597
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review

, , , , , & show all
Pages 12488-12512 | Published online: 26 Jul 2022

References

  • Abd-Elsalam, K. A., A. F. Hashim, M. A. Alghuthaymi, and E. Said-Galiev. 2017. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. Food Preservation :337–64. doi: 10.1016/b978-0-12-804303-5.00010-9.
  • Abnous, K., N. M. Danesh, M. Alibolandi, M. Ramezani, and S. M. Taghdisi. 2017. Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Microchimica Acta 184 (4):1151–9. doi: 10.1007/s00604-017-2113-7.
  • Afsah-Hejri, L., P. Hajeb, and R. J. Ehsani. 2020. Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 19 (4):1777–808. doi: 10.1111/1541-4337.12594.
  • Afsah-Hejri, L., S. Jinap, P. Hajeb, S. Radu, and S. Shakibazadeh. 2013. A review on mycotoxins in food and feed: Malaysia case study. Comprehensive Reviews in Food Science and Food Safety 12 (6):629–51. doi: 10.1111/1541-4337.12029.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020a. Advances in analysis and detection of major mycotoxins in foods. Foods 9 (4):518. doi: 10.3390/foods9040518.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020b. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Aizpurua, J., J. M. Asua, R. D. Muino, H. J. Grande, L. M. Liz-Marzan, J. M. Pitarke, and D. Sanchez-Portal. 2019. San sebastian, a city of (nano)science and technology. ACS Nano 13 (11):12254–6. doi: 10.1021/acsnano.9b08789.
  • Alberts, J. F., W. H. Van Zyl, and W. C. Gelderblom. 2016. Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins. Frontiers in Microbiology 7:548. doi: 10.3389/fmicb.2016.00548.
  • Alhamoud, Y., D. Yang, S. S. Fiati Kenston, G. Liu, L. Liu, H. Zhou, F. Ahmed, and J. Zhao. 2019. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosensors & Bioelectronics 141:111418. doi: 10.1016/j.bios.2019.111418.
  • Alshannaq, A, and J. H. Yu. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi: 10.3390/ijerph14060632.
  • Anfossi, L., C. Giovannoli, and C. Baggiani. 2016. Mycotoxin detection. Current Opinion in Biotechnology 37:120–6. doi: 10.1016/j.copbio.2015.11.005.
  • Ariga, K., H. Ito, J. P. Hill, and H. Tsukube. 2012. Molecular recognition: From solution science to nano/materials technology. Chemical Society Reviews 41 (17):5800–35. doi: 10.1039/c2cs35162e.
  • Ashiq, S. 2015. Natural occurrence of mycotoxins in food and feed: Pakistan perspective. Comprehensive Reviews in Food Science and Food Safety 14 (2):159–75. doi: 10.1111/1541-4337.12122.
  • Azri, F. A., J. Selamat, and R. Sukor. 2017. Electrochemical immunosensor for the detection of aflatoxin B1 in palm kernel cake and feed samples. Sensors 17 (12):2776. doi: 10.3390/s17122776.
  • Bagheri, N., A. Khataee, B. Habibi, and J. Hassanzadeh. 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–8. doi: 10.1016/j.talanta.2017.12.009.
  • Bai, X., C. Sun, D. Liu, X. Luo, D. Li, J. Wang, N. Wang, X. Chang, R. Zong, and Y. Zhu. 2017. Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Applied Catalysis B: Environmental 204:11–20. doi: 10.1016/j.apcatb.2016.11.010.
  • Beloglazova, N. V., E. S. Speranskaya, A. Wu, Z. Wang, M. Sanders, V. V. Goftman, D. Zhang, I. Y. Goryacheva, and S. D. Saeger. 2014. Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosensors & Bioelectronics 62:59–65. doi: 10.1016/j.bios.2014.06.021.
  • Ben Taheur, F., B. Kouidhi, Y. M. A. Al Qurashi, J. Ben Salah-Abbes, and K. Chaieb. 2019. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon : official Journal of the International Society on Toxinology 160:12–22. doi: 10.1016/j.toxicon.2019.02.001.
  • Bennett, J. W. 1987. Mycotoxins, mycotoxicoses, mycotoxicology and Mycopathologia. Mycopathologia 100 (1):3–5. doi: 10.1007/bf00769561.
  • Bhat, R., V. R. Ravishankar, and A. A. Karim. 2010. Mycotoxins in food and feed: Present status and future concerns. Comprehensive Reviews in Food Science and Food Safety 9 (1):57–81. doi: 10.1111/j.1541-4337.2009.00094.x.
  • Bhatnagar, D., J. Yu, and K. C. Ehrlich. 2002. Toxins of Filamentous Fungi. Chemical Immunology 81:167–206. doi: 10.1159/000058867.
  • Bu, T., X. Yao, L. Huang, L. Dou, B. Zhao, B. Yang, T. Li, J. Wang, and D. Zhang. 2020. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection. Talanta 206:120204. doi: 10.1016/j.talanta.2019.120204.
  • Bulbul, G., A. Hayat, and S. Andreescu. 2015. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale 7 (31):13230–8. doi: 10.1039/c5nr02628h.
  • Calado, T., A. Venâncio, and L. Abrunhosa. 2014. Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety 13 (5):1049–61. doi: 10.1111/1541-4337.12095.
