499
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 12341-12359 | Published online: 19 Jul 2022

References

  • Adel, R. M., R. A. Lotfy, A. S. Darwish, and A. S. Amer. 2021. Destructive effect of iron overload in brain tissue of albino rats: Ameliorative role of silver immobilized organo-modified casein nanocomposite as co-treating agent with Deferasirox. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 67:126794. doi: 10.1016/j.jtemb.2021.126794.
  • Ahmad, A. M. R., W. Ahmed, S. Iqbal, M. Javed, S. Rashid, and H. Iahtisham ul. 2021. Prebiotics and iron bioavailability? Unveiling the hidden association - A review. Trends in Food Science & Technology 110:584–90. doi: 10.1016/j.tifs.2021.01.085.
  • Alania, Y., B. Zhou, M. Reis, A. A. Leme-Kraus, J. B. McAlpine, S.-N. Chen, G. F. Pauli, and A. K. Bedran-Russo. 2022. Paradoxical effects of galloyl motifs in the interactions of proanthocyanidins with collagen-rich dentin. Journal of Biomedical Materials Research. Part A 110 (1):196–203. doi: 10.1002/jbm.a.37276.
  • Amira, H., I. Amira, F. Benchikh, H. Benabdallah, W. Mamache, and S. Amira. 2020. Evaluation of Antioxidant activities and total phenolic content of hydro-ethanol extract from Phlomis bovei De Noé areal parts. Journal of Drug Delivery and Therapeutics 10 (5):45–8. doi: 10.22270/jddt.v10i5.4339.
  • Andjelković, M., J. Van Camp, B. De Meulenaer, G. Depaemelaere, C. Socaciu, M. Verloo, and R. Verhe. 2006. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry 98 (1):23–31. doi: 10.1016/j.foodchem.2005.05.044.
  • Assadpour, E., and S. Mahdi Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Azmana, M., S. Mahmood, A. R. Hilles, A. Rahman, M. A. B. Arifin, and S. Ahmed. 2021. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules 185:832–48. doi: 10.1016/j.ijbiomac.2021.07.023.
  • Bao, B., Q. Chu, and W. Wu. 2018. Mechanism of interaction between phenolic compounds and proteins based on non-covalent and covalent interactions. Medicine Research 2 (3):180014. doi: 10.21127/yaoyimr20180014.
  • Benbettaïeb, N., R. Mahfoudh, S. Moundanga, C.-H. Brachais, O. Chambin, and F. Debeaufort. 2020. Modeling of the release kinetics of phenolic acids embedded in gelatin/chitosan bioactive-packaging films: Influence of both water activity and viscosity of the food simulant on the film structure and antioxidant activity. International Journal of Biological Macromolecules 160:780–94. doi: 10.1016/j.ijbiomac.2020.05.199.
  • Berthou, C., J. P. Iliou, and D. Barba. 2022. Iron, neuro-bioavailability and depression. eJHaem 3 (1):263–75. doi: 10.1002/jha2.321.
  • Bi, Y., A. Ajoolabady, L. J. Demillard, W. Yu, M. L. Hilaire, Y. Zhang, and J. Ren. 2021. Dysregulation of iron metabolism in cardiovascular diseases: From iron deficiency to iron overload. Biochemical Pharmacology 190:114661. doi: 10.1016/j.bcp.2021.114661.
  • Bijlsma, J., W. J. C. de Bruijn, K. P. Velikov, and J.-P. Vincken. 2022. Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chemistry 370:131292. doi: 10.1016/j.foodchem.2021.131292.
  • Boulmokh, Y., K. Belguidoum, F. Meddour, and H. Amira-Guebailia. 2021. Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: Experimental and theoretical insights. Structural Chemistry 32 (5):1907–23. doi: 10.1007/s11224-021-01763-5.
  • Brzonova, I., W. Steiner, A. Zankel, G. S. Nyanhongo, and G. M. Guebitz. 2011. Enzymatic synthesis of catechol and hydroxyl-carboxic acid functionalized chitosan microspheres for iron overload therapy. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 79 (2):294–303. doi: 10.1016/j.ejpb.2011.04.018.
  • Burda, S., and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and Food Chemistry 49 (6):2774–9. doi: 10.1021/jf001413m.
  • Busuioc, A. C., A.-V D. Botezatu, B. Furdui, C. Vinatoru, F. Maggi, G. Caprioli, and R.-M. Dinica. 2020. Comparative study of the chemical compositions and antioxidant activities of fresh juices from Romanian cucurbitaceae varieties. Molecules 25 (22):5468. https://www.mdpi.com/1420-3049/25/22/5468.
  • Cai, Y., S. H. Gaffney, T. H. Lilley, and E. Haslam. 1989. Carbohydrate—polyphenol complexation. In Chemistry and significance of condensed tannins (pp. 307–22). Boston, MA: Springer.
  • Cao, Y., C. Zhang, D. C. W. Tsang, J. Fan, J. H. Clark, and S. Zhang. 2020. Hydrothermal liquefaction of lignin to aromatic chemicals: Impact of lignin structure. Industrial & Engineering Chemistry Research 59 (39):16957–69. doi: 10.1021/acs.iecr.0c01617.
