512
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases

ORCID Icon, ORCID Icon & ORCID Icon
Pages 12453-12475 | Published online: 25 Jul 2022

References

  • Abe Sato, S. T., J. M. Marques, A. da Luz de Freitas, R. C. Sanches Progênio, M. R. T. Nunes, J. Mota de Vasconcelos Massafra, F. Gomes Moura, and H. Rogez. 2020. Isolation and genetic identification of endophytic lactic acid bacteria from the Amazonian açai fruits: Probiotics features of selected strains and their potential to inhibit pathogens. Frontiers in Microbiology 11 (January):610524. doi: 10.3389/fmicb.2020.610524.
  • Aguiar, R. M., J. P. David, and J. M. David. 2005. Unusual naphthoquinones, catechin and triterpene from Byrsonima microphylla. Phytochemistry 66 (19):2388–92. doi: 10.1016/j.phytochem.2005.07.011.
  • Al Aboody, M. S., and S. Mickymaray. 2020. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 9 (2):45. doi: 10.3390/antibiotics9020045.
  • Álvarez-Martínez, F. J., E. Barrajón-Catalán, J. A. Encinar, J. C. Rodríguez-Díaz, and V. Micol. 2020. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Current Medicinal Chemistry 27 (15):2576–606. doi: 10.2174/0929867325666181008115650.
  • Anand David, A. V., R. Arulmoli, and S. Parasuraman. 2016. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews 10 (20):84–9. doi: 10.4103/0973-7847.194044.
  • Araruna, M. K. A., S. A. Brito, M. F. B. Morais-Braga, K. K. A. Santos, T. M. Souza, T. R. Leite, J. G. M. Costa, and H. D. M. Coutinho. 2012. Evaluation of antibiotic & antibiotic modifying activity of pilocarpine & rutin. The Indian Journal of Medical Research 135 (2):252–4.
  • Araujo, N. M. P., H. S. Arruda, D. R. P. Marques, W. Q. de Oliveira, G. A. Pereira, and G. M. Pastore. 2021. Functional and nutritional properties of selected Amazon fruits: A review. Food Research International 147:110520. doi: 10.1016/j.foodres.2021.110520.
  • Arruda, A. L. A., C. J. B. Vieira, D. G. Sousa, R. F. Oliveira, and R. O. Castilho. 2011. Jacaranda cuspidifolia Mart. (Bignoniaceae) as an antibacterial agent. Journal of Medicinal Food 14 (12):1604–8. doi: 10.1089/jmf.2010.0251.
  • Basile, A., L. Ferrara, M. d Pezzo, G. Mele, S. Sorbo, P. Bassi, and D. Montesano. 2005. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. Journal of Ethnopharmacology 102 (1):32–6. doi: 10.1016/j.jep.2005.05.038.
  • Bastos, J. F. A., Í. J. A. Moreira, T. P. Ribeiro, I. A. Medeiros, A. R. Antoniolli, D. P. De Sousa, and M. R. V. Santos. 2010. Hypotensive and vasorelaxant effects of citronellol, a monoterpene alcohol, in rats. Basic & Clinical Pharmacology & Toxicology 106 (4):331–7. doi: 10.1111/j.1742-7843.2009.00492.x.
  • Borges, A., C. Ferreira, M. J. Saavedra, and M. Simões. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance (Larchmont, NY) 19 (4):256–65. doi: 10.1089/mdr.2012.0244.
  • Brul, S., and P. Coote. 1999. Preservative agents in foods: Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology 50 (1-2):1–17. doi: 10.1016/S0168-1605(99)00072-0.
  • Caillet, P., and M. Lacroix. 2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157 : H7 and Listeria monocytogenes. Journal of Food Protection 69 (5):1046–55.
  • Caldeira, C. F., T. C. Giannini, S. J. Ramos, S. Vasconcelos, S. K. Mitre, J. P. de A. Pires, G. C. Ferreira, S. Ohashi, J. A. Mota, et al. 2017. Sustainability of Jaborandi in the eastern Brazilian Amazon. Perspectives in Ecology and Conservation 15 (3):161–71. doi: 10.1016/j.pecon.2017.08.002.
  • Campos, F. M., J. A. Couto, A. R. Figueiredo, I. V. Tóth, A. O. S. S. Rangel, and T. A. Hogg. 2009. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. International Journal of Food Microbiology 135 (2):144–51. doi: 10.1016/j.ijfoodmicro.2009.07.031.
  • Canuto, G. A. B., A. A. O. Xavier, L. C. Neves, and M. d. T. Benassi. 2010. Caracterização físico-química de polpas de frutos da Amazônia e sua correlação com a atividade anti-radical livre. Revista Brasileira de Fruticultura 32 (4):1196–205. doi: 10.1590/S0100-29452010005000122.
  • Carvalho, A. P. A. d., and C. A. Conte-Junior. 2021. Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology 111:534–48. doi: 10.1016/j.tifs.2021.03.006.