  • Capriotti, A. L., C. Cavaliere, G. La Barbera, C. M. Montone, S. Piovesana, and A. Laganà. 2019. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 82 (8):1251–74. doi: 10.1007/s10337-019-03721-0.
  • Castelo, M. M., S. S. Sumner, and L. B. Bullerman. 1998. Stability of fumonisins in thermally processed corn products. Journal of Food Protection 61 (8):1030–3. doi: 10.4315/0362-028X-61.8.1030.
  • Chatterjee, B., S. J. Das, A. Anand, and T. K. Sharma. 2020. Nanozymes and aptamer-based biosensing. Materials Science for Energy Technologies 3:127–35. doi: 10.1016/j.mset.2019.08.007.
  • Chauhan, R., J. Singh, T. Sachdev, T. Basu, and B. D. Malhotra. 2016. Recent advances in mycotoxins detection. Biosensors & Bioelectronics 81:532–45. doi: 10.1016/j.bios.2016.03.004.
  • Chen, C., X. Yu, D. Han, J. Ai, Y. Ke, Z. Wang, and G. Meng. 2020. Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 118:107418. doi: 10.1016/j.foodcont.2020.107418.
  • Chu, X., X. Dou, R. Liang, M. Li, W. Kong, X. Yang, J. Luo, M. Yang, and M. Zhao. 2016. A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A. Nanoscale 8 (7):4127–33. doi: 10.1039/c5nr08284f.
  • Cieplak, M, and W. Kutner. 2016. Artificial biosensors: How can molecular imprinting mimic biorecognition? Trends in Biotechnology 34 (11):922–41. doi: 10.1016/j.tibtech.2016.05.011.
  • Claeys, L., C. Romano, K. De Ruyck, H. Wilson, B. Fervers, M. Korenjak, J. Zavadil, M. J. Gunter, S. De Saeger, M. De Boevre, et al. 2020. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Comprehensive Reviews in Food Science and Food Safety 19 (4):1449–64. doi: 10.1111/1541-4337.12567.
  • Costantini, F., C. Sberna, G. Petrucci, M. Reverberi, F. Domenici, C. Fanelli, C. Manetti, G. de Cesare, M. DeRosa, A. Nascetti, et al. 2016. Aptamer-based sandwich assay for on chip detection of ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical 230:31–9. doi: 10.1016/j.snb.2016.02.036.
  • Cunha, S. C., S. V. M. Sa, and J. O. Fernandes. 2018. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 114:260–9. doi: 10.1016/j.fct.2018.02.039.
  • D’souza, C., H.-G. Yuk, G. H. Khoo, and W. Zhou. 2015. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 14 (6):719–40. doi: 10.1111/1541-4337.12155.
  • Deflorio, W., S. Liu, A. R. White, T. M. Taylor, L. Cisneros-Zevallos, Y. Min, and E. M. A. Scholar. 2021. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety 20 (3):3093–134. doi: 10.1111/1541-4337.12750.
  • Dong, M., W. Si, W. Wang, B. Bai, D. Nie, W. Song, Z. Zhao, Y. Guo, and Z. Han. 2016. Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 408 (24):6823–31. doi: 10.1007/s00216-016-9809-0.
  • Duan, H., X. Chen, W. Xu, J. Fu, Y. Xiong, and A. Wang. 2015. Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta 132:126–31. doi: 10.1016/j.talanta.2014.08.076.
  • Duarte, S. C., A. Pena, and C. M. Lino. 2010. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiology 27 (2):187–98. doi: 10.1016/j.fm.2009.11.016.
  • EC. Setting maximum levels for certain contaminants in foodstuffs: EC 1881/2006. http://law.foodmate.net/show-169747.html.
  • El-Sayed, M., H. Masuhara, M. P. Pileni, and C. Landes. 2012. Nano and molecular science and technology. Accounts of Chemical Research 45 (11):1842–3. doi: 10.1021/ar300271q.
  • El Golli Bennour, E., C. Bouaziz, M. Ladjimi, F. Renaud, and H. Bacha. 2009. Comparative mechanisms of zearalenone and ochratoxin A toxicities on cultured HepG2 cells: Is oxidative stress a common process? Environmental Toxicology 24 (6):538–48. doi: 10.1002/tox.20449.
  • Enyiukwu, A. N., J. A. Awurum, and Nwaneri, D. N.. 2014. Mycotoxins in stored agricultural products: Implications to food safety and health and prospects of plant-derived pesticides as novel approach to their management. Greener Journal of Microbiology and Antimicrobials 2 (3):032–48. doi: 10.15580/GJMA.2014.3.0521014241.
  • Eskola, M., G. Kos, C. T. Elliott, J. Hajslova, S. Mayar, and R. Krska. 2020. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Critical Reviews in Food Science and Nutrition 60 (16):2773–89. doi: 10.1080/10408398.2019.1658570.
  • Eskola, M., G. Kos, C. T. Elliott, J. Hajšlová, S. Mayar, and R. Krska. 2020. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. %Critical Reviews in Food Science and Nutrition 60 (16):2773–89. doi: 10.1080/10408398.2019.1658570.
  • Ezekiel, C. N., K. I. Ayeni, J. M. Misihairabgwi, Y. M. Somorin, I. E. Chibuzor-Onyema, O. A. Oyedele, W. A. Abia, M. Sulyok, G. S. Shephard, and R. Krska. 2018. Traditionally processed beverages in Africa: A review of the mycotoxin occurrence patterns and exposure assessment. Comprehensive Reviews in Food Science and Food Safety 17 (2):334–51. doi: 10.1111/1541-4337.12329.