  • Chariyarangsitham, W., S. Krungchanuchat, P. Khuemjun, and C. Pilapong. 2021. Effect of advanced oxidation and amino acid addition on antioxidant capability, iron chelating property and anti-cancer activity of tannic acid. Arabian Journal of Chemistry 14 (9):103312. doi: 10.1016/j.arabjc.2021.103312.
  • Chen, J., and W. R. Browne. 2018. Photochemistry of iron complexes. Coordination Chemistry Reviews 374:15–35. doi: 10.1016/j.ccr.2018.06.008.
  • Chen, Z., Q. Zhang, H. Li, Q. Wei, X. Zhao, and F. Chen. 2021. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair. Bioactive Materials 6 (3):589–601. doi: 10.1016/j.bioactmat.2020.09.003.
  • Chirug, L., Z. Okun, O. Ramon, and A. Shpigelman. 2018. Iron ions as mediators in pectin-flavonols interactions. Food Hydrocolloids 84:441–9. doi: 10.1016/j.foodhyd.2018.06.039.
  • Cui, C., and W. Liu. 2021. Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science 116:101388. doi: 10.1016/j.progpolymsci.2021.101388.
  • Dai, Q., H. Geng, Q. Yu, J. Hao, and J. Cui. 2019. Polyphenol-based particles for theranostics. Theranostics 9 (11):3170–90. doi: 10.7150/thno.31847.
  • Dasa, F., and T. Abera. 2018. Factors affecting iron absorption and mitigation mechanisms: A review. International Journal of Agricultural Science and Food Technology 4 (2):024–30. doi: 10.17352/2455-815X.000033.
  • Delgado, A. M., M. Issaoui, and N. Chammem. 2019. Analysis of main and healthy phenolic compounds in foods. Journal of AOAC International 102 (5):1356–64. doi: 10.1093/jaoac/102.5.1356.
  • Demey, H., T. Vincent, M. Ruiz, A. M. Sastre, and E. Guibal. 2014. Development of a new chitosan/Ni(OH)2-based sorbent for boron removal. Chemical Engineering Journal 244:576–86. doi: 10.1016/j.cej.2014.01.052.
  • Desai, M. S., M. Chen, F. H. J. Hong, J. H. Lee, Y. Wu, and S.-W. Lee. 2020. Catechol-functionalized elastin-like polypeptides as tissue adhesives. Biomacromolecules 21 (7):2938–48. doi: 10.1021/acs.biomac.0c00740.
  • Dintcheva, N. T., and F. D’Anna. 2019. Anti-/pro-oxidant behavior of naturally occurring molecules in polymers and biopolymers: A brief review. ACS Sustainable Chemistry & Engineering 7 (15):12656–70. doi: 10.1021/acssuschemeng.9b02127.
  • Düz, M., S. E. Korcan, and G. Uysal Akkus. 2022. Determination of total phenolic, flavonoid content and antimicrobial properties in different solvent extracts of viburnum opulus L. (Gilaburu) in Afyonkarahisar. Pakistan Journal of Analytical & Environmental Chemistry 22 (2):8. doi: 10.21743/pjaec/2021.12.17.
  • Fan, L., Y. Ma, Y. Su, R. Zhang, Y. Liu, Q. Zhang, and Z. Jiang. 2015. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Advances 5 (130):107777–84. doi: 10.1039/C5RA23490E.
  • Farvid, M. S., E. Sidahmed, N. D. Spence, K. Mante Angua, B. A. Rosner, and J. B. Barnett. 2021. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. European Journal of Epidemiology 36 (9):937–51. doi: 10.1007/s10654-021-00741-9.
  • Farvin, K. H. S., A. Surendraraj, A. Al-Ghunaim, and F. Al-Yamani. 2019. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. Journal of Applied Phycology 31 (4):2653–68. doi: 10.1007/s10811-019-1739-8.
  • Fernandes, P. A. R., C. Le Bourvellec, C. M. G. C. Renard, D. F. Wessel, S. M. Cardoso, and M. A. Coimbra. 2020. Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydrate Polymers 230:115644. doi: 10.1016/j.carbpol.2019.115644.
  • García-Caparrós, P., L. De Filippis, A. Gul, M. Hasanuzzaman, M. Ozturk, V. Altay, and M. T. Lao. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review. The Botanical Review 87 (4):421–66. doi: 10.1007/s12229-020-09231-1.
  • Ghosh, P., and P. De. 2020. Modulation of amyloid protein fibrillation by synthetic polymers: Recent advances in the context of neurodegenerative diseases. ACS Applied Bio Materials 3 (10):6598–625. doi: 10.1021/acsabm.0c01021.
  • Guan, H., W. Zhang, D. Sun-Waterhouse, Y. Jiang, F. Li, G. I. N. Waterhouse, and D. Li. 2021. Phenolic-protein interactions in foods and post ingestion: Switches empowering health outcomes. Trends in Food Science & Technology 118:71–86. doi: 10.1016/j.tifs.2021.08.033.