  • Carvalho, L. V. D. N., M. F. Cordeiro, T. U. L. E Lins, M. C. P. D. Sampaio, G. S. V. de Mello, V. D. C. M. da Costa, L. L. M. Marques, T. Klein, J. C. P. de Mello, I. M. F. Cavalcanti, et al. 2016. Evaluation of antibacterial, antineoplastic, and immunomodulatory activity of Paullinia cupana seeds crude extract and ethyl-acetate fraction. Evidence-Based Complementary and Alternative Medicine: eCAM 2016:1203274. doi: 10.1155/2016/1203274.
  • Chan, B. C. L., X. Q. Han, S. L. Lui, C. W. Wong, T. B. Y. Wang, D. W. S. Cheung, S. W. Cheng, M. Ip, S. Q. B. Han, X.-S. Yang, et al. 2015. Combating against methicillin-resistant Staphylococcus aureus – two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. The Journal of Pharmacy and Pharmacology 67 (1):107–16. doi: 10.1111/jphp.12315.
  • Cheah, H.-L., V. Lim, and D. Sandai. 2014. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9 (4):e95951. doi: 10.1371/journal.pone.0095951.
  • Cheng, C.-Q., H. Xu, L. Liu, R.-N. Wang, Y.-T. Liu, J. Li, and X.-K. Zhou. 2016. Efficacy and safety of pilocarpine for radiation-induced xerostomia in patients with head and neck cancer. The Journal of the American Dental Association 147 (4):236–43. doi: 10.1016/j.adaj.2015.09.014.
  • Choi, J. G., S. H. Mun, H. S. Chahar, P. Bharaj, O. H. Kang, S. G. Kim, D. W. Shin, and D. Y. Kwon. 2014. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS ONE 9 (7):e102697–7. doi: 10.1371/journal.pone.0102697.
  • Codeço, C. T., A. P. Dal’Asta, A. C. Rorato, R. M. Lana, T. C. Neves, C. S. Andreazzi, M. Barbosa, M. I. S. Escada, D. A. Fernandes, D. L. Rodrigues, et al. 2021. Epidemiology, Biodiversity, and Technological Trajectories in the Brazilian Amazon: From Malaria to COVID-19. Frontiers in Public Health 9:647754. doi: 10.3389/fpubh.2021.647754.
  • Costa, M. P., B. S. Frasao, B. L. Rodrigues, A. C. Silva, and C. A. Conte-Junior. 2016. Effect of different fat replacers on the physicochemical and instrumental analysis of low-fat cupuassu goat milk yogurts. Journal of Dairy Research 83 (4):493–6. doi: 10.1017/S0022029916000674.
  • Costa, M. P., B. S. Frasao, A. C. O. Silva, M. Q. Freitas, R. M. Franco, and C. A. Conte-Junior. 2015. Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. Journal of Dairy Science 98 (9):5995–6003. doi: 10.3168/jds.2015-9738.
  • Costa, M. P., M. L. G. Monteiro, B. S. Frasao, V. L. M. Silva, B. L. Rodrigues, C. C. J. Chiappini, and C. A. Conte-Junior. 2017. Consumer perception, health information, and instrumental parameters of cupuassu (Theobroma grandiflorum) goat milk yogurts. Journal of Dairy Science 100 (1):157–68. doi: 10.3168/jds.2016-11315.
  • Costa, J. G. M., E. M. M. Nascimento, A. R. Campos, and F. F. G. Rodrigues. 2010. Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions. Journal of Basic and Clinical Pharmacy 2 (1):45–51.
  • Costa, M. P., A. I. L. S. Rosario, V. L. M. Silva, C. P. Vieira, and C. A. Conte-Junior. 2022. Rheological, physical and sensory evaluation of low-fat cupuassu goat milk yogurts supplemented with fat replacer. Food Science of Animal Resources 42 (2):210–24. doi: 10.5851/kosfa.2021.e64.
  • Cushnie, T. P. T., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26 (5):343–56. doi: 10.1016/j.ijantimicag.2005.09.002.
  • da Costa, C. A., P. R. B. de Oliveira, G. F. de Bem, L. C. R. M. de Cavalho, D. T. Ognibene, A. F. E. da Silva, S. dos Santos Valença, K. M. P. Pires, P. J. da Cunha Sousa, R. S. de Moura, et al. 2012. Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: Role of oxidative stress. Naunyn-Schmiedeberg’s Archives of Pharmacology 385 (12):1199–209. doi: 10.1007/s00210-012-0798-z.
  • da Silva, J. K. R., E. H. A. Andrade, E. F. Guimarães, and J. G. S. Maia. 2010. Essential oil composition, antioxidant capacity and antifungal activity of piper divaricatum. Natural Product Communications 5 (3):1934578X1000500. doi: 10.1177/1934578X1000500327.