  • FAO. Codex general standard for contaminants and toxins in food feed: CSX 193-1995. http://down.foodmate.net/standard/sort/11/3329.html.
  • Feng, J., Y. Li, Z. Gao, H. Lv, X. Zhang, D. Fan, and Q. Wei. 2018. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosensors & Bioelectronics 99:14–20. doi: 10.1016/j.bios.2017.07.029.
  • Feng, J., Y. Li, Z. Gao, H. Lv, X. Zhang, Y. Dong, P. Wang, D. Fan, and Q. Wei. 2018. A competitive-type photoelectrochemical immunosensor for aflatoxin B1 detection based on flower-like WO3 as matrix and Ag2S-enhanced BiVO4 for signal amplification. Sensors and Actuators B: Chemical 270:104–11. doi: 10.1016/j.snb.2018.05.015.
  • Ferrigo, D., A. Raiola, and R. Causin. 2016. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 21 (5):627. doi: 10.3390/molecules21050627.
  • Freire, L, and A. S. Sant’ana. 2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 111:189–205. doi: 10.1016/j.fct.2017.11.021.
  • Goncalves, A., A. Gkrillas, J. L. Dorne, C. Dall’asta, R. Palumbo, N. Lima, P. Battilani, A. Venancio, and P. Giorni. 2019. Pre- and postharvest strategies to minimize mycotoxin contamination in the rice food chain. Comprehensive Reviews in Food Science and Food Safety 18 (2):441–54. doi: 10.1111/1541-4337.12420.
  • Goryacheva, O. A., N. V. Beloglazova, I. Y. Goryacheva, and S. D. Saeger. 2021. Homogenous FRET-based fluorescent immunoassay for deoxynivalenol detection by controlling the distance of donor-acceptor couple. Talanta 225:121973. doi: 10.1016/j.talanta.2020.121973.
  • Goud, K. Y., S. K. Kailasa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, and K. H. Kim. 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors & Bioelectronics 121:205–22. doi: 10.1016/j.bios.2018.08.029.
  • Goud, K. Y., K. K. Reddy, M. Satyanarayana, S. Kummari, and K. V. Gobi. 2019. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochimica Acta 187 (1):29. doi: 10.1007/s00604-019-4034-0.
  • Guo, Z., J. Ren, J. Wang, and E. Wang. 2011. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85 (5):2517–21. doi: 10.1016/j.talanta.2011.08.015.
  • Han, Z., K. Jiang, Z. Fan, J. D. Di Mavungu, M. Dong, W. Guo, K. Fan, K. Campbell, Z. Zhao, and Y. Wu. 2017. Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 79:177–84. doi: 10.1016/j.foodcont.2017.03.044.
  • Hao, N., L. Jiang, J. Qian, and K. Wang. 2016. Ultrasensitive electrochemical ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation. Journal of Electroanalytical Chemistry 781:332–8. doi: 10.1016/j.jelechem.2016.09.053.
  • Haque, M. A., Y. Wang, Z. Shen, X. Li, M. K. Saleemi, and C. He. 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis 142:104095. doi: 10.1016/j.micpath.2020.104095.
  • He, B, and X. Dong. 2018. Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Mikrochimica Acta 185 (10):462. doi: 10.1007/s00604-018-3006-0.
  • He, Y., Q. He, L. Wang, C. Zhu, P. Golani, A. D. Handoko, X. Yu, C. Gao, M. Ding, X. Wang, et al. 2019. Self-gating in semiconductor electrocatalysis. Nature Materials 18 (10):1098–104. doi: 10.1038/s41563-019-0426-0.
  • Heurich, M., M. K. A. Kadir, and I. E. Tothill. 2011. An electrochemical sensor based on carboxymethylated dextran modified gold surface for ochratoxin A analysis. Sensors and Actuators B: Chemical 156 (1):162–8. doi: 10.1016/j.snb.2011.04.007.
  • Horky, P., S. Skalickova, D. Baholet, and J. Skladanka. 2018. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials 8 (9):727. doi: 10.3390/nano8090727.
  • Hou, Y., B. Jia, P. Sheng, X. Liao, L. Shi, L. Fang, L. Zhou, and W. Kong. 2022. Aptasensors for mycotoxins in foods: Recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 21 (2):2032–73. doi: 10.1111/1541-4337.12858.
  • Huang, C, and B. Peng. 2021. Photocatalytic degradation of patulin in apple juice based on nitrogen-doped chitosan-TiO2 nanocomposite prepared by a new approach. Lwt 140:110726. doi: 10.1016/j.lwt.2020.110726.
  • Huang, K.-J., H.-L. Shuai, and Y.-X. Chen. 2016. Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application. Sensors and Actuators B: Chemical 225:391–7. doi: 10.1016/j.snb.2015.11.070.
  • Huang, L., K. Chen, W. Zhang, W. Zhu, X. Liu, J. Wang, R. Wang, N. Hu, Y. Suo, and J. Wang. 2018. ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sensors and Actuators B: Chemical 269:79–87. doi: 10.1016/j.snb.2018.04.150.