  • Guo, M., C. Perez, Y. Wei, E. Rapoza, G. Su, F. Bou-Abdallah, and N. D. Chasteen. 2007. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Transactions 43:4951–61. doi: 10.1039/b705136k.
  • Guo, Y., Q. Sun, F.-G. Wu, Y. Dai, and X. Chen. 2021. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Advanced Materials 33 (22):2007356. doi: 10.1002/adma.202007356.
  • Guo, Z., W. Xie, J. Lu, X. Guo, J. Xu, W. Xu, Y. Chi, N. Takuya, H. Wu, and L. Zhao. 2021. Tannic acid-based metal phenolic networks for bio-applications: A review. Journal of Materials Chemistry. B 9 (20):4098–110. doi: 10.1039/D1TB00383F.
  • Habib, H. M., S. Ibrahim, A. Zaim, and W. H. Ibrahim. 2021. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 136:111228. doi: 10.1016/j.biopha.2021.111228.
  • Halcrow, P. W., M. L. Lynch, J. D. Geiger, and J. E. Ohm. 2021. Role of endolysosome function in iron metabolism and brain carcinogenesis. Seminars in Cancer Biology 76:74–85. doi: 10.1016/j.semcancer.2021.06.013.
  • Hallberg, L., L. Hulthén, and L. Garby. 1998. Iron stores in man in relation to diet and iron requirements. European Journal of Clinical Nutrition 52 (9):623–31. doi: 10.1038/sj.ejcn.1600623.
  • Heidary Moghaddam, R., Z. Samimi, S. Z. Moradi, P. J. Little, S. Xu, and M. H. Farzaei. 2020. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. European Journal of Pharmacology 887:173535. doi: 10.1016/j.ejphar.2020.173535.
  • Hu, Q., and Y. Luo. 2016. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydrate Polymers 151:624–39. doi: 10.1016/j.carbpol.2016.05.109.
  • Hurrell, R. F., M. Reddy, and J. D. Cook. 1999. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition 81 (4):289–95. doi: 10.1017/S0007114599000537.
  • Hussein, M. H. M., M. F. El-Hady, W. M. Sayed, and H. Hefni. 2012. Preparation of some chitosan heavy metal complexes and study of its properties. Polymer Science Series A 54 (2):113–24. doi: 10.1134/S0965545X12020046.
  • Iguchi, D., M. L. Salum, and P. Froimowicz. 2019. Application of benzoxazine-based dimers, oligomers, and polymers as chelating agents. Macromolecular Chemistry and Physics 220 (1):1800366. doi: 10.1002/macp.201800366.
  • Ikezaki, A., T. Ikeue, and M. Nakamura. 2002. Electronic effects of para-substituents on the electron configuration of dicyano[meso-tetrakis(p-substituted phenyl)porphyrinato]iron(III) complexes. Inorganica Chimica Acta 335:91–9. doi: 10.1016/S0020-1693(02)00819-8.
  • İlyasoğlu, H., M. Nadzieja, and Z. Guo. 2019. Caffeic acid grafted chitosan as a novel dual-functional stabilizer for food-grade emulsions and additive antioxidant property. Food Hydrocolloids. 95:168–76. doi: 10.1016/j.foodhyd.2019.04.043.
  • Jia, J., X. Gao, M. Hao, and L. Tang. 2017. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chemistry 228:143–51. doi: 10.1016/j.foodchem.2017.01.131.
  • Jia, Z., M. Wen, Y. Cheng, and Y. Zheng. 2021. Strategic advances in spatiotemporal control of bioinspired phenolic chemistries in materials science. Advanced Functional Materials 31 (14):2008821. doi: 10.1002/adfm.202008821.
  • Kang, H., M. Han, J. Xue, Y. Baek, J. Chang, S. Hu, H. Nam, M. J. Jo, G. El Fakhri, M. P. Hutchens, et al. 2019. Renal clearable nanochelators for iron overload therapy. Nature Communications 10 (1):5134. doi: 10.1038/s41467-019-13143-z.
  • Karas, L. J., C.-H. Wu, R. Das, and J. I.-C. Wu. 2020. Hydrogen bond design principles. WIREs Computational Molecular Science 10 (6):e1477. doi: 10.1002/wcms.1477.
  • Khedkar, J. K., V. V. Gobre, R. V. Pinjari, and S. P. Gejji. 2010. Electronic structure and normal vibrations in (+)-catechin and (−)-epicatechin encapsulated β-cyclodextrin. The Journal of Physical Chemistry. A 114 (29):7725–32. doi: 10.1021/jp102304j.
  • Khokhar, S., and R. K. Owusu Apenten. 2003. Iron binding characteristics of phenolic compounds: Some tentative structure–activity relations. Food Chemistry 81 (1):133–40. doi: 10.1016/S0308-8146(02)00394-1.
  • Kontoghiorghes, G. J., A. Kolnagou, T. Demetriou, M. Neocleous, and C. N. Kontoghiorghe. 2021. New era in the treatment of iron deficiency anaemia using trimaltol iron and other lipophilic iron chelator complexes: Historical perspectives of discovery and future applications. International Journal of Molecular Sciences 22 (11):5546. doi: 10.3390/ijms22115546.
