643
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative

, , , , , & show all
Pages 12294-12307 | Published online: 22 Jul 2022

References

  • Aasen, I. M., T. Møretrø, T. Katla, L. Axelsson, and I. Storrø. 2000. Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology 53 (2):159–66. doi: 10.1007/s002530050003.
  • Aasen, I. M., S. Markussen, T. Møretrø, T. Katla, L. Axelsson, and K. Naterstad. 2003. Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology 87 (1–2):35–43. doi: 10.1016/S0168-1605(03)00047-3.
  • Abbasiliasi, S., J. S. Tan, T. A. Tengku Ibrahim, F. Bashokouh, N. R. Ramakrishnan, S. Mustafa, and A. B. Ariff. 2017. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Advances 7 (47):29395–420. doi: 10.1039/C6RA24579J.
  • Abo-Amer, A. E. 2011. Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology 61 (3):445–52. doi: 10.1007/s13213-010-0157-6.
  • Alvarez-Sieiro, P., M. Montalbán-López, D. Mu, and O. P. Kuipers. 2016. Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology 100 (7):2939–51.
  • Anastasiadou, S., M. Papagianni, G. Filiousis, I. Ambrosiadis, and P. Koidis. 2008a. Growth and metabolism of a meat isolated strain of Pediococcus pentosaceus in submerged fermentation. Purification, characterization and properties of the produced pediocin SM-1. Enzyme and Microbial Technology 43 (6):448–54. doi: 10.1016/j.enzmictec.2008.05.007.
  • Anastasiadou, S., M. Papagianni, G. Filiousis, I. Ambrosiadis, and P. Koidis. 2008b. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresource Technology 99 (13):5384–90. doi: 10.1016/j.biortech.2007.11.015.
  • Aouadhi, C., S. Mejri, and A. Maaroufi. 2015. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk. Food Microbiology 46:40–5. doi: 10.1016/j.fm.2014.07.004.
  • Atanaskovic, I, and C. Kleanthous. 2019. Tools and approaches for dissecting protein bacteriocin import in gram-negative bacteria. Frontiers in Microbiology 10 (3):646. doi: 10.3389/fmicb.2019.00646.
  • Atrih, A., N. Rekhif, A. J. G. Moir, A. Lebrihi, and G. Lefebvre. 2001. Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. International Journal of Food Microbiology 68 (1–2):93–104. doi: 10.1016/S0168-1605(01)00482-2.
  • Balay, D. R., R. V. Dangeti, K. Kaur, and L. M. McMullen. 2017. Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms. International Journal of Food Microbiology 255:25–31.
  • Balay, D. R., M. G. Gänzle, and L. M. McMullen. 2018. The effect of carbohydrates and bacteriocins on the growth kinetics and resistance of Listeria monocytogenes. Frontiers in Microbiology 9 (3):347. doi: 10.3389/fmicb.2018.00347.
  • Barbosa, M. S., C. Jurkiewicz, M. Landgraf, S. D. Todorov, and B. D. G. M. Franco. 2018. Effect of proteins, glucose and NaCl on growth, biosynthesis and functionality of bacteriocins of Lactobacillus sakei subsp. sakei 2a in foods during storage at 4 °C: Tests in food models. LWT 95 (4):167–71. doi: 10.1016/j.lwt.2018.04.082.
  • Benfield, A. H, and S. T. Henriques. 2020. Mode-of-action of antimicrobial peptides: Membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology 2 (12):610997. doi: 10.3389/fmedt.2020.610997.
  • Bharti, V., A. Mehta, S. Singh, N. Jain, L. Ahirwal, and S. Mehta. 2015. Bacteriocin: A novel approach for preservation of food. International Journal of Pharmacy and Pharmaceutical Sciences 7 (9):20–9.
  • Bhatia, S, and A. Bharti. 2015. Evaluating the antimicrobial activity of nisin, lysozyme and ethylenediaminetetraacetate incorporated in starch based active food packaging film. Journal of Food Science and Technology 52 (6):3504–12.
  • Breukink, E., I. Wiedemann, C. Van Kraaij, O. P. Kuipers, H. G. Sahl, and B. De Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science (New York, N.Y.) 286 (5448):2361–4. doi: 10.1126/science.286.5448.2361.
  • Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology 3 (3):238–50. doi: 10.1038/nrmicro1098.