  • da Silva, J. K. R., J. G. S. Maia, N. S. Dosoky, and W. N. Setzer. 2016. Antioxidant, antimicrobial, and cytotoxic properties of Aniba parviflora essential oils from the Amazon. Natural Product Communications 11 (7):1934578X1601100. doi: 10.1177/1934578X1601100738.
  • da Silva, J. K. R., N. N. S. Silva, J. F. S. Santana, E. H. A. Andrade, J. G. S. Maia, and W. N. Setzer. 2016. Phenylpropanoid-rich essential oils of Piper species from the Amazon and their antifungal and anti-cholinesterase activities. Natural Product Communications 11 (12):1934578X1601101. doi: 10.1177/1934578X1601101233.
  • da Silva, B. J. M., J. R. Souza-Monteiro, H. Rogez, M. E. Crespo-López, J. L. M. do Nascimento, and E. O. Silva. 2018. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 97 (August 2017):1613–21. doi: 10.1016/j.biopha.2017.11.089.
  • Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23 (2):174–81. doi: 10.1016/j.copbio.2011.08.007.
  • de Azevêdo, J. C. S., A. Fujita, E. L. de Oliveira, M. I. Genovese, and R. T. P. Correia. 2014. Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International 62:934–40. doi: 10.1016/j.foodres.2014.05.018.
  • de Castilho, A. L., J. P. C. da Silva, C. H. C. Saraceni, I. E. C. Díaz, M. L. B. Paciencia, A. D. Varella, and I. B. Suffredini. 2014. In vitro activity of Amazon plant extracts against Enterococcus faecalis. Brazilian Journal of Microbiology 45 (3):769–79. doi: 10.1590/S1517-83822014000300002.
  • de Oliveira, G. V., I. R. Grangeira Tavares, O. J. F. RamosJunior, M. V. G. de Souza, C. A. Conte Junior, and T. da Silveira Alvares. 2021. Evaluation of total polyphenols content and antioxidant capacity of different commercial cocoa (theobroma cacao) powders)/Avaliação do teor de polifenóis totais e capacidade antioxidante de diferentes pós comerciais de cacau (theobroma cacao). Brazilian Journal of Development 7 (4):39100–9. doi: 10.34117/bjdv7n4-393.
  • de Oliveira, A. I. T., T. S. Mahmoud, G. N. L. D. Nascimento, J. F. M. d. Silva, R. S. Pimenta, and P. B. d. Morais. 2016. Chemical composition and antimicrobial potential of palm leaf extracts from Babaçu (Attalea speciosa), Buriti (Mauritia flexuosa), and Macaúba (Acrocomia aculeata). TheScientificWorldJournal 2016 (Figure 1):9734181–6. doi: 10.1155/2016/9734181.
  • de Sousa, D. P., J. C. R. Gonçalves, L. QuintansJúnior, J. S. Cruz, D. A. M. Araújo, and R. N. de Almeida. 2006. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neuroscience Letters 401 (3):231–5. doi: 10.1016/j.neulet.2006.03.030.
  • de Sousa Moraes, L. F., X. Sun, M. d C. G. Peluzio, and M.-J. Zhu. 2019. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Critical Reviews in Food Science and Nutrition 59 (1):59–71. doi: 10.1080/10408398.2017.1357533.
  • Desbois, A. P., and V. J. Smith. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology 85 (6):1629–42. doi: 10.1007/s00253-009-2355-3.
  • Dhamgaye, S., F. Devaux, P. Vandeputte, N. K. Khandelwal, D. Sanglard, G. Mukhopadhyay, and R. Prasad. 2014. Molecular mechanisms of action of herbal antifungal alkaloid Berberine, in Candida albicans. PLoS ONE 9 (8):e104554. doi: 10.1371/journal.pone.0104554.
  • Dias, M. M. d. S., H. S. D. Martino, G. Noratto, A. Roque-Andrade, P. C. Stringheta, S. Talcott, A. M. Ramos, and S. U. Mertens-Talcott. 2015. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells. Food & Function 6 (10):3249–56. doi: 10.1039/C5FO00278H.
  • Dias-Souza, M. V., R. M. dos Santos, I. P. Cerávolo, G. Cosenza, P. H. Ferreira Marçal, and F. J. B. Figueiredo. 2018. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microbial Pathogenesis 114:29–35. doi: 10.1016/j.micpath.2017.11.006.
  • Diaz, A. B., and A. Blandino. 2022. Value-added products from agro-food residues. Foods 11 (5):766. doi: 10.3390/foods11050766.
  • do Carmo, G., T. S. Fernandes, M. Pedroso, A. Ferraz, A. T. Neto, U. F. Silva, M. A. Mostardeiro, D. F. Back, I. I. Dalcol, and A. F. Morel. 2018. Phytochemical and antimicrobial study of Pilocarpus pennatifolius Lemaire. Fitoterapia 131:1–8. doi: 10.1016/j.fitote.2018.09.009.