  • Kontoghiorghes, G. J., and C. N. Kontoghiorghe. 2020. Iron and chelation in biochemistry and medicine: New approaches to controlling iron metabolism and treating related diseases. Cells 9 (6):1456. doi: 10.3390/cells9061456.
  • Krap, C. P., J. Balmaseda, B. Zamora, and E. Reguera. 2010. Hydrogen storage in the iron series of porous Prussian blue analogues. International Journal of Hydrogen Energy 35 (19):10381–6. doi: 10.1016/j.ijhydene.2010.07.109.
  • Kumar, D., S. Gihar, M. K. Shrivash, P. Kumar, and P. P. Kundu. 2020. A review on the synthesis of graft copolymers of chitosan and their potential applications. International Journal of Biological Macromolecules 163:2097–112. doi: 10.1016/j.ijbiomac.2020.09.060.
  • Lakey-Beitia, J., A. M. Burillo, G. La Penna, M. L. Hegde, and K. S. Rao. 2021. Polyphenols as potential metal chelation compounds against Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 82 (s1):S335–S357. doi: 10.3233/JAD-200185.
  • Latos-Brozio, M., and A. Masek. 2019. Structure-activity relationships analysis of monomeric and polymeric polyphenols (quercetin, rutin and catechin) obtained by various polymerization methods. Chemistry & Biodiversity 16 (12):e1900426. doi: 10.1002/cbdv.201900426.
  • Le Bourvellec, C., and C. M. G. C. Renard. 2019. Interactions between polyphenols and macromolecules: Effect of tannin structure. In Encyclopedia of food chemistry, ed. L. Melton, F. Shahidi, and P. Varelis, 515–21. San Diego: Academic Press. doi: 10.1016/B978-0-08-100596-5.21486-8.
  • Lee, J., and A. E. Mitchell. 2012. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. Journal of Agricultural and Food Chemistry 60 (15):3874–81. doi: 10.1021/jf3001857.
  • Lesjak, M., and S. K. S. Srai. 2019. Role of dietary flavonoids in iron homeostasis. Pharmaceuticals 12 (3):119. doi: 10.3390/ph12030119.
  • Lesjak, M., R. Hoque, S. Balesaria, V. Skinner, E. S. Debnam, S. K. Srai, and P. A. Sharp. 2014. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PloS One 9 (7):e102900. doi: 10.1371/journal.pone.0102900.
  • Li, Y., D. He, B. Li, M. N. Lund, Y. Xing, Y. Wang, F. Li, X. Cao, Y. Liu, X. Chen, et al. 2021. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science & Technology 110:470–82. doi: 10.1016/j.tifs.2021.02.009.
  • Liu, C., W. Shen, B. Li, T. Li, H. Chang, and Y. Cheng. 2019. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chemistry of Materials 31 (6):1956–65. doi: 10.1021/acs.chemmater.8b04672.
  • Liu, J., and T. Henkel. 2002. Traditional chinese medicine (tcm): Are polyphenols and saponins the key ingredients triggering biological activities? Current Medicinal Chemistry 9 (15):1483–5. doi: 10.2174/0929867023369709.
  • Liu, J., H.-T. Wu, J-f. Lu, X-y. Wen, J. Kan, and C-h. Jin. 2015. Preparation and characterization of novel phenolic acid (hydroxybenzoic and hydroxycinnamic acid derivatives) grafted chitosan microspheres with enhanced adsorption properties for Fe(II). Chemical Engineering Journal 262:803–12. doi: 10.1016/j.cej.2014.10.041.
  • Liu, R., X. Yan, Z. Liu, D. J. McClements, F. Liu, and X. Liu. 2019. Fabrication and characterization of functional protein–polysaccharide–polyphenol complexes assembled from lactoferrin, hyaluronic acid and (−)-epigallocatechin gallate. Food & Function 10 (2):1098–108. doi: 10.1039/C8FO02146E.
  • Liu, Z., L. Ye, J. Xi, J. Wang, and Z-g. Feng. 2021. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Progress in Polymer Science 118:101408. doi: 10.1016/j.progpolymsci.2021.101408.
  • Ma, Q., E.-Y. Kim, E. A. Lindsay, and O. Han. 2011. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. Journal of Food Science 76 (5):H143–H150. doi: 10.1111/j.1750-3841.2011.02184.x.
  • Maity, S., P. Mukhopadhyay, P. P. Kundu, and A. S. Chakraborti. 2017. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydrate Polymers 170:124–32. doi: 10.1016/j.carbpol.2017.04.066.
  • Mathew, S., T. E. Abraham, and Z. A. Zakaria. 2015. Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology 52 (9):5790–8. doi: 10.1007/s13197-014-1704-0.
  • McCue, J. T. 2009. Chapter 25 Theory and use of hydrophobic interaction chromatography in protein purification applications. In Methods in enzymology, ed. R. R. Burgess and M. P. Deutscher, Vol. 463, 405–14. San Diego: Academic Press. doi: 10.1016/S0076-6879(09)63025-1.