  • Budde, B. B, and M. Rasch. 2001. A comparative study on the use of flow cytometry and colony forming units for assessment of the antibacterial effect of bacteriocins. International Journal of Food Microbiology 63 (1–2):65–72. doi: 10.1016/S0168-1605(00)00399-8.
  • Cabo, M. L., M. A. Murado, M. P. González, and L. Pastoriza. 2001. Effects of aeration and pH gradient on nisin production. A mathematical model. Enzyme and Microbial Technology 29 (4–5):264–73. doi: 10.1016/S0141-0229(01)00378-7.
  • Cao, Y., R. D. Warner, and Z. Fang. 2019. Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control. 101:9–16. doi: 10.1016/j.foodcont.2019.02.013.
  • Cao, Z, and P. E. Klebba. 2002. Mechanisms of colicin binding and transport through outer membrane porins. Biochimie 84 (5–6):399–412. doi: 10.1016/S0300-9084(02)01455-4.
  • Campelo, A. B., P. Gaspar, C. Roces, A. Rodríguez, J. Kok, O. P. Kuipers, A. R. Neves, and B. Martínez. 2011. The Lcn972-bacteriocin plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Applied and Environmental Microbiology 77 (21):7576–85. doi: 10.1128/AEM.06107-11.
  • Chandrakasan, G., A. Rodríguez-Hernández, M. D. R. López-Cuellar, H. M. Palma-Rodríguez, and N. Chavarría-Hernández. 2019. Bacteriocin encapsulation for food and pharmaceutical applications: Advances in the past 20 years. Biotechnology Letters 41 (4–5):453–69. doi: 10.1007/s10529-018-02635-5.
  • Chang, Y., M. Kim, and S. Ryu. 2017. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiology 68:112–20. doi: 10.1016/j.fm.2017.07.004.
  • Chen, H, and D. G. Hoover. 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety 2 (3):82–100.
  • Chen, Y., R. D. Ludescher, and T. J. Montville. 1998. Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Applied and Environmental Microbiology 64 (9):3530–2. doi: 10.1128/AEM.64.9.3530-3532.1998.
  • Cotter, P. D. 2014. An ‘Upp’-turn in bacteriocin receptor identification. Molecular Microbiology 92 (6):1159–63. doi: 10.1111/mmi.12645.
  • Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacteriocins: Developing innate immunity for food. Nature Reviews. Microbiology 3 (10):777–88.
  • Da Silva, I. M., J. F. Boelter, N. P. Da Silveira, and A. Brandelli. 2014. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. Journal of Nanoparticle Research 16 (7):2479. doi: 10.1007/s11051-014-2479-y.
  • De Vuyst, L., R. Callewaert, and K. Crabbé. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology (Reading, England) 142 (4):817–27. doi: 10.1099/00221287-142-4-817.
  • De Vuyst, L, and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology 13 (4):194–9.
  • De Vuyst, L, and E. J. Vandamme. 1993. Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Applied Microbiology and Biotechnology 40 (1):17–22. doi: 10.1007/BF00170422.
  • Diep, D. B., M. Skaugen, Z. Salehian, H. Holo, and I. F. Nes. 2007. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America 104 (7):2384–9. doi: 10.1073/pnas.0608775104.
  • Divsalar, E., H. Tajik, M. Moradi, M. Forough, M. Lotfi, and B. Kuswandi. 2018. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. International Journal of Biological Macromolecules 109:1311–8. doi: 10.1016/j.ijbiomac.2017.11.145.
  • Dos Santos, J. S., B. Biduski, and L. R. Dos Santos. 2021. Listeria monocytogenes: Health risk and a challenge for food processing establishments. Archives of Microbiology 203 (10):5907–19. doi: 10.1007/s00203-021-02590-2.
  • Ehuwa, O., A. K. Jaiswal, and S. Jaiswal. 2021. Salmonella, food safety and food handling practices. Foods 10 (5):907. doi: 10.3390/foods10050907.
  • Ettayebi, K., J. El Yamani, and B. D. Rossi-Hassani. 2000. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiology Letters 183 (1):191–5. doi: 10.1111/j.1574-6968.2000.tb08956.x.
  • Gabrielsen, C., D. A. Brede, P. E. Hernández, I. F. Nes, and D. B. Diep. 2012. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin Garvicin ML. Antimicrobial Agents and Chemotherapy 56 (6):2908–15. doi: 10.1128/AAC.00314-12.