  • Hui, O., J. Xian, J. Gao, L. Zhang, W. Wang, and Z. Fu. 2022. Highly sensitive chemiluminescent immunoassay of mycotoxins using ZIF-8-derived yolk-shell Co single-atom site catalysts as superior fenton-like probes. Analytical Chemistry 94 (7):3400–7. doi: 10.1021/acs.analchem.1c05557.
  • Hussein, H. S, and J. M. Brasel. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167 (2):101–34. doi: 10.1016/S0300-483X(01)00471-1.
  • Hymery, N., V. Vasseur, M. Coton, J. Mounier, J. L. Jany, G. Barbier, and E. Coton. 2014. Filamentous fungi and mycotoxins in cheese: A review. Comprehensive Reviews in Food Science and Food Safety 13 (4):437–56. doi: 10.1111/1541-4337.12069.
  • Ismail, A., B. L. Goncalves, D. V. De Neeff, B. Ponzilacqua, C. Coppa, H. Hintzsche, M. Sajid, A. G. Cruz, C. H. Corassin, and C. A. F. Oliveira. 2018. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Research International (Ottawa, Ont.) 113:74–85. doi: 10.1016/j.foodres.2018.06.067.
  • Jafarzadeh, S., M. Hadidi, M. Forough, A. M. Nafchi, and A. Mousavi Khaneghah. 2022. The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition 62:1–19. doi: 10.1080/10408398.2022.2031099.
  • Jamil, T. S., H. A. Abbas, R. A. Nasr, A. A. El-Kady, and M. I. M. Ibrahim. 2017. Detoxification of aflatoxin B1 using nano-sized Sc-doped SrTi0.7Fe0.3O3 under visible light. Journal of Photochemistry and Photobiology A: Chemistry 341:127–35. doi: 10.1016/j.jphotochem.2017.03.023.
  • Jard, G., T. Liboz, F. Mathieu, A. Guyonvarc’h, and A. Lebrihi. 2011. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 28 (11):1590–609. doi: 10.1080/19440049.2011.595377.
  • Jiang, F., P. Li, C. Zong, and H. Yang. 2020. Surface-plasmon-coupled chemiluminescence amplification of silver nanoparticles modified immunosensor for high-throughput ultrasensitive detection of multiple mycotoxins. Analytica Chimica Acta 1114:58–65. doi: 10.1016/j.aca.2020.03.052.
  • Jiang, M., M. Braiek, A. Florea, A. Chrouda, C. Farre, A. Bonhomme, F. Bessueille, F. Vocanson, A. Zhang, and N. Jaffrezic-Renault. 2015. Aflatoxin B1 detection using a highly-sensitive molecularly-imprinted electrochemical sensor based on an electropolymerized metal organic framework. Toxins 7 (9):3540–53. doi: 10.3390/toxins7093540.
  • Kemboi, D. C., G. Antonissen, P. E. Ochieng, S. Croubels, S. Okoth, E. K. Kangethe, J. Faas, J. F. Lindahl, and J. K. Gathumbi. 2020. A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in Sub-Saharan Africa. Toxins 12 (4):222. doi: 10.3390/toxins12040222.
  • Kopinke, F.-D, and H. Harms. 2020. What are the active species in the photocatalytic disinfection of water? Chemistry 6 (4):806–7. doi: 10.1016/j.chempr.2020.03.008.
  • Kumar, P., D. K. Mahato, M. Kamle, T. K. Mohanta, and S. G. Kang. 2016. Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology 7:2170. doi: 10.3389/fmicb.2016.02170.
  • Kumar, Y. V. V., A. R. Renuka, J. Achuth, V. Mudili, and S. Poda. 2018. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Advances 8 (19):10465–73. doi: 10.1039/c8ra00317c.
  • Lai, W., Q. Wei, M. Xu, J. Zhuang, and D. Tang. 2017. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosensors & Bioelectronics 89 (Pt 1):645–51. doi: 10.1016/j.bios.2015.12.035.
  • Lai, W., Q. Zeng, J. Tang, M. Zhang, and D. Tang. 2018. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst. Mikrochimica Acta 185 (2):92. doi: 10.1007/s00604-017-2651-z.
  • Li, N., D. Wu, N. Hu, G. Fan, X. Li, J. Sun, X. Chen, Y. Suo, G. Li, and Y. Wu. 2018. Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. Journal of Agricultural and Food Chemistry 66 (13):3572–80. doi: 10.1021/acs.jafc.8b00869.
  • Li, S. c., J. h Chen, H. Cao, D. s Yao, and D. l Liu. 2011. Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22 (1):43–9. doi: 10.1016/j.foodcont.2010.05.005.
  • Li, W-k., H-x Zhang, and Y-p Shi. 2018. Simultaneous determination of aflatoxin B1 and zearalenone by magnetic nanoparticle filled amino-modified multi-walled carbon nanotubes. Analytical Methods 10 (27):3353–63. doi: 10.1039/C8AY00815A.
  • Li, Y., Q. Chen, X. Xu, Y. Jin, Y. Wang, L. Zhang, W. Yang, L. He, X. Feng, and Y. Chen. 2018. Microarray surface enhanced Raman scattering based immunosensor for multiplexing detection of mycotoxin in foodstuff. Sensors and Actuators B: Chemical 266:115–23. doi: 10.1016/j.snb.2018.03.040.
  • Liang, H., H. Xu, Y. Zhao, J. Zheng, H. Zhao, G. Li, and C. P. Li. 2019. Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosensors & Bioelectronics 144:111691. doi: 10.1016/j.bios.2019.111691.