  • McGee, E. J. T., and L. L. Diosady. 2018. Development of spectrophotometric quantification method of iron-polyphenol complex in iron-fortified black tea at relevant ph levels. Food Analytical Methods 11 (6):1645–55. doi: 10.1007/s12161-018-1147-8.
  • Mellican, R. I., J. Li, H. Mehansho, and S. S. Nielsen. 2003. The role of iron and the factors affecting off-color development of polyphenols. Journal of Agricultural and Food Chemistry 51 (8):2304–16. doi: 10.1021/jf020681c.
  • Milman, N. T. 2020. Dietary iron intakes in men in europe are distinctly above the recommendations: A review of 39 national studies from 20 countries in the period 1995 - 2016. Gastroenterology Research 13 (6):233–45. doi: 10.14740/gr1344.
  • Milman, N. T. 2021. Managing genetic hemochromatosis: An overview of dietary measures, which may reduce intestinal iron absorption in persons with iron overload. Gastroenterology Research 14 (2):66–80. doi: 10.14740/gr1366.
  • Miranda, L., H. Deußer, and D. Evers. 2013. The impact of in vitro digestion on bioaccessibility of polyphenols from potatoes and sweet potatoes and their influence on iron absorption by human intestinal cells. Food & Function 4 (11):1595–601. doi: 10.1039/C3FO60194C.
  • Misra, S., P. Pandey, and H. N. Mishra. 2021. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends in Food Science & Technology 109:340–51. doi: 10.1016/j.tifs.2021.01.039.
  • Naito, Y., T. Tsujino, T. Masuyama, and M. Ishihara. 2022. Crosstalk between iron and arteriosclerosis. Journal of Atherosclerosis and Thrombosis 29 (3):308–14. doi: 10.5551/jat.RV17060.
  • Nicolás-García, M., M. Perucini-Avendaño, C. Jiménez-Martínez, M. d. J. Perea-Flores, M. B. Gómez-Patiño, D. Arrieta-Báez, and G. Dávila-Ortiz. 2021. Bean phenolic compound changes during processing: Chemical interactions and identification. Journal of Food Science 86 (3):643–55. doi: 10.1111/1750-3841.15632.
  • Otoni, C. G., H. M. C. Azeredo, B. D. Mattos, M. Beaumont, D. S. Correa, and O. J. Rojas. 2021. The food–materials nexus: Next generation bioplastics and advanced materials from agri-food residues. Advanced Materials 33 (43):2102520. doi: 10.1002/adma.202102520.
  • Palanisamy, S., and Y.-M. Wang. 2019. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Transactions (Cambridge, England: 2003) 48 (26):9490–515. doi: 10.1039/C9DT00459A.
  • Pasricha, S.-R., J. Tye-Din, M. U. Muckenthaler, and D. W. Swinkels. 2021. Iron deficiency. The Lancet 397 (10270):233–48. doi: 10.1016/S0140-6736(20)32594-0.
  • Patel, A. R., P. C. M. Heussen, J. Hazekamp, E. Drost, and K. P. Velikov. 2012. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry 133 (2):423–9. doi: 10.1016/j.foodchem.2012.01.054.
  • Perron, N. R., and J. L. Brumaghim. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics 53 (2):75–100. doi: 10.1007/s12013-009-9043-x.
  • Petelski, A. N., S. C. Pamies, and G. L. Sosa. 2021. How procyanidin C1 sticks to collagen: The role of proline rings. Biophysical Chemistry 276:106627. doi: 10.1016/j.bpc.2021.106627.
  • Qi, X., Y. Zhang, H. Guo, Y. Hai, Y. Luo, and T. Yue. 2020. Mechanism and intervention measures of iron side effects on the intestine. Critical Reviews in Food Science and Nutrition 60 (12):2113–25. doi: 10.1080/10408398.2019.1630599.
  • Qiao, H., D. Fang, L. Zhang, X. Gu, Y. Lu, M. Sun, C. Sun, Q. Ping, J. Li, Z. Chen, et al. 2018. Nanostructured peptidotoxins as natural pro-oxidants induced cancer cell death via amplification of oxidative stress. ACS Applied Materials & Interfaces 10 (5):4569–81. doi: 10.1021/acsami.7b18809.
  • Qin, H. L., Z. W. Zhang, L. Ravindar, and K. P. Rakesh. 2020. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry 207:112832. doi: 10.1016/j.ejmech.2020.112832.
  • Quan, T. H., S. Benjakul, T. Sae-leaw, A. K. Balange, and S. Maqsood. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Rajagukguk, Y. V., M. Arnold, and A. Gramza-Michałowska. 2021. Pulse probiotic superfood as iron status improvement agent in active women—A review. Molecules 26 (8):2121. doi: https://www.mdpi.com/1420-3049/26/8/2121.
  • Ramos, L. D., M. C. Mantovani, A. Sartori, F. Dutra, C. V. Stevani, and E. J. H. Bechara. 2021. Aerobic co-oxidation of hemoglobin and aminoacetone, a putative source of methylglyoxal. Free Radical Biology & Medicine 166:178–86. doi: 10.1016/j.freeradbiomed.2021.02.023.