  • Gabrielsen, C., D. A. Brede, I. F. Nes, and D. B. Diep. 2014. Circular bacteriocins: Biosynthesis and mode of action. Applied and Environmental Microbiology 80 (22):6854–62. doi: 10.1128/AEM.02284-14.
  • Garsa, A. K., R. Kumariya, S. K. Sood, A. Kumar, and S. Kapila. 2014. Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins 6 (1):47–58. doi: 10.1007/s12602-013-9153-z.
  • Gong, X., L. A. Martin-Visscher, D. Nahirney, J. C. Vederas, and M. Duszyk. 2009. The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochimica et Biophysica Acta 1788 (9):1797–803. doi: 10.1016/j.bbamem.2009.05.008.
  • Gratia, A. 1925. Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. C. R. Soc. Biol.(Pairs) 93:1040–1.
  • He, L., L. Zou, Q. Yang, J. Xia, K. Zhou, Y. Zhu, X. Han, B. Pu, B. Hu, W. Deng, et al. 2016. Antimicrobial activities of nisin, tea polyphenols, and chitosan and their combinations in chilled mutton. Journal of Food Science 81 (6):M1466–M1471.
  • He, M., Guo, Q. you, Song, W. Li, B. Guo, and Zhang, G. w 2017. Inhibitory effects of chitosan combined with nisin on Shewanella spp. isolated from Pseudosciaena crocea. Food Control. 79:349–55. doi: 10.1016/j.foodcont.2017.04.012.
  • Heeney, D. D., V. Yarov-Yarovoy, and M. L. Marco. 2019. Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein. MicrobiologyOpen 8 (11):1–16. doi: 10.1002/mbo3.827.
  • Helander, I. M., E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller. 2001. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology 71 (2–3):235–44. doi: 10.1016/S0168-1605(01)00609-2.
  • Herman, C., F. P. Maguna, O. A. Garro, and E. A. Castro. 2009. Effect of temperature, pH and NaCl on nisin activity against Lactobacillus fructivorans. The Journal of the Argentine Chemical Society 97 (2):11–8.
  • Huang, K., J. Zeng, X. Liu, T. Jiang, and J. Wang. 2021. Structure of the mannose phosphotransferase system (man-PTS) complexed with microcin E492, a pore-forming bacteriocin. Cell Discovery 7 (1):20. doi: 10.1038/s41421-021-00253-6.
  • Huot, E., C. Barrena-Gonzalez, and H. Petitdemange. 1996. Tween 80 effect on bacteriocin synthesis by Lactococcus lactis subsp. cremoris J46. Letters in Applied Microbiology 22 (4):307–10. doi: 10.1111/j.1472-765x.1996.tb01167.x.
  • Ibrahim, M. E. E. D, and R. M. Alqurashi. 2022. Anti-fungal and antioxidant properties of propolis (bee glue) extracts. International Journal of Food Microbiology 361:109463. doi: 10.1016/j.ijfoodmicro.2021.109463.
  • Jamaluddin, N., D. C. Stuckey, A. B. Ariff, and F. W. Faizal Wong. 2018. Novel approaches to purifying bacteriocin: A review. Critical Reviews in Food Science and Nutrition 58 (14):2453–65. doi: 10.1080/10408398.2017.1328658.
  • Juturu, V, and J. C. Wu. 2018. Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances 36 (8):2187–200. doi: 10.1016/j.biotechadv.2018.10.007.
  • Kashima, K., M. Sato, Y. Osaka, N. Sakakida, S. Kando, K. Ohtsuka, R. Doi, Y. Chiba, S. Takase, A. Fujiwara, et al. 2021. An outbreak of food poisoning due to Escherichia coli serotype O7:H4 carrying astA for enteroaggregative E. coli heat-stable enterotoxin1 (EAST1). Epidemiology & Infection 149:e244.
  • Khan, A., K. D. Vu, B. Riedl, and M. Lacroix. 2015. Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT - Food Science and Technology 61 (1):124–9. doi: 10.1016/j.lwt.2014.11.035.
  • Khan, H., S. Flint, P. Yu, C. Pak-Lam Yu, and B. Group. 2013. Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510. Journal of Applied Microbiology 115 (2):484–94. doi: 10.1111/jam.12240.
  • Kharchoufi, S., L. Parafati, F. Licciardello, G. Muratore, M. Hamdi, G. Cirvilleri, and C. Restuccia. 2018. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiology 74:107–12.