  • El-Hawary, S. S., M. A. Taher, E. Amin, S. Fekry AbouZid, and R. Mohammed. 2021. Genus Tabebuia: A comprehensive review journey from past achievements to future perspectives. Arabian Journal of Chemistry 14 (4):103046. doi:10.1016/j.arabjc.2021.103046.
  • Embrapa, E. B. d. P. A. 2016. Amazônia é berço de frutas nativas de alto potencial comercial. https://www.embrapa.br/busca-de-noticias/-/noticia/14818376/amazonia-e-berco-de-frutas-nativas-de-alto-potencial-comercial
  • Espanha, L. G., F. A. Resende, J. de Sousa Lima Neto, P. K. Boldrin, C. H. Nogueira, M. S. de Camargo, R. A. de Grandis, L. C. dos Santos, W. Vilegas, and E. A. Varanda. 2014. Mutagenicity and antimutagenicity of six Brazilian Byrsonima species assessed by the Ames test. BMC Complementary and Alternative Medicine 14 (1):182. doi: 10.1186/1472-6882-14-182.
  • Faustino Pereira, Y., M. do Socorro Costa, S. Relison Tintino, J. Esmeraldo Rocha, F. Fernandes Galvão Rodrigues, M. K. de Sá Barreto Feitosa, I. R. A. de Menezes, H. Douglas Melo Coutinho, J. G. M. da Costa, and E. O. de Sousa. 2018. Modulation of the antibiotic activity by the Mauritia flexuosa (Buriti) fixed oil against Methicillin-Resistant Staphylococcus Aureus (MRSA) and other multidrug-resistant (MDR) bacterial strains. Pathogens (Basel, Switzerland) 7 (4):98. doi: 10.3390/pathogens7040098.
  • Ferreira Macedo, J. G., J. M. Linhares Rangel, M. De Oliveira Santos, C. J. Camilo, J. G. Martins Da Costa, and M. Maria De Almeida Souza. 2021. Therapeutic indications, chemical composition and biological activity of native Brazilian species from Psidium genus (Myrtaceae): A review. Journal of Ethnopharmacology 278:114248. doi:10.1016/j.jep.2021.114248.
  • Feldman, M., S. Tanabe, A. Howell, and D. Grenier. 2012. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complementary and Alternative Medicine 12 (1):6. doi: 10.1186/1472-6882-12-6.
  • Fidelis, M., M. A. V. do Carmo, T. M. da Cruz, L. Azevedo, T. Myoda, M. Miranda Furtado, M. Boscacci Marques, A. S. Sant’Ana, M. Inês Genovese, W. Young Oh, et al. 2020. Camu-camu seed (Myrciaria dubia) - From side stream to anantioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry 310:125909. doi: 10.1016/j.foodchem.2019.125909.
  • Fidelis, M., J. S. Santos, G. B. Escher, R. S. Rocha, A. G. Cruz, T. M. Cruz, M. B. Marques, J. B. Nunes, M. A. V. do Carmo, L. A. de Almeida, et al. 2021. Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chemistry 334:127565. doi: 10.1016/j.foodchem.2020.127565.
  • Fidelis, M., J. S. Santos, G. B. Escher, M. Vieira do Carmo, L. Azevedo, M. Cristina da Silva, P. Putnik, and D. Granato. 2018. In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:479–90. doi: 10.1016/j.fct.2018.07.043.
  • Figueiredo, P. L. B., L. C. Pinto, J. S. da Costa, A. R. C. da Silva, R. H. V. Mourão, R. C. Montenegro, J. K. R. da Silva, and J. G. S. Maia. 2019. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. Journal of Ethnopharmacology 232:30–8. doi: 10.1016/j.jep.2018.12.011.
  • Funatogawa, K., S. Hayashi, H. Shimomura, T. Yoshida, T. Hatano, H. Ito, and Y. Hirai. 2004. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiology and Immunology 48 (4):251–61. doi: 10.1111/j.1348-0421.2004.tb03521.x.
  • Gallego, M., M. Arnal, P. Talens, F. Toldrá, and L. Mora. 2020. Effect of gelatin coating enriched with antioxidant tomato by-products on the quality of pork meat. Polymers 12 (5):1032–18. doi: 10.3390/polym12051032.
  • Gallo, M., and M. J. Sarachine. 2009. Biological activities of lupeol. In International Journal of Biomedical and Pharmaceutical Sciences, 3 (1):46–66.
  • Gill, A. O., and R. A. Holley. 2006. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology 111(2):170–4. doi: 10.1016/j.ijfoodmicro.2006.04.046.
  • Guedes-Oliveira, J. M., B. R. C. d. Costa-Lima, L. C. Muzzi Cunha, A. P. A. d. A. Salim, J. D. Baltar, A. R. Fortunato, and C. A. ConteJunior. 2018. Impact of Myrciaria Dubia peel and seed extracts on oxidation process and colour stability of ground lamb. CyTA - Journal of Food 16 (1):931–7. doi: 10.1080/19476337.2018.1512529.