  • Rassu, G., E. Soddu, M. Cossu, A. Brundu, G. Cerri, N. Marchetti, L. Ferraro, R. F. Regan, P. Giunchedi, E. Gavini, et al. 2015. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release: Official Journal of the Controlled Release Society 201:68–77. doi: 10.1016/j.jconrel.2015.01.025.
  • Rynkowska, A., J. Stępniak, and M. Karbownik-Lewińska. 2020. Fenton reaction-induced oxidative damage to membrane lipids and protective effects of 17β-estradiol in porcine ovary and thyroid homogenates. International Journal of Environmental Research and Public Health 17 (18):6841. doi: 10.3390/ijerph17186841.
  • Saheed, I. O., W. D. Oh, and F. B. M. Suah. 2021. Chitosan modifications for adsorption of pollutants – A review. Journal of Hazardous Materials 408:124889. doi: 10.1016/j.jhazmat.2020.124889.
  • Salomao, M. A. 2021. Pathology of hepatic iron overload. Clinical Liver Disease 17 (4):232–7. doi: 10.1002/cld.1051.
  • Sandilya, A. A., U. Natarajan, and M. H. Priya. 2020. Molecular view into the cyclodextrin cavity: Structure and hydration. ACS Omega 5 (40):25655–67. doi: 10.1021/acsomega.0c02760.
  • Scalzini, G., S. Giacosa, S. Río Segade, M. A. Paissoni, and L. Rolle. 2021. Effect of withering process on the evolution of phenolic acids in winegrapes: A systematic review. Trends in Food Science & Technology 116:545–58. doi: 10.1016/j.tifs.2021.08.004.
  • Schefer, S., M. Oest, and S. Rohn. 2021. Interactions between phenolic acids, proteins, and carbohydrates—influence on dough and bread properties. Foods 10 (11):2798. doi: 10.3390/foods10112798.
  • Sellimi, S., A. Benslima, V. Barragan-Montero, M. Hajji, and M. Nasri. 2017. Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential biopreservatives: Chemical, antioxidant and antimicrobial properties. International Journal of Biological Macromolecules 105 (Pt 2):1375–83. doi: 10.1016/j.ijbiomac.2017.08.007.
  • Shin, M., H.-A. Lee, M. Lee, Y. Shin, J.-J. Song, S.-W. Kang, D.-H. Nam, E. J. Jeon, M. Cho, M. Do, et al. 2018. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nature Biomedical Engineering 2 (5):304–17. doi: 10.1038/s41551-018-0227-9.
  • Shubham, K., T. Anukiruthika, S. Dutta, A. V. Kashyap, J. A. Moses, and C. Anandharamakrishnan. 2020. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology 99:58–75. doi: 10.1016/j.tifs.2020.02.021.
  • Shutava, T. G., S. S. Balkundi, and Y. M. Lvov. 2009. (−)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. Journal of Colloid and Interface Science 330 (2):276–83. doi: 10.1016/j.jcis.2008.10.082.
  • Siemińska-Kuczer, A., M. Szymańska-Chargot, and A. Zdunek. 2022. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chemistry 373 (Pt B):131487. doi: 10.1016/j.foodchem.2021.131487.
  • Singla, R. K., A. K. Dubey, A. Garg, R. K. Sharma, M. Fiorino, S. M. Ameen, M. A. Haddad, and M. Al-Hiary. 2019. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International 102 (5):1397–400. doi: 10.1093/jaoac/102.5.1397.
  • Slabbert, N. 1992. Complexation of condensed tannins with metal ions. In Plant polyphenols: Synthesis, properties, significance, R. W. Hemingway and P. E. Laks, 421–36. Boston, MA: Springer US. doi: 10.1007/978-1-4615-3476-1_23.
  • Sommer, S., F. Weber, and J. F. Harbertson. 2019. Polyphenol–protein–polysaccharide interactions in the presence of carboxymethyl cellulose (CMC) in wine-like model systems. Journal of Agricultural and Food Chemistry 67 (26):7428–34. doi: 10.1021/acs.jafc.9b00450.
  • Song, J., C. Cortez-Jugo, S. J. Shirbin, Z. Lin, S. Pan, G. G. Qiao, and F. Caruso. 2022. Immobilization and intracellular delivery of structurally nanoengineered antimicrobial peptide polymers using polyphenol-based capsules. Advanced Functional Materials 32 (6):2107341. doi: 10.1002/adfm.202107341.
  • Soural, I., P. Švestková, P. Híc, and J. Balík. 2022. Different values obtained by the FRAP method for the determination of slowly and rapidly reacting phenols. Acta Alimentaria 51 (1):84–92. doi: 10.1556/066.2021.00168.
  • Sundararajan, S., and H. Rabe. 2021. Prevention of iron deficiency anemia in infants and toddlers. Pediatric Research 89 (1):63–73. doi: 10.1038/s41390-020-0907-5.