  • Liew, W. P, and S. Mohd-Redzwan. 2018. Mycotoxin: Its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology 8:60. doi: 10.3389/fcimb.2018.00060.
  • Lin, Y., Q. Zhou, D. Tang, R. Niessner, H. Yang, and D. Knopp. 2016. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Analytical Chemistry 88 (15):7858–66. doi: 10.1021/acs.analchem.6b02124.
  • Lin, Y., Q. Zhou, Y. Zeng, and D. Tang. 2018. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1. Mikrochimica Acta 185 (6):311. doi: 10.1007/s00604-018-2848-9.
  • Liu, J., G. Li, D. Wu, Y. Yu, J. Chen, and Y. Wu. 2020. Facile preparation of magnetic covalent organic framework-metal organic framework composite materials as effective adsorbents for the extraction and determination of sedatives by high-performance liquid chromatography/tandem mass spectrometry in meat samples. Rapid Communications in Mass Spectrometry: RCM 34 (10):e8742. doi: 10.1002/rcm.8742.
  • Liu, K., C. Zhang, J. Xu, and Q. Liu. 2021. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Comprehensive Reviews in Food Science and Food Safety 20 (6):5802–28. doi: 10.1111/1541-4337.12846.
  • Liu, Z., Q. Hua, J. Wang, Z. Liang, J. Li, J. Wu, X. Shen, H. Lei, and X. Li. 2020. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors & Bioelectronics 158:112178. doi: 10.1016/j.bios.2020.112178.
  • Liu, Z. Y., J. Liu, Z. Zhang, and D. W. Gao. 2009. Progress on limit standard and detection methods for fumonisin in cereal foods. Cereal & Feed Industry 000 (007):45–7. doi: 10.3969/j.issn.1003-6202.2009.07.017.
  • Lu, X., C. Wang, J. Qian, C. Ren, K. An, and K. Wang. 2019. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Analytica Chimica Acta 1047:163–71. doi: 10.1016/j.aca.2018.10.002.
  • Lu, Z., X. Chen, and W. Hu. 2017. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors and Actuators B: Chemical 246:61–7. doi: 10.1016/j.snb.2017.02.062.
  • Luo, L., X. Liu, S. Ma, L. Li, and T. You. 2020. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chemistry 322:126778. doi: 10.1016/j.foodchem.2020.126778.
  • Luo, S., H. Du, H. Kebede, Y. Liu, and F. Xing. 2021. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 127:108120. doi: 10.1016/j.foodcont.2021.108120.
  • Luo, Y., X. Liu, and J. Li. 2018. Updating techniques on controlling mycotoxins-A review. Food Control 89:123–32. doi: 10.1016/j.foodcont.2018.01.016.
  • Lv, M., Y. Liu, J. Geng, X. Kou, Z. Xin, and D. Yang. 2018. Engineering nanomaterials-based biosensors for food safety detection. Biosensors & Bioelectronics 106:122–8. doi: 10.1016/j.bios.2018.01.049.
  • Mantle, P. G. 2002. Risk assessment and the importance ofochratoxins. International Biodeterioration & Biodegradation 50 (3-4):143–6. doi: 10.1016/S0964-8305(02)00079-3.
  • Mao, J., P. Li, J. Wang, H. Wang, Q. Zhang, L. Zhang, H. Li, W. Zhang, and T. Peng. 2019. Insights into photocatalytic inactivation mechanism of the hypertoxic site in aflatoxin B1 over clew-like WO3 decorated with CdS nanoparticles. Applied Catalysis B: Environmental 248:477–86. doi: 10.1016/j.apcatb.2019.01.057.
  • Mao, J., L. Zhang, H. Wang, Q. Zhang, W. Zhang, and P. Li. 2018. Facile fabrication of nanosized graphitic carbon nitride sheets with efficient charge separation for mitigation of toxic pollutant. Chemical Engineering Journal 342:30–40. doi: 10.1016/j.cej.2018.02.076.
  • Mao, J., Q. Zhang, P. Li, L. Zhang, and W. Zhang. 2018. Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chemical Engineering Journal 334:2568–78. doi: 10.1016/j.cej.2017.10.165.
  • Marin, S., A. J. Ramos, G. Cano-Sancho, and V. Sanchis. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 60:218–37. doi: 10.1016/j.fct.2013.07.047.
  • Massart, F., V. Meucci, G. Saggese, and G. Soldani. 2008. High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. The Journal of Pediatrics 152 (5):690–5. doi: 10.1016/j.jpeds.2007.10.020.
  • Mesfin, A., C. Lachat, A. Vidal, S. Croubels, G. Haesaert, M. Ndemera, S. Okoth, T. Belachew, M. D. Boevre, S. De Saeger, et al. 2022. Essential descriptors for mycotoxin contamination data in food and feed. Food Research International 152:110883. doi: 10.1016/j.foodres.2021.110883.
  • Mishra, G., B. K. Panda, W. A. Ramirez, H. Jung, C. B. Singh, S. H. Lee, and I. Lee. 2021. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts. Comprehensive Reviews in Food Science and Food Safety 20 (5):4612–51. doi: 10.1111/1541-4337.12801.
  • Misihairabgwi, J. M., C. N. Ezekiel, M. Sulyok, G. S. Shephard, and R. Krska. 2019. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Critical Reviews in Food Science and Nutrition 59 (1):43–58. doi: 10.1080/10408398.2017.1357003.