  • Guillermo Avila, J., J. G. de Liverant, A. Martínez, G. Martínez, J. L. Muñoz, A. Arciniegas, and A. Romo de Vivar. 1999. Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. Journal of Ethnopharmacology 66 (1):75–8. doi: 10.1016/S0378-8741(98)00203-7.
  • Haraguchi, H., S. Kataoka, S. Okamoto, M. Hanafi, and K. Shibata. 1999. Antimicrobial triterpenes from Ilex integra and the mechanism of antifungal action. Phytotherapy Research 13 (2):151–6. doi: 10.1002/(SICI)1099-1573(199903)13:2<151::AID-PTR391>3.0.CO;2-C.
  • Jeon, M. J., and J. W. Ha. 2020. Synergistic bactericidal effect and mechanism of X-ray irradiation and citric acid combination against food-borne pathogens on spinach leaves. Food Microbiology 91 (August 2019):103543. doi: 10.1016/j.fm.2020.103543.
  • Jobim, M. L., R. C. V. Santos, C. F. dos Santos Alves, R. M. Oliveira, C. P. Mostardeiro, M. R. Sagrillo, O. C. de Souza Filho, L. F. M. Garcia, M. F. Manica-Cattani, E. E. Ribeiro, et al. 2014. Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism. Microbiological Research 169 (4):314–23. doi: 10.1016/j.micres.2013.06.006.
  • Kaneshima, T., T. Myoda, K. Toeda, T. Fujimori, and M. Nishizawa. 2017. Antimicrobial constituents of peel and seeds of camu-camu (Myrciaria dubia). Bioscience, Biotechnology, and Biochemistry 81 (8):1461–5. doi: 10.1080/09168451.2017.1320517.
  • Kim, J. H., H.-J. Ahn, J.-H. Choi, D. W. Jung, and J.-S. Kwon. 2014. Effect of 0.1% pilocarpine mouthwash on xerostomia: Double-blind, randomised controlled trial. Journal of Oral Rehabilitation 41 (3):226–35. doi: 10.1111/joor.12127.
  • Koleva, I. I., T. A. van Beek, J. P. H. Linssen, A. d. Groot, and L. N. Evstatieva. 2002. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis: PCA 13 (1):8–17. doi: 10.1002/pca.611.
  • Kwun, M. S., H. J. Lee, and D. G. Lee. 2021. β-amyrin-induced apoptosis in Candida albicans triggered by calcium. Fungal Biology 125 (8):630–6. doi: 10.1016/j.funbio.2021.03.006.
  • Lima, R. C., A. P. A. d. Carvalho, C. P. Vieira, R. V. Moreira, and C. A. Conte-Junior. 2021. Green and healthier alternatives to chemical additives as cheese preservative: Natural antimicrobials in active nanopackaging/coatings. Polymers 13 (16):2675. doi: 10.3390/polym13162675.
  • Lima, Z. P., R. d. C. dos Santos, T. U. Torres, M. Sannomiya, C. M. Rodrigues, L. C. dos Santos, C. H. Pellizzon, L. R. M. Rocha, W. Vilegas, A. R. M. Souza Brito, et al. 2008. Byrsonima fagifolia: An integrative study to validate the gastroprotective, healing, antidiarrheal, antimicrobial and mutagenic action. Journal of Ethnopharmacology 120 (2):149–60. doi: 10.1016/j.jep.2008.07.047.
  • Mafioleti, L., I. F. da SilvaJunior, E. M. Colodel, A. Flach, and D. T. d. O. Martins. 2013. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl. Journal of Ethnopharmacology 150 (2):576–82. doi: 10.1016/j.jep.2013.09.008.
  • Mahizan, N. A., S.-K. Yang, C.-L. Moo, A. A.-L. Song, C.-M. Chong, C.-W. Chong, A. Abushelaibi, S.-H E. Lim, and K.-S. Lai. 2019. Terpene derivatives as a potential agent against. Molecules 24 (14):2631–21. doi: 10.3390/molecules24142631.
  • Makarewicz, M., I. Drożdż, T. Tarko, and A. Duda-Chodak. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 10 (2):188–70. doi: 10.3390/antiox10020188.
  • Marson Ascêncio, P. G., S. D. Ascêncio, A. A. Aguiar, A. Fiorini, and R. S. Pimenta. 2014. Chemical assessment and antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Costus spiralis (Jacq.) Roscoe (Costaceae). Evidence-Based Complementary and Alternative Medicine: eCAM 2014:190543. doi: 10.1155/2014/190543.
  • Martins, D., L. L. Carrion, D. F. Ramos, K. S. Salomé, P. E. A. da Silva, A. Barison, and C. V. Nunez. 2013. Triterpenes and the antimycobacterial activity of Duroia macrophylla Huber (Rubiaceae). BioMed Research International 2013:605831. doi: 10.1155/2013/605831.
  • Mason, T. L., and W. P. Bruce. 1987. Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds. Phytochemistry 26 (8):2197–202. doi: 10.1016/S0031-9422(00)84683-X.