  • Tang, S., P. Gao, H. Chen, X. Zhou, Y. Ou, and Y. He. 2020. The role of iron, Its metabolism and ferroptosis in traumatic brain injury. Frontiers in Cellular Neuroscience 14:590789. doi: 10.3389/fncel.2020.590789.
  • Thankachan, P., T. Walczyk, S. Muthayya, A. V. Kurpad, and R. F. Hurrell. 2008. Iron absorption in young Indian women: The interaction of iron status with the influence of tea and ascorbic acid. The American Journal of Clinical Nutrition 87 (4):881–6. doi: 10.1093/ajcn/87.4.881.
  • Tian, X., Y. Zhang, H. Li, Y. Jiao, Q. Wang, Y. Zhang, N. Ma, and W. Wang. 2022. Property of mud and its application in cosmetic and medical fields: A review. Environmental Geochemistry and Health. Advance online publication. doi: 10.1007/s10653-022-01228-6.
  • Tipsuwan, W., and W. Chaiwangyen. 2018. Preventive effects of polyphenol-rich perilla leaves on oxidative stress and haemolysis. ScienceAsia 44 (3):162–9. doi: 10.2306/scienceasia1513-1874.2018.44.162.
  • Valencia, G. A., E. N. Zare, P. Makvandi, and T. J. Gutiérrez. 2019. Self-assembled carbohydrate polymers for food applications: A review. Comprehensive Reviews in Food Science and Food Safety 18 (6):2009–24. doi: 10.1111/1541-4337.12499.
  • Vlasenko, V. G., S. P. Kubrin, D. A. Garnovskii, A. A. Guda, I. A. Pankin, and A. L. Trigub. 2020. Spin-crossover in the iron(II) complex based on dihydro-bis(pyrazolyl)borate and 1,10-phenanthroline-5,6-dione. Chemical Physics Letters 739:136970. doi: 10.1016/j.cplett.2019.136970.
  • Wan, M. L. Y., V. A. Co, and H. El-Nezami. 2021. Dietary polyphenol impact on gut health and microbiota. Critical Reviews in Food Science and Nutrition 61 (4):690–711. doi: 10.1080/10408398.2020.1744512.
  • Wang, H., L. Wang, S. Zhang, W. Zhang, J. Li, and Y. Han. 2021. Mussel-inspired polymer materials derived from nonphytogenic and phytogenic catechol derivatives and their applications. Polymer International 70 (9):1209–24. doi: 10.1002/pi.6230.
  • Wang, M., and X.-y. You. 2021. Critical review of magnetic polysaccharide-based adsorbents for water treatment: Synthesis, application and regeneration. Journal of Cleaner Production 323:129118. doi: 10.1016/j.jclepro.2021.129118.
  • Wang, X., Y. Fan, J. Yan, and M. Yang. 2022. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chemical Engineering Journal 439:135661. doi: 10.1016/j.cej.2022.135661.
  • Wang, Y., B. Li, Y. Zhou, D. Jia, and Y. Song. 2011. CS-Fe(II,III) complex as precursor for magnetite nanocrystal. Polymers for Advanced Technologies 22 (12):1681–4. doi: 10.1002/pat.1657.
  • Wang, Z., H.-C. Yang, F. He, S. Peng, Y. Li, L. Shao, and S. B. Darling. 2019. Mussel-inspired surface engineering for water-remediation materials. Matter 1 (1):115–55. doi: 10.1016/j.matt.2019.05.002.
  • Wei, Y., X. Song, Y. Gao, Y. Gao, Y. Li, and L. Gu. 2022. Iron toxicity in intracerebral hemorrhage: Physiopathological and therapeutic implications. Brain Research Bulletin 178:144–54. doi: 10.1016/j.brainresbull.2021.11.014.
  • Wu, H., H. Hu, J. Wan, Y. Li, Y. Wu, Y. Tang, C. Xiao, H. Xu, X. Yang, and Z. Li. 2018. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chemical Engineering Journal 349:129–45. doi: 10.1016/j.cej.2018.05.082.
  • Wu, W., Q.-g. Zhu, W.-q. Wang, D. Grierson, and X.-r. Yin. 2022. Molecular basis of the formation and removal of fruit astringency. Food Chemistry 372:131234. doi: 10.1016/j.foodchem.2021.131234.
  • Xiao, L., G. Luo, Y. Tang, and P. Yao. 2018. Quercetin and iron metabolism: What we know and what we need to know. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 114:190–203. doi: 10.1016/j.fct.2018.02.022.
  • Xiao, Y., D. Guo, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, and H. Lin. 2020. Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation. Applied Surface Science 515:146063. doi: 10.1016/j.apsusc.2020.146063.
  • Xie, M., B. Hu, Y. Wang, and X. Zeng. 2014. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. Journal of Agricultural and Food Chemistry 62 (37):9128–36. doi: 10.1021/jf503207s.
  • Xie, W., Z. Guo, L. Zhao, and Y. Wei. 2021. Metal-phenolic networks: Facile assembled complexes for cancer theranostics. Theranostics 11 (13):6407–26. doi: 10.7150/thno.58711.