  • Misra, N. N., B. Yadav, M. S. Roopesh, and C. Jo. 2019. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety 18 (1):106–20. doi: 10.1111/1541-4337.12398.
  • Mogensen, J. M., J. C. Frisvad, U. Thrane, and K. F. Nielsen. 2010. Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. Journal of Agricultural and Food Chemistry 58 (2):954–8. doi: 10.1021/jf903116q.
  • Moreno, V., M. Zougagh, and Á. Ríos. 2016. Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Microchimica Acta 183 (2):871–80. doi: 10.1007/s00604-015-1722-2.
  • Mousavi Khaneghah, A., Y. Fakhri, H. H. Gahruie, M. Niakousari, and A. S. Sant’ana. 2019. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends in Food Science & Technology 91:95–105. doi: 10.1016/j.tifs.2019.06.007.
  • Mukherjee, K., K. Acharya, A. Biswas, and N. R. Jana. 2020. TiO2 nanoparticles Co-doped with nitrogen and fluorine as visible-light-activated antifungal agents. ACS Applied Nano Materials 3 (2):2016–25. doi: 10.1021/acsanm.0c00108.
  • Mukunzi, D., J. d D. Habimana, Z. Li, and X. Zou. 2022. Mycotoxins detection: View in the lens of molecularly imprinted polymer and nanoparticles. Critical Reviews in Food Science and Nutrition 62:1–35. doi: 10.1080/10408398.2022.2027338.
  • Munkvold, G. P. 2017. Fusarium species and their associated mycotoxins. Methods in Molecular Biology (Clifton, N.J.) 1542:51–106. doi: 10.1007/978-1-4939-6707-0_4.
  • Nabawy, G. A., A. A. Hassan, R. H. S. El-Ahl, and M. K. Refai. 2014. Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and aflatoxin B1 production. Journal of Global Biosciences 3:954–71.
  • Navale, G. R., M. Thripuranthaka, D. J. Late, and S. S. Shinde. 2015. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnology & Nanomedicine 3 (1):1033. 2015).
  • Newsome, R. 2014. 2013 IFT international food nanoscience conference: Proceedings. Comprehensive Reviews in Food Science and Food Safety 13 (2):190–228. doi: 10.1111/1541-4337.12055.
  • NHC, and NMPA. China national food safety standard maximum limit of mycotoxins in food: GB 2761-2017. http://down.foodmate.net/standard/sort/3/50747.html.
  • Niazi, S., I. M. Khan, L. Yan, M. I. Khan, A. Mohsin, N. Duan, S. Wu, and Z. Wang. 2019. Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce,Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry 411 (7):1453–65. doi: 10.1007/s00216-019-01580-0.
  • Niazi, S., I. M. Khan, Y. Yu, I. Pasha, M. Shoaib, A. Mohsin, B. S. Mushtaq, W. Akhtar, and Z. Wang. 2019. A "turnon" aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Mikrochimica Acta 186 (8):575. doi: 10.1007/s00604-019-3570-y.
  • Niemirowicz, K, and R. Bucki. 2017. Enhancing the fungicidal activity of antibiotics: Are magnetic nanoparticles the key? Nanomedicine (London, England) 12 (15):1747–9. doi: 10.2217/nnm-2017-0051.
  • Niu, X., N. Cheng, X. Ruan, D. Du, and Y. Lin. 2020. Review—Nanozyme-based immunosensors and immunoassays: Recent developments and future trends. Journal of the Electrochemical Society 167 (3):037508. doi: 10.1149/2.0082003JES.
  • Pacheco, J. G., M. Castro, S. Machado, M. F. Barroso, H. P. A. Nouws, and C. Delerue-Matos. 2015. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical 215:107–12. doi: 10.1016/j.snb.2015.03.046.
  • Pan, L. M., X. Zhao, X. Wei, L. J. Chen, C. Wang, and X. P. Yan. 2022. Ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles for autofluorescence- and exogenous interference-free determination of trace Aflatoxin B1 in food samples. Analytical Chemistry 94 (16):6387–93. doi: 10.1021/acs.analchem.2c00861.
  • Pankaj, S. K., H. Shi, and K. M. Keener. 2018. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology 71:73–83. doi: 10.1016/j.tifs.2017.11.007.
  • Peng, G., X. Li, F. Cui, Q. Qiu, X. Chen, and H. Huang. 2018. Aflatoxin B1 electrochemical aptasensor based on tetrahedral DNA nanostructures functionalized three dimensionally ordered macroporous MoS2-AuNPs film. ACS Applied Materials & Interfaces 10 (21):17551–9. doi: 10.1021/acsami.8b01693.
  • Pile, D. 2017. Slim semiconductor. Nature Photonics 11 (9):532– doi: 10.1038/nphoton.2017.154.
  • Pitt, J. I. 2000. Toxigenic fungi: Which are important? Medical Mycology 38 (s1):17–22. doi: 10.1080/mmy.38.s1.17.22.
  • Qian, J., C. Ren, C. Wang, W. Chen, X. Lu, H. Li, Q. Liu, N. Hao, H. Li, and K. Wang. 2018. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Analytica Chimica Acta 1019:119–27. doi: 10.1016/j.aca.2018.02.063.