  • Medeiros de Azevedo, W., L. Ferreira Ribeiro de Oliveira, M. Alves Alcântara, A. M. Tribuzy de Magalhães Cordeiro, K. S. Florentino da Silva Chaves Damasceno, N. Kelly de Araújo, C. Fernandes de Assis, and F. C. d. SousaJunior. 2020. Physicochemical characterization, fatty acid profile, antioxidant activity and antibacterial potential of cacay oil, coconut oil and cacay butter. PloS One 15 (4):e0232224. doi: 10.1371/journal.pone.0232224.
  • Mendes, Y. C., G. P. Mesquita, G. D. E. Costa, A. C. Barbosa da Silva, E. Gouveia, M. R. C. Silva, V. Monteiro-Neto, R. d. C. M. d. Miranda, L. C. Nascimento da Silva, and A. Zagmignan. 2021. Evaluation of growth, viability, lactic acid production and anti-infective effects of Lacticaseibacillus rhamnosus ATCC 9595 in Bacuri Juice (Platonia insignis). Foods 10 (3):603. doi: 10.3390/foods10030603.
  • Mittal, R. P., and V. Jaitak. 2019. Plant-derived natural alkaloids as new antimicrobial and adjuvant agents in existing antimicrobial therapy. Current Drug Targets 20 (14):1409–33. doi: 10.2174/1389450120666190618124224.
  • Moura-Costa, G. F., S. R. Nocchi, L. F. Ceole, J. C. P. d. Mello, C. V. Nakamura, B. P. Dias Filho, L. G. Temponi, and T. Ueda-Nakamura. 2012. Antimicrobial activity of plants used as medicinals on an indigenous reserve in Rio das Cobras, Paraná, Brazil. Journal of Ethnopharmacology 143 (2):631–8. doi: 10.1016/j.jep.2012.07.016.
  • Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland) 6(12):1451–74. doi: 10.3390/ph6121451.
  • Ogunwande, I., N. Olawore, O. Ekundayo, T. Walker, J. Schmidt, and W. Setzer. 2005. Studies on the essential oils composition, antibacterial and cytotoxicity of L. International Journal of Aromatherapy 15 (3):147–52. doi: 10.1016/j.ijat.2005.07.004.
  • Ojha, D., and K. N. Patil. 2019. p-Coumaric acid inhibits the Listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target. Biochemical and Biophysical Research Communications 517 (4):655–61. doi: 10.1016/j.bbrc.2019.07.093.
  • Okoh, S. O., B. C. Iweriebor, O. O. Okoh, and A. I. Okoh. 2017. Bioactive constituents, radical scavenging, and antibacterial properties of the leaves and stem essential oils from Peperomia pellucida (L.) Kunth. Pharmacognosy Magazine 13 (51):392–S400. doi: 10.4103/pm.pm_106_17.
  • Okoye, T., P. Akah, E. Omeje, C. Okoli, S. Nworu, and M. Hamman. 2011. Antibacterial and anticancer activity of kaurenoic acid from root bark extract of Annona senegalensis. Planta Medica 77 (12):1–1. doi: 10.1055/s-0031-1282399.
  • Olea, A. F., A. Bravo, R. Martínez, M. Thomas, C. Sedan, L. Espinoza, E. Zambrano, D. Carvajal, E. Silva-Moreno, and H. Carrasco. 2019. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules 24 (7):1239. doi: 10.3390/molecules24071239.
  • Pan. 2014. Pilocarpine on the clinical research in treating glaucoma. Proceedings of the 2014 International Conference on Global Economy, Commerce and Service Science. doi: 10.2991/gecss-14.2014.65.
  • Park, M., K. Gwak, I. Yang, W. Choi, H. Jo, J. Chang, E. Jeung, and I. Choi. 2007. Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes. Journal of Microbiology (Seoul, Korea) 45 (5):460–5.
  • Pateiro, M., F. C. Vargas, A. A. I. A. Chincha, A. S. Sant’Ana, I. Strozzi, G. Rocchetti, F. J. Barba, R. Domínguez, L. Lucini, P. J. do Amaral Sobral, et al. 2018. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Research International (Ottawa, ON) 114:55–63. doi: 10.1016/j.foodres.2018.07.047.
  • Paz, M., P. Gúllon, M. F. Barroso, A. P. Carvalho, V. F. Domingues, A. M. Gomes, H. Becker, E. Longhinotti, and C. Delerue-Matos. 2015. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chemistry 172:462–8. doi: 10.1016/j.foodchem.2014.09.102.
  • Peixoto, H., M. Roxo, H. Koolen, F. da Silva, E. Silva, M. S. Braun, X. Wang, and M. Wink. 2018. Calycophyllum spruceanum (Benth.), the Amazonian “tree of youth” prolongs longevity and enhances stress resistance in caenorhabditis elegans. Molecules (Basel, Switzerland) 23 (3):534. doi: 10.3390/molecules23030534.