  • Xu, Q., Z. Yu, and W. Zeng. 2021. Structural and functional modifications of myofibrillar protein by natural phenolic compounds and their application in pork meatball. Food Research International (Ottawa, ON) 148:110593. doi: 10.1016/j.foodres.2021.110593.
  • Xu, S. 2019. Iron and atherosclerosis: The link revisited. Trends in Molecular Medicine 25 (8):659–61. doi: 10.1016/j.molmed.2019.05.012.
  • Xu, X., W. Hu, S. Zhou, C. Tu, X. Xia, J. Zhang, and M. Dong. 2019. Increased phenolic content and enhanced antioxidant activity in fermented glutinous rice supplemented with Fu Brick tea. Molecules 24 (4):671. doi: https://www.mdpi.com/1420-3049/24/4/671.
  • Yan, G., G. Chen, Z. Peng, Z. Shen, X. Tang, Y. Sun, X. Zeng, and L. Lin. 2021. The cross-linking mechanism and applications of catechol–metal polymer materials. Advanced Materials Interfaces 8 (19):2100239. doi: 10.1002/admi.202100239.
  • Yan, X., Y. Gao, S. Liu, G. Zhang, J. Zhao, D. Cheng, Z. Zeng, X. Gong, P. Yu, and D. Gong. 2021. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chemistry 352:129377. doi: 10.1016/j.foodchem.2021.129377.
  • Yang, Z., Y. Ma, and Q. Zhou. 2022. Mechanism of polyhydroquinone coating iron/copper oxides for enhanced catalytic activity. Chemical Engineering Journal 427:131007. doi: 10.1016/j.cej.2021.131007.
  • Yin, M., Y. Liu, and Y. Chen. 2021. Iron metabolism: An emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radical Research 55 (3):296–303. doi: 10.1080/10715762.2021.1898604.
  • Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry 44 (9):e13394. doi: 10.1111/jfbc.13394.
  • Zhang, H., D. Yu, J. Sun, X. Liu, L. Jiang, H. Guo, and F. Ren. 2014. Interaction of plant phenols with food macronutrients: Characterisation and nutritional–physiological consequences. Nutrition Research Reviews 27 (1):1–15. doi: 10.1017/S095442241300019X.
  • Zhang, H., L. Zhang, L. Tang, X. Hu, and M. Xu. 2021. Effects of metal ions on the precipitation of penta-O-galloyl-β-d-glucopyranose by protein. Journal of Agricultural and Food Chemistry 69 (17):5059–66. doi: 10.1021/acs.jafc.1c01185.
  • Zhang, L., D. J. McClements, Z. Wei, G. Wang, X. Liu, and F. Liu. 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition 60 (12):2083–97. doi: 10.1080/10408398.2019.1630358.
  • Zhang, L., P. Wang, Z. Yang, F. Du, Z. Li, C. Wu, A. Fang, X. Xu, and G. Zhou. 2020. Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocolloids. 101:105455. doi: 10.1016/j.foodhyd.2019.105455.
  • Zhang, Q., Z. Cheng, Y. Wang, and L. Fu. 2021. Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition 61 (21):3589–615. doi: 10.1080/10408398.2020.1803199.
  • Zhang, Y., X. Tian, Y. Jiao, Q. Liu, R. Li, and W. Wang. 2021. An out of box thinking: The changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Critical Reviews in Food Science and Nutrition 62:1–16. doi: 10.1080/10408398.2021.1963946.
  • Zhang, Y., X. Tian, Y. Jiao, Y. Wang, J. Dong, N. Yang, Q. Yang, W. Qu, and W. Wang. 2022. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking. Food Chemistry 382:132345. doi: 10.1016/j.foodchem.2022.132345.
  • Zhao, Q., L. Fan, Y. Liu, and J. Li. 2022. Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry 380:131838. doi: 10.1016/j.foodchem.2021.131838.
  • Zhao, Q., X. Yu, C. Zhou, A. E. A. Yagoub, and H. Ma. 2020. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. LWT 124:109192. doi: 10.1016/j.lwt.2020.109192.
  • Zhao, X., X. Zhang, T. Xu, J. Luo, Y. Luo, and P. An. 2022. Comparative effects between oral lactoferrin and ferrous sulfate supplementation on iron-deficiency anemia: A comprehensive review and meta-analysis of clinical trials. Nutrients 14 (3):543. doi: https://www.mdpi.com/2072-6643/14/3/543.
  • Zhou, D.-Y., Z.-X. Wu, F.-W. Yin, S. Song, A. Li, B.-W. Zhu, and L.-L. Yu. 2021. Chitosan and derivatives: Bioactivities and application in foods. Annual Review of Food Science and Technology 12 (1):407–32. doi: 10.1146/annurev-food-070720-112725.
  • Zhou, J., Y. Jin, Y. Lei, T. Liu, Z. Wan, H. Meng, and H. Wang. 2020. Ferroptosis is regulated by mitochondria in neurodegenerative diseases. Neuro-Degenerative Diseases 20 (1):20–34. doi: 10.1159/000510083.
  • Zhu, P., X. Li, H. Yao, and H. Pang. 2020. Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage 31:101544. doi: 10.1016/j.est.2020.101544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.