  • Khelissa, S., N. E. Chihib, and A. Gharsallaoui. 2021. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Archives of Microbiology 203 (2):465–80. doi: 10.1007/s00203-020-02054-z.
  • Khudhir, Z. 2019. The synergistic effect of pH and sodium citrate on the bacteriocidal activity of nisin against Staph aureus. International Journal of Veterinary Science 8:49–53.
  • Kjos, M., Z. Salehian, I. F. Nes, and D. B. Diep. 2010. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. Journal of Bacteriology 192 (22):5906–13. doi: 10.1128/JB.00777-10.
  • Kjos, M., C. Oppegård, D. B. Diep, I. F. Nes, J. W. Veening, J. Nissen-Meyer, and T. Kristensen. 2014. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Molecular Microbiology 92 (6):1177–87. doi: 10.1111/mmi.12632.
  • Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12 (1–3):39–85. doi: 10.1016/0168-6445(93)90057-G.
  • Kojic, M., I. Strahinic, D. Fira, B. Jovcic, and L. Topisirovic. 2006. Plasmid content and bacteriocin production by five strains of Lactococcus lactis isolated from semi-hard homemade cheese. Canadian Journal of Microbiology 52 (11):1110–20. doi: 10.1139/w06-072.
  • Kouakou, P., H. Ghalfi, J. Destain, R. Dubois-Dauphin, P. Evrard, and P. Thonart. 2009. Effects of curing sodium nitrite additive and natural meat fat on growth control of Listeria monocytogenes by the bacteriocin-producing Lactobacillus curvatus strain CWBI-B28. Food Microbiology 26 (6):623–8. doi: 10.1016/j.fm.2009.04.007.
  • Krivorotova, T., R. Staneviciene, J. Luksa, E. Serviene, and J. Sereikaite. 2016. Preparation and characterization of nisin-loaded pectin-inulin particles as antimicrobials. LWT - Food Science and Technology 72:518–24. doi: 10.1016/j.lwt.2016.05.022.
  • Le, N. T. T., L. G. Bach, D. C. Nguyen, T. H. X. Le, K. H. Pham, D. H. Nguyen, and T. T. H. Thi. 2019. Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health 16 (6):1017. doi: 10.3390/ijerph16061017.
  • Leal-Sánchez, M. V., R. Jiménez-Díaz, A. Maldonado-Barragán, A. Garrido-Fernández, and J. L. Ruiz-Barba. 2002. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology 68 (9):4465–71. doi: 10.1128/AEM.68.9.4465-4471.2002.
  • Leelaphiwat, P., C. Pechprankan, P. Siripho, N. Bumbudsanpharoke, and N. Harnkarnsujarit. 2022. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chemistry 369:130956. doi: 10.1016/j.foodchem.2021.130956.
  • Leroy, F, and L. De Vuyst. 1999. The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Applied and Environmental Microbiology 65 (12):5350–6. doi: 10.1128/AEM.65.12.5350-5356.1999.
  • Leroy, F, and L. De Vuyst. 2005. Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. International Journal of Food Microbiology 100 (1–3):141–52.
  • Li, J., D. Pan, J. Yi, L. Hao, Q. Kang, X. Liu, L. Lu, and J. Lu. 2019. Protective effect of β-cyclodextrin on stability of nisin and corresponding interactions involved. Carbohydrate Polymers 223:115115.
  • Lopresti, F., L. Botta, V. La Carrubba, L. Di Pasquale, L. Settanni, and R. Gaglio. 2021. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. International Journal of Biological Macromolecules 193 (Pt A):117–26.
  • Lozo, J., N. Mirkovic, P. M. O’Connor, M. Malesevic, M. Miljkovic, N. Polovic, B. Jovcic, P. D. Cotter, and M. Kojic. 2017. Lactolisterin BU, a novel class II broad-spectrum bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4. Applied and Environmental Microbiology 83 (21):1–12. doi: 10.1128/AEM.01519-17.
  • Lozo, J., L. Topisirovic, and M. Kojic. 2021. Natural bacterial isolates as an inexhaustible source of new bacteriocins. Applied Microbiology and Biotechnology 105 (2):477–92. doi: 10.1007/s00253-020-11063-3.
  • Magri, A., M. Petriccione, and T. J. Gutiérrez. 2021. Metal-organic frameworks for food applications: A review. Food Chemistry 354:129533.
