalu, and J. Ye. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 (7):1509–17. doi: 10.2337/db08-1637.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Gill, P. A., M. C. van Zelm, J. G. Muir, and P. R. Gibson. 2018. Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics 48 (1):15–34. doi: 10.1111/apt.14689.
  • Gutierrez-Diaz, I., N. Salazar, J. Perez-Jimenez, C. G. de Los Reyes-Gavilan, M. Gueimonde, and S. Gonzalez. 2021. New players in the relationship between diet and microbiota: The role of macromolecular antioxidant polyphenols. European Journal of Nutrition 60 (3):1403–13. doi: 10.1007/s00394-020-02339-5.
  • Henning, S. M., J. Yang, M. Hsu, R. P. Lee, E. M. Grojean, A. Ly, C. H. Tseng, D. Heber, and Z. Li. 2018. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. European Journal of Nutrition 57 (8):2759–69. doi: 10.1007/s00394-017-1542-8.
  • Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486 (7402):207–14. doi: 10.1038/nature11234.
  • Jocken, J. W. E., M. A. Gonzalez Hernandez, N. T. H. Hoebers, C. M. van der Beek, Y. P. G. Essers, E. E. Blaak, and E. E. Canfora. 2017. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Frontiers in Endocrinology 8:372. doi: 10.3389/fendo.2017.00372.
  • Kang, C., B. Wang, K. Kaliannan, X. Wang, H. Lang, S. Hui, L. Huang, Y. Zhang, M. Zhou, M. Chen, et al. 2017. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio 8 (3):e00470–17. doi: 10.1128/mBio.00470-17.
  • Kennedy, K. M., M. J. Gerlach, T. Adam, M. M. Heimesaat, L. Rossi, M. G. Surette, D. M. Sloboda, and T. Braun. 2021. Fetal meconium does not have a detectable microbiota before birth. Nature Microbiology 6 (7):865–73. doi: 10.1038/s41564-021-00904-0.
  • Kibbie, J. J., S. M. Dillon, T. A. Thompson, C. M. Purba, M. D. McCarter, and C. C. Wilson. 2021. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology 226 (5):152126. doi: 10.1016/j.imbio.2021.152126.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Larraufie, P., C. Martin-Gallausiaux, N. Lapaque, J. Dore, F. M. Gribble, F. Reimann, and H. M. Blottiere. 2018. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports 8 (1):74. doi: 10.1038/s41598-017-18259-0.
  • Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon. 2005. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 102 (31):11070–5. doi: 10.1073/pnas.0504978102.
  • Ley, R. E., C. A. Lozupone, M. Hamady, R. Knight, and J. I. Gordon. 2008. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nature Reviews. Microbiology 6 (10):776–88. doi: 10.1038/nrmicro1978.
  • Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444 (7122):1022–3. doi: 10.1038/4441022a.
  • Li, X., K. Watanabe, and I. Kimura. 2017. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Frontiers in Immunology 8:1882. doi: 10.3389/fimmu.2017.01882.
  • Lin, H. V., A. Frassetto, E. J. Kowalik, A. R. Nawrocki, M. M. Lu, J. R. Kosinski, J. A. Hubert, D. Szeto, X. Yao, G. Forrest, et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7 (4):e35240. doi: 10.1371/journal.pone.0035240.
  • Liu, X., S. Cao, and X. Zhang. 2015. Modulation of gut microbiota-brain axis by probiotics, prebiotics, and diet. Journal of Agricultural and Food Chemistry 63 (36):7885–95. doi: 10.1021/acs.jafc.5b02404.
  • Lloyd-Price, J., G. Abu-Ali, and C. Huttenhower. 2016. The healthy human microbiome. Genome Medicine 8 (1):51. doi: 10.1186/s13073-016-0307-y.
  • Lu, Y., C. Fan, P. Li, Y. Lu, X. Chang, and K. Qi. 2016. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific Reports 6:37589. doi: 10.1038/srep37589.
  • Mahowald, M. A., F. E. Rey, H. Seedorf, P. J. Turnbaugh, R. S. Fulton, A. Wollam, N. Shah, C. Wang, V. Magrini, R. K. Wilson, et al. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America 106 (14):5859–64. doi: 10.1073/pnas.0901529106.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230S–42S. doi: 10.1093/ajcn/81.1.230S.