  • Rahimi, F., H. Roshanfekr, and H. Peyman. 2021. Ultra-sensitive electrochemical aptasensor for label-free detection of aflatoxin B1 in wheat flour sample using factorial design experiments. Food Chemistry 343:128436. doi: 10.1016/j.foodchem.2020.128436.
  • Rahmani, A., S. Jinap, and F. Soleimany. 2009. Qualitative and quantitative analysis of mycotoxins. Comprehensive Reviews in Food Science and Food Safety 8 (3):202–51. doi: 10.1111/j.1541-4337.2009.00079.x.
  • Rai, M., P. S. Jogee, and A. P. Ingle. 2015. Emerging nanotechnology for detection of mycotoxins in food and feed. International Journal of Food Sciences and Nutrition 66 (4):363–70. doi: 10.3109/09637486.2015.1034251.
  • Ramadan, M. M., M. A. Mohamed, H. Almoammar, and K. A. Abd-Elsalam. 2020. Magnetic nanomaterials for purification, detection, and control of mycotoxins. In Nanomycotoxicology :87–114. doi: 10.1016/b978-0-12-817998-7.00005-7.
  • Rani, L., K. Thapa, N. Kanojia, N. Sharma, S. Singh, A. S. Grewal, A. L. Srivastav, and J. Kaushal. 2021. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production 283:124657. doi: 10.1016/j.jclepro.2020.124657.
  • Ren, M., H. Xu, X. Huang, M. Kuang, Y. Xiong, H. Xu, Y. Xu, H. Chen, and A. Wang. 2014. Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads. ACS Applied Materials & Interfaces 6 (16):14215–22. doi: 10.1021/am503517s.
  • Rheeder, J. P., W. F. Marasas, and H. F. Vismer. 2002. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology 68 (5):2101–5. doi: 10.1128/aem.68.5.2101-2105.2002.
  • Rhouati, A., G. Bulbul, U. Latif, A. Hayat, Z. H. Li, and J. L. Marty. 2017. Nano-aptasensing in mycotoxin analysis: Recent updates and progress. Toxins 9 (11):349. doi: 10.3390/toxins9110349.
  • Rivas, L., C. C. Mayorga-Martinez, D. Quesada-Gonzalez, A. Zamora-Galvez, A. De La Escosura-Muniz, and A. Merkoci. 2015. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Analytical Chemistry 87 (10):5167–72. doi: 10.1021/acs.analchem.5b00890.
  • Romero Bernal, A. R., C. M. Reynoso, V. A. Garcia Londono, L. E. Broggi, and S. L. Resnik. 2019. Alternaria toxins in Argentinean wheat, bran, and flour. Food Additives & Contaminants. Part B, Surveillance 12 (1):24–30. doi: 10.1080/19393210.2018.1509900.
  • Rong, X., D. Sun-Waterhouse, D. Wang, Y. Jiang, F. Li, Y. Chen, S. Zhao, and D. Li. 2019. The significance of regulatory microRNAs: Their roles in toxicodynamics of mycotoxins and in the protection offered by dietary therapeutics against mycotoxin-induced toxicity. Comprehensive Reviews in Food Science and Food Safety 18 (1):48–66. doi: 10.1111/1541-4337.12412.
  • Sá, S. V. M. d., C. Monteiro, J. O. Fernandes, E. Pinto, M. A. Faria, and S. C. Cunha. 2021. Emerging mycotoxins in infant and children foods: A review. Critical Reviews in Food Science and Nutrition 61:1–15. doi: 10.1080/10408398.2021.1967282.
  • Schaarschmidt, S, and C. Fauhl-Hassek. 2018. The fate of mycotoxins during the processing of wheat for human consumption. Comprehensive Reviews in Food Science and Food Safety 17 (3):556–93. doi: 10.1111/1541-4337.12338.
  • Schabo, D. C., V. O. Alvarenga, D. W. Schaffner, and M. Magnani. 2021. A worldwide systematic review, meta-analysis, and health risk assessment study of mycotoxins in beers. Comprehensive Reviews in Food Science and Food Safety 20 (6):5742–64. doi: 10.1111/1541-4337.12856.
  • Sharma, A., Z. Matharu, G. Sumana, P. R. Solanki, C. G. Kim, and B. D. Malhotra. 2010. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films. 519 (3):1213–8. doi: 10.1016/j.tsf.2010.08.071.
  • Sharma, A. S., S. Ali, D. Sabarinathan, M. Murugavelu, H. Li, and Q. Chen. 2021. Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications. Comprehensive Reviews in Food Science and Food Safety 20 (6):5765–801. doi: 10.1111/1541-4337.12834.
  • Sharma, R., K. V. Ragavan, M. S. Thakur, and K. S. Raghavarao. 2015. Recent advances in nanoparticle based aptasensors for food contaminants. Biosensors & Bioelectronics 74:612–27. doi: 10.1016/j.bios.2015.07.017.
  • Singh, C., S. Srivastava, M. A. Ali, T. K. Gupta, G. Sumana, A. Srivastava, R. B. Mathur, and B. D. Malhotra. 2013. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical 185:258–64. doi: 10.1016/j.snb.2013.04.040.
  • Sobral, M. M. C., M. A. Faria, S. C. Cunha, and I. Ferreira. 2018. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere 202:538–48. doi: 10.1016/j.chemosphere.2018.03.122.