  • Maina, J. W., J. M. Mathara, G. M. Kikuvi, S. O. Ouma, and S. Otieno. 2017. Bacteriocins: Limiting factors to optimum activity. Journal of Food Security 5 (2):19–25.
  • Malheiros, P. S., V. Sant’Anna, S. D. Todorov, and B. D. G. M. Franco. 2015. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. Sakei 2a. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 46 (3):825–34. doi: 10.1590/S1517-838246320140279.
  • Martínez, B., T. Böttiger, T. Schneider, A. Rodriguez, H. G. Sahl, and I. Wiedemann. 2008. Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Applied and Environmental Microbiology 74 (15):4666–70. doi: 10.1128/AEM.00092-08.
  • Mathavan, I, and K. Beis. 2012. The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Biochemical Society Transactions 40 (6):1539–43. doi: 10.1042/BST20120176.
  • Mathur, H., D. Field, M. C. Rea, P. D. Cotter, C. Hill, and R. P. Ross. 2017. Bacteriocin-antimicrobial synergy: A medical and food perspective. Frontiers in Microbiology 8 (6):1205–18. doi: 10.3389/fmicb.2017.01205.
  • Mattick, A. T. R, and A. Hirsch. 1944. A powerful inhibitory substance produced by group N Streptococci. Nature 154 (3913):551. doi: 10.1038/154551a0.
  • Mirkovic, N., N. Polovic, G. Vukotic, B. Jovcic, M. Miljkovic, Z. Radulovic, D. B. Diep, and M. Kojic. 2016. Lactococcus lactis LMG2081 produces two bacteriocins, a nonlantibiotic and a novel lantibiotic. Applied and Environmental Microbiology 82 (8):2555–62. doi: 10.1128/AEM.03988-15.
  • Muppalla, S. R., R. Sonavale, S. P. Chawla, and A. Sharma. 2012. Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction. Radiation Physics and Chemistry 81 (12):1917–22. doi: 10.1016/j.radphyschem.2012.07.009.
  • Nagaoka, S., S. Murata, K. Kimura, T. Mori, and K. Hojo. 2010. Antimicrobial activity of sodium citrate against Streptococcus pneumoniae and several oral bacteria. Letters in Applied Microbiology 51 (5):546–51. doi: 10.1111/j.1472-765X.2010.02932.x.
  • Navarro, L., M. Zarazaga, J. S. Áenz, F. Ruiz-Larrea, and C. Torres. 2000. Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. Journal of Applied Microbiology 88 (1):44–51. doi: 10.1046/j.1365-2672.2000.00865.x.
  • Negash, A. W, and B. A. Tsehai. 2020. Current applications of bacteriocin. International Journal of Microbiology 2020:4374891. doi: 10.1155/2020/4374891.
  • Nel, H. A., R. Bauer, E. J. Vandamme, and L. M. T. Dicks. 2001. Growth optimization of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1. Journal of Applied Microbiology 91 (6):1131–8.
  • Neve, H., A. Geis, and M. Teuber. 1984. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci. Journal of Bacteriology 157 (3):833–8. doi: 10.1128/jb.157.3.833-838.1984.
  • Neysens, P., W. Messens, and L. De Vuyst. 2003. Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. International Journal of Food Microbiology 88 (1):29–39. doi: 10.1016/S0168-1605(03)00079-5.
  • Ogunbanwo, S. T., A. I. Sanni, and A. A. Onilude. 2003. Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology 2 (8):223–35.
  • Ooi, M. F., H. L. Foo, T. C. Loh, R. Mohamad, R. A. Rahim, and A. Ariff. 2021. A refined medium to enhance the antimicrobial activity of postbiotic produced by Lactiplantibacillus plantarum RS5. Scientific Reports 11 (1):1–17. doi: 10.1038/s41598-021-87081-6.
  • Oppegård, C., M. Kjos, J. W. Veening, J. Nissen-Meyer, and T. Kristensen. 2016. A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. MicrobiologyOpen 5 (4):700–8. doi: 10.1002/mbo3.363.
  • Ovchinnikov, K. V., P. E. Kristiansen, D. Straume, M. S. Jensen, T. Aleksandrzak-Piekarczyk, I. F. Nes, and D. B. Diep. 2017. The leaderless bacteriocin enterocin K1 is highly potent against Enterococcus faecium: A study on structure, target spectrum and receptor. Frontiers in Microbiology 8 (5):774. doi: 10.3389/fmicb.2017.00774.