  • Martin-Gallausiaux, C., L. Marinelli, H. M. Blottiere, P. Larraufie, and N. Lapaque. 2021. SCFA: Mechanisms and functional importance in the gut. The Proceedings of the Nutrition Society 80 (1):37–49. doi: 10.1017/S0029665120006916.
  • Martinez, K. B., J. F. Pierre, and E. B. Chang. 2016. The gut microbiota: The gateway to improved metabolism. Gastroenterology Clinics of North America 45 (4):601–14. doi: 10.1016/j.gtc.2016.07.001.
  • Mehrpouya-Bahrami, P., K. N. Chitrala, M. S. Ganewatta, C. Tang, E. A. Murphy, R. T. Enos, K. T. Velazquez, J. McCellan, M. Nagarkatti, and P. Nagarkatti. 2017. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Scientific Reports 7 (1):15645. doi: 10.1038/s41598-017-15154-6.
  • Milligan, G., L. A. Stoddart, and N. J. Smith. 2009. Agonism and allosterism: The pharmacology of the free fatty acid receptors FFA2 and FFA3. British Journal of Pharmacology 158 (1):146–53. doi: 10.1111/j.1476-5381.2009.00421.x.
  • Ozdal, T., D. A. Sela, J. Xiao, D. Boyacioglu, F. Chen, and E. Capanoglu. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8 (2):78. doi: 10.3390/nu8020078.
  • Patcharatrakul, T, and S. Gonlachanvit. 2016. Chili peppers, curcumins, and prebiotics in gastrointestinal health and disease. Current Gastroenterology Reports 18 (4):19. doi: 10.1007/s11894-016-0494-0.
  • Perry, R. J., L. Peng, N. A. Barry, G. W. Cline, D. Zhang, R. L. Cardone, K. F. Petersen, R. G. Kibbey, A. L. Goodman, and G. I. Shulman. 2016. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534 (7606):213–7. doi: 10.1038/nature18309.
  • Porras, D., E. Nistal, S. Martinez-Florez, S. Pisonero-Vaquero, J. L. Olcoz, R. Jover, J. Gonzalez-Gallego, M. V. Garcia-Mediavilla, and S. Sanchez-Campos. 2017. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radical Biology & Medicine 102:188–202. doi: 10.1016/j.freeradbiomed.2016.11.037.
  • Psichas, A., M. L. Sleeth, K. G. Murphy, L. Brooks, G. A. Bewick, A. C. Hanyaloglu, M. A. Ghatei, S. R. Bloom, and G. Frost. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity 39 (3):424–9. doi: 10.1038/ijo.2014.153.
  • Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285):59–65. doi: 10.1038/nature08821.
  • Rastelli, M., C. Knauf, and P. D. Cani. 2018. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obesity 26 (5):792–800. doi: 10.1002/oby.22175.
  • Rook, G., F. Backhed, B. R. Levin, M. J. McFall-Ngai, and A. R. McLean. 2017. Evolution, human-microbe interactions, and life history plasticity. The Lancet 390 (10093):521–30. doi: 10.1016/S0140-6736(17)30566-4.
  • Rumberger, J. M., J. R. Arch, and A. Green. 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2:e611. doi: 10.7717/peerj.611.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology 16 (10):605–16. doi: 10.1038/s41575-019-0173-3.
  • Santini, V., A. Gozzini, and G. Ferrari. 2007. Histone deacetylase inhibitors: Molecular and biological activity as a premise to clinical application. Current Drug Metabolism 8 (4):383–93. doi: 10.2174/138920007780655397.
  • Schwiertz, A., D. Taras, K. Schafer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18 (1):190–5. doi: 10.1038/oby.2009.167.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14 (8):e1002533. doi: 10.1371/journal.pbio.1002533.
  • Shahid, S. U., and U. Irfan. 2018. The gut microbiota and its potential role in obesity. Future Microbiology 13:589–603. doi: 10.2217/fmb-2017-0179.
  • Song, J. X., H. Ren, Y. F. Gao, C. Y. Lee, S. F. Li, F. Zhang, L. Li, and H. Chen. 2017. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice. Frontiers in Physiology 8:602. doi: 10.3389/fphys.2017.00602.