  • Peixoto, R. N. S., G. M. S. P. Guilhon, M. das Graças B Zoghbi, I. S. Araújo, A. P. T. Uetanabaro, L. S. Santos, and D. do S B Brasil. 2013. Volatiles, a glutarimide alkaloid and antimicrobial effects of Croton pullei (Euphorbiaceae). Molecules (Basel, Switzerland) 18 (3):3195–205. doi: 10.3390/molecules18033195.
  • Pereira, G. A., N. M. Peixoto Araujo, H. S. Arruda, D. d P Farias, G Molina, and G. M Pastore. 2019. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Research International 126:108713. doi:10.1016/j.foodres.2019.108713.
  • Pereira, Y. F., M. D. S. Costa, S. R. Tintino, J. E. Rocha, F. F. G. Rodrigues, M. K. de S. B. Feitosa, I. R. A. de Menezes, H. D. M. Coutinho, J. G. M. da Costa, et al. 2018. Modulation of the antibiotic activity by the Mauritia flexuosa (Buriti) fixed oil against methicillin-resistant staphylococcus aureus (MRSA) and other multidrug-resistant (MDR) bacterial strains. Pathogens 7 (4):98. doi: 10.3390/pathogens7040098.
  • Peres, M. T. L. P., F. Delle Monache, A. B. Cruz, M. G. Pizzolatti, and R. A. Yunes. 1997. Chemical composition and antimicrobial activity of Croton urucurana Baillon (Euphorbiaceae). Journal of Ethnopharmacology 56 (3):223–226. doi: 10.1016/S0378-8741(97)00039-1.
  • Pilon, A. C., M. Valli, A. C. Dametto, M. E. F. Pinto, R. T. Freire, I. Castro-Gamboa, A. D. Andricopulo, and V. S. Bolzani. 2017. NuBBEDB: An updated database to uncover chemical and biological information from Brazilian biodiversity. Scientific Reports 7 (1):7215. doi: 10.1038/s41598-017-07451-x.
  • Radice, M., D. Viafara, D. Neill, M. Asanza, G. Sacchetti, A. Guerrini, and S. Maietti. 2014. Chemical characterization and antioxidant activity of Amazonian (Ecuador) caryodendron orinocense Karst. and Bactris gasipaes kunth seed oils. Journal of Oleo Science 63 (12):1243–1250. doi: 10.5650/jos.ess14007.
  • Radulovic, N. S., P. D. Blagojevic, Z. Z. Stojanovic-Radic, and N. M. Stojanovic. 2013. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Current Medicinal Chemistry 20 (7):932–952. doi: 10.2174/0929867311320070008.
  • Ramírez-Macías, I., C. Marín, J. G. Díaz, M. J. Rosales, R. Gutiérrez-Sánchez, and M. Sánchez-Moreno. 2012. Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. TheScientificWorldJournal 2012:203646–10. doi: 10.1100/2012/203646.
  • Říha, M., J. Karlíčková, T. Filipský, K. Macáková, L. Rocha, P. Bovicelli, I. P. Silvestri, L. Saso, L. Jahodář, R. Hrdina, et al. 2014. In vitro evaluation of copper-chelating properties of flavonoids. RSC Advances 4 (62):32628–32638. doi: 10.1039/C4RA04575K.
  • Rodrigues, L. A., A. d. C. Almeida, D. C. Gontijo, I. V. Salustiano, A. A. Almeida, G. C. Brandão, A. d. O. B. Ribon, and J. P. V. Leite. 2021. Antibacterial screening of plants from the Brazilian Atlantic Forest led to the identification of active compounds in Miconia latecrenata (DC.) Naudin. Natural Product Research 35(24):5904–5. doi: 10.1080/14786419.2020.1802271.
  • Rosas, L. V., M. S. C. Cordeiro, F. R. Campos, S. K. R. Nascimento, A. H. Januário, S. C. França, A. Nomizo, M. P. A. Toldo, S. Albuquerque, and P. S. Pereira. 2007. In vitro evaluation of the cytotoxic and trypanocidal activities of Ampelozizyphus amazonicus (Rhamnaceae). Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 40 (5):663–670. doi: 10.1590/S0100-879X2007000500009.
  • Sampaio, F. C., M. Pereira, S. V. do, C. S. Dias, V. C. O. Costa, N. C. O. Conde, and M. A. R. Buzalaf. 2009. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. Journal of Ethnopharmacology 124 (2):289–94. doi: 10.1016/j.jep.2009.04.034.
  • San Miguel, S. M., L. A. Opperman, E. P. Allen, and K. K. Svoboda. 2011. Use of antioxidants in oral healthcare. Compendium of Continuing Education in Dentistry (Jamesburg, N.J.: 1995). 32 (2):e25-8. PMID: 23738832.
  • Santos, M. I. S., C. Marques, J. Mota, L. Pedroso, and A. Lima. 2022. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 10 (4):760. doi: 10.3390/microorganisms10040760
  • Sharma, A., V. K. Bajpai, and S. Shukla. 2013. Sesquiterpenes and cytotoxicity. In Natural Products, 3515–50. Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-22144-6_152.