  • Pan, D., D. Zhang, L. Hao, S. Lin, Q. Kang, X. Liu, L. Lu, and J. Lu. 2018. Protective effects of soybean protein and egg white protein on the antibacterial activity of nisin in the presence of trypsin. Food Chemistry 239:196–200. doi: 10.1016/j.foodchem.2017.06.091.
  • Pantev, A., P. Kabadjova, R. Valcheva, S. Danova, X. Dousset, T. Haertlé, J. M. Chobert, and I. Ivanova. 2002. Effects of nitrogen sources on bacteriocin production by Enterococcus faecium A 2000. Folia Microbiologica 47 (6):659–62.
  • Parada, J. L., C. R. Caron, A. B. P. Medeiros, and C. R. Soccol. 2007. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology 50 (3):512–42. doi: 10.1590/S1516-89132007000300018.
  • Parente, E, and A. Ricciardi. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology 52 (5):628–38. doi: 10.1007/s002530051570.
  • Parlindungan, E., C. Dekiwadia, and O. A. H. Jones. 2021. Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry 107 (4):18–26. doi: 10.1016/j.procbio.2021.05.009.
  • Paudyal, R., R. H. Barnes, and K. A. G. Karatzas. 2018. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes. Food Microbiology 69:96–104. doi: 10.1016/j.fm.2017.07.013.
  • Pawar, D. D., S. V. S. Malik, K. N. Bhilegaonkar, and S. B. Barbuddhe. 2000. Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Science 56 (3):215–9. doi: 10.1016/S0309-1740(00)00043-7.
  • Peng, Z. 2015. Insights in translocation through the intestinal barrier and mechanisms of persistance in the intestinal tract of Enterococcus faecalis OG1RF., Doctoral thesis., Technical University of Munich.
  • Pérez-Ramos, A., D. Madi-Moussa, F. Coucheney, and D. Drider. 2021. Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins. Microorganisms 9 (10):2107. doi: 10.3390/microorganisms9102107.
  • Pérez, R., E. González, A. Agrasar, and N. Guerra. 2013. A review on some important factors affecting bacteriocin production by Lactococci, Lactobacilli and Pediococci. Current Biochemical Engineering 1 (1):9–24. doi: 10.2174/22127119113019990008.
  • Perez, R. H., T. Zendo, and K. Sonomoto. 2014. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories 13 (S1)S3:1–13. doi: 10.1186/1475-2859-13-S1-S3.
  • Powell, J. E., R. C. Witthuhn, S. D. Todorov, and L. M. T. Dicks. 2007. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. International Dairy Journal 17 (3):190–8. doi: 10.1016/j.idairyj.2006.02.012.
  • Radaic, A., M. B. de Jesus, and Y. L. Kapila. 2020. Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release : official Journal of the Controlled Release Society 321 (2):100–18. doi: 10.1016/j.jconrel.2020.02.001.
  • Ramnath, M., M. Beukes, K. Tamura, and J. W. Hastings. 2000. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Applied and Environmental Microbiology 66 (7):3098–101. doi: 10.1128/AEM.66.7.3098-3101.2000.
  • Ramith, R., S. S. Prithvi, T. D. Aishwarya, P. Ashwini, J. Kumuda, M. S. Lochana, F. Zameer, B. L. Dhananjaya, and P. M. N. Nagendra. 2017. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition 60 (18).
  • Salmaso, S., N. Elvassore, A. Bertucco, A. Lante, and P. Caliceti. 2004. Nisin-loaded poly-L-lactide nano-particles produced by CO2 anti-solvent precipitation for sustained antimicrobial activity. International Journal of Pharmaceutics 287 (1–2):163–73. doi: 10.1016/j.ijpharm.2004.09.003.
  • Sarkar, P., A. K. Bhunia, and Y. Yao. 2017. Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice. Food Chemistry 217:155–62.
  • Senan, S., H. A. El-aal, R. Dave, and A. Hassan. 2016. Production and stability of nisin in whey protein concentrate. LWT - Food Science and Technology 71:125–9. doi: 10.1016/j.lwt.2016.03.031.
  • Shi, C., X. Zhang, X. Zhao, R. Meng, Z. Liu, X. Chen, and N. Guo. 2017. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control. 71:10–6. doi: 10.1016/j.foodcont.2016.06.020.