  • Stinson, L. F., M. S. Payne, and J. A. Keelan. 2017. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Critical Reviews in Microbiology 43 (3):352–69. doi: 10.1080/1040841X.2016.1211088.
  • Sung, M. M., T. T. Kim, E. Denou, C.-L M. Soltys, S. M. Hamza, N. J. Byrne, G. Masson, H. Park, D. S. Wishart, K. L. Madsen, et al. 2017. Improved glucose homeostasis in obese mice treated with resveratrol is associated with alterations in the gut microbiome. Diabetes 66 (2):418–25. doi: 10.2337/db16-0680.
  • Tamburini, S., N. Shen, H. C. Wu, and J. C. Clemente. 2016. The microbiome in early life: Implications for health outcomes. Nature Medicine 22 (7):713–22. doi: 10.1038/nm.4142.
  • Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Advances in Immunology 121:91–119. doi: 10.1016/B978-0-12-800100-4.00003-9.
  • Thangaraju, M., G. A. Cresci, K. Liu, S. Ananth, J. P. Gnanaprakasam, D. D. Browning, J. D. Mellinger, S. B. Smith, G. J. Digby, N. A. Lambert, et al. 2009. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Research 69 (7):2826–32. doi: 10.1158/0008-5472.CAN-08-4466.
  • Tolhurst, G., H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F. M. Gribble. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2):364–71. doi: 10.2337/db11-1019.
  • Tremblay, A., H. Arguin, and S. Panahi. 2016. Capsaicinoids: A spicy solution to the management of obesity? International Journal of Obesity (2005) 40 (8):1198–204. doi: 10.1038/ijo.2015.253.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46. doi: 10.3390/nu2121231.
  • Turnbaugh, P. J., R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon. 2007. The human microbiome project. Nature 449 (7164):804–10. doi: 10.1038/nature06244.
  • Unno, T., T. Hisada, and S. Takahashi. 2015. Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. Journal of Agricultural and Food Chemistry 63 (36):7952–7. doi: 10.1021/acs.jafc.5b02649.
  • Unno, T., M. Sakuma, and S. Mitsuhashi. 2014. Effect of dietary supplementation of (-)-epigallocatechin gallate on gut microbiota and biomarkers of colonic fermentation in rats. Journal of Nutritional Science and Vitaminology 60 (3):213–9. doi: 10.3177/jnsv.60.213.
  • van der Beek, C. M., E. E. Canfora, K. Lenaerts, F. J. Troost, S. Damink, J. J. Holst, A. A. M. Masclee, C. H. C. Dejong, and E. E. Blaak. 2016. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clinical Science 130 (22):2073–82. doi: 10.1042/CS20160263.
  • Wang, H. X, and Y. P. Wang. 2016. Gut microbiota-brain axis. Chinese Medical Journal 129 (19):2373–80. doi: 10.4103/0366-6999.190667.
  • Wang, Y., C. Tang, Y. Tang, H. Yin, and X. Liu. 2020. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food & Nutrition Research 64. doi: 10.29219/fnr.v64.3525.
  • Williamson, G., and M. N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology 139:24–39. doi: 10.1016/j.bcp.2017.03.012.
  • Wong, J. M., R. de Souza, C. W. Kendall, A. Emam, and D. J. Jenkins. 2006. Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3):235–43.
  • Yamashita, H., K. Fujisawa, E. Ito, S. Idei, N. Kawaguchi, M. Kimoto, M. Hiemori, and H. Tsuji. 2007. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry 71 (5):1236–43. doi: 10.1271/bbb.60668.
  • Yang, C., Q. Deng, J. Xu, X. Wang, C. Hu, H. Tang, and F. Huang. 2019. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Research International 116:1202–11. doi: 10.1016/j.foodres.2018.10.003.
  • Yatsunenko, T., F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486 (7402):222–7. doi: 10.1038/nature11053.
  • Zhang, S., J. Zhao, F. Xie, H. He, L. J. Johnston, X. Dai, C. Wu, and X. Ma. 2021. Dietary fiber-derived short-chain fatty acids: A potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease. Obesity Reviews 22 (11):e13316. doi: 10.1111/obr.13316.
  • Zhao, Y., P. Dua, and W. J. Lukiw. 2015. Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD). Journal of Alzheimer’s Disease & Parkinsonism 5 (1):177. doi: 10.4172/2161-0460.1000177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.