  • Sianglum, W., P. Srimanote, W. Wonglumsom, K. Kittiniyom, and S. P. Voravuthikunchai. 2011. Proteome analyses of cellular proteins in methicillin-resistant staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS ONE 6 (2):e16628. doi: 10.1371/journal.pone.0016628.
  • Silva, J. B., A. R. N. Peres, T. Paixão, A. B. Silva, A. Baetas, W. R. Barbosa, M. Monteiro, and M. Andrade. 2017. Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida Species. Pharmacognosy Research 9 (1):96. doi: 10.4103/0974-8490.199772.
  • Souza-Moreira, T. M., J. A. Severi, E. R. Rodrigues, M. I. de Paula, J. A. Freitas, W. Vilegas, and R. C. L. R. Pietro. 2019. Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Natural Product Research 33 (17):2579–2582. doi: 10.1080/14786419.2018.1460827.
  • Strayer, A., Z. Wu, Y. Christen, C. D. Link, and Y. Luo. 2003. Expression of the small heat‐shock protein Hsp‐16‐2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 17 (15):2305–2307. doi: 10.1096/fj.03-0376fje.
  • Takahashi, J. A., C. R. Pereira, L. P. S. Pimenta, M. A. D. Boaventura, and L. G. F. E. Silva. 2006. Antibacterial activity of eight Brazilian annonaceae plants formerly natural product letters. Natural Product Research 20 (1):21–26. doi: 10.1080/14786410412331280087.
  • Tohidi, B., M. Rahimmalek, and A. Arzani. 2017. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry 220:153–161. doi: 10.1016/j.foodchem.2016.09.203.
  • Victoria, F. N., E. J. Lenardão, L. Savegnago, G. Perin, R. G. Jacob, D. Alves, W. P. d. Silva, A. d. S. d. Motta, and P. d. S. Nascente. 2012. Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50 (8):2668–2674. doi: 10.1016/j.fct.2012.05.002.
  • Wang, K., X. Jin, Q. Li, A. C. H. F. Sawaya, R. K. Le Leu, M. A. Conlon, L. Wu, and F. Hu. 2018. Propolis from different geographic origins decreases intestinal inflammation and bacteroides spp. populations in a model of DSS-induced colitis. Molecular Nutrition & Food Research 62 (17):e1800080. doi: 10.1002/mnfr.201800080.
  • Willemann, J. R., G. B. Escher, T. Kaneshima, M. M. Furtado, A. S. Sant’Ana, M. A. Vieira do Carmo, L. Azevedo, and D. Granato. 2020. Response surface optimization of phenolic compounds extraction from camu-camu (Myrciaria dubia) seed coat based on chemical properties and bioactivity. Journal of Food Science 85 (8):2358–2367. doi: 10.1111/1750-3841.15327.
  • Yamaguchi, K. K. d. L., L. F. R. Pereira, C. V. Lamarão, E. S. Lima, and V. F. da Veiga-Junior. 2015. Amazon acai: Chemistry and biological activities: A review. Food Chemistry 179:137–151. doi: 10.1016/j.foodchem.2015.01.055.
  • Yamaguti-Sasaki, E., L. A. Ito, V. C. D. Canteli, T. M. A. Ushirobira, T. Ueda-Nakamura, B. P. Dias Filho, C. V. Nakamura, and J. C. P. de Mello. 2007. Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules (Basel, Switzerland) 12 (8):1950–1963. doi: 10.3390/12081950.
  • Yamashita, M., M. Kaneko, H. Tokuda, K. Nishimura, Y. Kumeda, and A. Iida. 2009. Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae. Bioorganic & Medicinal Chemistry 17 (17):6286–6291. doi: 10.1016/j.bmc.2009.07.039.
  • Zandonadi Meneguelli, A., E. E. Saranz Camargo, D. F. Buccini, B. Cardoso Roriz, G. R. Cerqueira, and S. E. Moreno. 2020. Ethnopharmacological and botanical evaluation of medicinal plants used by Brazilian Amazon Indian community. Interações (Campo Grande) 21 (3):633–645. doi: 10.20435/inter.v21i3.2926.
  • Zavarize, D. G., and J. D. de Oliveira. 2021. Brazilian açaí berry seeds: An abundant waste applied in the synthesis of carbon-based acid catalysts for transesterification of low free fatty acid waste cooking oil. Environmental Science and Pollution Research International 28 (17):21285–21302. doi: 10.1007/s11356-020-12054-7.
  • Zhang, Y., X. Liu, Y. Wang, P. Jiang, and S. Quek. 2016. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–289. doi: 10.1016/j.foodcont.2015.05.032.
  • Zhu, C., M. Lei, M. Andargie, J. Zeng, and J. Li. 2019. Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiological and Molecular Plant Pathology 107:46–50. doi: 10.1016/j.pmpp.2019.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.