  • Silva, C. C. G., S. P. M. Silva, and S. C. Ribeiro. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 9 (4):594. doi: 10.3389/fmicb.2018.00594.
  • Simmonds, R. S., L. Pearson, R. C. Kennedy, and J. R. Tagg. 1996. Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Applied and Environmental Microbiology 62 (12):4536–41. doi: 10.1128/aem.62.12.4536-4541.1996.
  • Sivarooban, T., N. S. Hettiarachchy, and M. G. Johnson. 2008. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International 41 (8):781–5. doi: 10.1016/j.foodres.2008.04.007.
  • Stergiou, V. A., L. V. Thomas, and M. R. Adams. 2006. Interactions of nisin with glutathione in a model protein system and meat. Journal of Food Protection 69 (4):951–6. doi: 10.4315/0362-028x-69.4.951.
  • Sukumaran, L, and M. Radhakrishnan. 2021. Impact of nisin in combination with sodium benzoate and calcium carbonate on the bacterial and yeast population of Coconut neera (Coconut inflorescence sap). Journal of Pure and Applied Microbiology 15 (4):2050–8. doi: 10.22207/JPAM.15.4.27.
  • Sulthana, R, and A. C. Archer. 2021. Bacteriocin nanoconjugates: Boon to medical and food industry. Journal of Applied Microbiology 131 (3):1056–71. doi: 10.1111/jam.14982.
  • Swe, P. M., G. M. Cook, J. R. Tagg, and R. W. Jack. 2009. Mode of action of dysgalacticin: A large heat-labile bacteriocin. The Journal of Antimicrobial Chemotherapy 63 (4):679–86. doi: 10.1093/jac/dkn552.
  • Theivendran, S., N. S. Hettiarachchy, and M. G. Johnson. 2006. Inhibition of Listeria monocytogens by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. Journal of Food Science 71 (2):M39–M44. doi: 10.1111/j.1365-2621.2006.tb08905.x.
  • Thery, T, and E. K. Arendt. 2018. Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Food Microbiology 73:111–21.
  • Todorov, S. D, and L. M. T. Dicks. 2005. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology 36 (2–3):318–26. doi: 10.1016/j.enzmictec.2004.09.009.
  • Todorov, S. D., P. Ho, M. Vaz-Velho, and L. M. T. Dicks. 2010. Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science 84 (3):334–43. doi: 10.1016/j.meatsci.2009.08.053.
  • Todorov, S. D. 2008. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 39 (1):178–87. doi: 10.1590/S1517-83822008000100035.
  • Todorov, S. D., C. A. van Reenen, and L. M. T. Dicks. 2004. Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. The Journal of General and Applied Microbiology 50 (3):149–57. doi: 10.2323/jgam.50.149.
  • Tokarskyy, O, and D. L. Marshall. 2008. Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin. Applied and Environmental Microbiology 74 (23):7126–9. doi: 10.1128/AEM.01292-08.
  • Uteng, M., H. H. Hauge, I. Brondz, J. Nissen-Meyer, and G. Fimland. 2002. Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Applied and Environmental Microbiology 68 (2):952–6. doi: 10.1128/AEM.68.2.952-956.2002.
  • Uzelac, G., M. Kojic, J. Lozo, T. Aleksandrzak-Piekarczyk, C. Gabrielsen, T. Kristensen, I. F. Nes, D. B. Diep, and L. Topisirovic. 2013. A Zn-dependent metallopeptidase is responsible for sensitivity to LsbB, a Class II leaderless bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5. Journal of Bacteriology 195 (24):5614–21. doi: 10.1128/JB.00859-13.
  • Verluyten, J., W. Messens, and L. De Vuyst. 2004. Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Applied and Environmental Microbiology 70 (4):2271–8. doi: 10.1128/AEM.70.4.2271-2278.2004.
  • Verma, A. K., R. Banerjee, H. P. Dwivedi, and V. K. Juneja. 2014. Bacteriocins: Potential in food preservation. In Encyclopedia of food microbiology, 2nd ed., vol. 1. New York, NY: Elsevier.
  • Vermeulen, R., S. Deane, L. Dicks, J. Rohwer, and A. D. P. van Staden. 2021. Manganese privation-induced transcriptional upregulation of the class IIa bacteriocin plantaricin 423 in Lactobacillus plantarum strain 423. Applied and Environmental Microbiology 87 (21):e0097621.
  • Wayah, S. B, and K. Philip. 2018. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial Cell Factories 17 (1):1–18. doi: 10.1186/s12934-018-0972-1.
  • Wiedemann, I., T. Böttiger, R. R. Bonelli, A. Wiese, S. O. Hagge, T. Gutsmann, U. Seydel, L. Deegan, C. Hill, P. Ross, et al. 2006. The mode of action of the lantibiotic lacticin 3147–a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology 61 (2):285–96. doi: 10.1111/j.1365-2958.2006.05223.x.
  • Xiong, Y., M. Chen, R. D. Warner, and Z. Fang. 2020. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control. 110:107018. doi: 10.1016/j.foodcont.2019.107018.
  • Yan, H., Y. Lu, X. Li, Y. Yi, X. Wang, Y. Shan, B. Liu, Y. Zhou, and X. Lü. 2021. Action mode of bacteriocin BM1829 against Escherichia coli and Staphylococcus aureus. Food Bioscience 39 (22):100794. doi: 10.1016/j.fbio.2020.100794.
  • Yang, S. C., C. H. Lin, C. T. Sung, and J. Y. Fang. 2014. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology 5 (5):1–10.
  • Yao, G. W., I. Duarte, T. T. Le, L. Carmody, J. J. LiPuma, R. Young, and C. F. Gonzalez. 2017. A broad host-range tailocin from Burkholderia cenocepacia. Applied and Environmental Microbiology 83 (10):e03414–e03416. doi: 10.1128/AEM.03414-16.
  • Yap, P. G., Z. W. Lai, and J. S. Tan. 2022. Bacteriocins from lactic acid bacteria: Purification strategies and applications in food and medical industries: A review. Beni-Suef University Journal of Basic and Applied Sciences 11 (1):51. doi: 10.1186/s43088-022-00227-x.
  • Yi, Y., P. Li, F. Zhao, T. Zhang, Y. Shan, X. Wang, B. Liu, Y. Chen, X. Zhao, and X. Lü. 2022. Current status and potentiality of class II bacteriocins from lactic acid bacteria: Structure, mode of action and applications in the food industry. Trends in Food Science & Technology 120 (2):387–401. doi: 10.1016/j.tifs.2022.01.018.
  • Yildirim, Z., N. Öncül, M. Yildirim, and Ş. Karabiyikli. 2016. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Alimentaria 45 (4):486–92. doi: 10.1556/066.2016.45.4.4.
  • Yoneyama, F., Y. Imura, S. Ichimasa, K. Fujita, T. Zendo, J. Nakayama, K. Matsuzaki, and K. Sonomoto. 2009. Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Applied and Environmental Microbiology 75 (2):538–41. doi: 10.1128/AEM.01827-08.
  • Zendo, T., N. Eungruttanagorn, S. Fujioka, Y. Tashiro, K. Nomura, Y. Sera, G. Kobayashi, J. Nakayama, A. Ishizaki, and K. Sonomoto. 2005. Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. Journal of Applied Microbiology 99 (5):1181–90. doi: 10.1111/j.1365-2672.2005.02704.x.
  • Zhang, B., J. Wang, S. Ning, Q. Yuan, X. Chen, Y. Zhang, and J. Fan. 2018. Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes. Food Chemistry 239:520–8.
  • Zhang, J., Y. Bu, C. Zhang, H. Yi, D. Liu, and J. Jiao. 2020. Development of a low-cost and high-efficiency culture medium for bacteriocin lac-b23 production by Lactobacillus plantarum J23. Biology 9 (7):171. doi: 10.3390/biology9070171.
  • Zhang, Q. 2019. Lactic acid bacteria and bacteriocins. Lactic Acid Bacteria (61–91. Springer Singapore.
  • Zhao, X., L. Chen, J. Wu, Y. He, and H. Yang. 2020. Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. International Journal of Food Microbiology 319 (108494):108494. doi: 10.1016/j.ijfoodmicro.2019.108494.
  • Zhu, L., J. Zeng, C. Wang, and J. Wang. 2022. Structural basis of pore formation in the mannose phosphotransferase system by pediocin PA-1. Applied and Environmental Microbiology 88 (3):e0199221.
  • Zimet, P., Á. W. Mombrú, R. Faccio, G. Brugnini, I. Miraballes, C. Rufo, and H. Pardo. 2018. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT 91:107–16. doi: 10.1016/j.lwt.2018.01.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.