  • Speranskaya, E. S., N. V. Beloglazova, S. Abe, T. Aubert, P. F. Smet, D. Poelman, I. Y. Goryacheva, S. D. Saeger, and Z. Hens. 2014. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir: The ACS Journal of Surfaces and Colloids 30 (25):7567–75. doi: 10.1021/la501268b.
  • Stappers, M. H. T., A. E. Clark, V. Aimanianda, S. Bidula, D. M. Reid, P. Asamaphan, S. E. Hardison, I. M. Dambuza, I. Valsecchi, B. Kerscher, et al. 2018. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555 (7696):382–6. doi: 10.1038/nature25974.
  • Su, F. R., S. X. Wang, and H. Sun. 2007. The sate of mycotoxin maximum limit of grain. Science and Technology of Cereals, Oils and Foods 15 (6):57–9.
  • Su, L., Y. Song, C. Fu, and D. Tang. 2019. Etching reaction-based photoelectrochemical immunoassay of aflatoxin B1 in foodstuff using cobalt oxyhydroxide nanosheets-coating cadmium sulfide nanoparticles as the signal tags. Analytica Chimica Acta 1052:49–56. doi: 10.1016/j.aca.2018.11.059.
  • Su, Y., D. Wu, J. Chen, G. Chen, N. Hu, H. Wang, P. Wang, H. Han, G. Li, and Y. Wu. 2019. Ratiometric surface enhanced Raman scattering immunosorbent assay of allergenic proteins via covalent organic framework composite material based nanozyme Tag triggered Raman signal "Turn-on" and amplification. Analytical Chemistry 91 (18):11687–95. doi: 10.1021/acs.analchem.9b02233.
  • Sun, D., J. Mao, L. Cheng, X. Yang, H. Li, L. Zhang, W. Zhang, Q. Zhang, and P. Li. 2021. Magnetic g-C3N4/NiFe2O4 composite with enhanced activity on photocatalytic disinfection of Aspergillus flavus. Chemical Engineering Journal 418:129417. doi: 10.1016/j.cej.2021.129417.
  • Sun, D., J. Mao, Z. Wang, H. Li, L. Zhang, W. Zhang, Q. Zhang, and P. Li. 2021. Inhibition of Aspergillus flavus growth and aflatoxins production on peanuts over α-Fe2O3 nanorods under sunlight irradiation. International Journal of Food Microbiology 353:109296. doi: 10.1016/j.ijfoodmicro.2021.109296.
  • Sun, D., J. Mao, H. Wei, Q. Zhang, L. Cheng, X. Yang, and P. Li. 2022. Efficient prevention of Aspergillus flavus spores spread in air using plasmonic Ag-AgCl/α-Fe2O3 under visible light irradiation. ACS Applied Materials & Interfaces 14 (24):28021–32. doi: 10.1021/acsami.2c06963.
  • Sun, S., R. Zhao, S. Feng, and Y. Xie. 2018. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Mikrochimica Acta 185 (12):535. doi: 10.1007/s00604-018-3078-x.
  • Sun, S., R. Zhao, Y. Xie, and Y. Liu. 2019. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control. 100:183–8. doi: 10.1016/j.foodcont.2019.01.014.
  • Sun, X. D., P. Su, and H. Shan. 2017. Mycotoxin contamination of maize in China. Comprehensive Reviews in Food Science and Food Safety 16 (5):835–49. doi: 10.1111/1541-4337.12286.
  • Taghdisi, S. M., N. M. Danesh, H. R. Beheshti, M. Ramezani, and K. Abnous. 2016. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Nanoscale 8 (6):3439–46. doi: 10.1039/c5nr08234j.
  • Tang, D., Z. Zhong, R. Niessner, and D. Knopp. 2009. Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. The Analyst 134 (8):1554–60. doi: 10.1039/b902401h.
  • Tang, J., Y. Huang, Y. Cheng, L. Huang, J. Zhuang, and D. Tang. 2018. Two-dimensional MoS2 as a nano-binder for ssDNA: Ultrasensitive aptamer based amperometric detection of ochratoxin A. Mikrochimica Acta 185 (3):162. doi: 10.1007/s00604-018-2706-9.
  • Thanushree, M. P., D. Sailendri, K. S. Yoha, J. A. Moses, and C. Anandharamakrishnan. 2019. Mycotoxin contamination in food: An exposition on spices. Trends in Food Science & Technology 93:69–80. doi: 10.1016/j.tifs.2019.08.010.
  • Tola, M., B. Kebede, and F. Yildiz. 2016. Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture 2 (1):1191103. doi: 10.1080/23311932.2016.1191103.
  • Udovicki, B., K. Audenaert, S. D. Saeger, and A. Rajkovic. 2018. Overview on the mycotoxins incidence in serbia in the period 2004-2016. Toxins 10 (7):279. doi: 10.3390/toxins10070279.
  • USFDA. Guidance for industry: Fumonisin levels in human foods and animal feeds. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds.
  • Vidal, A., S. Ouhibi, R. Ghali, A. Hedhili, S. D. Saeger, and M. De Boevre. 2019. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 129:249–56. doi: 10.1016/j.fct.2019.04.048.
  • Wacławek, S., H. V. Lutze, K. Grübel, V. V. T. Padil, M. Černík, and D. D. Dionysiou. 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal 330:44–62. doi: 10.1016/j.cej.2017.07.132.
  • Walravens, J., H. Mikula, M. Rychlik, S. Asam, E. N. Ediage, J. D. Di Mavungu, A. Van Landschoot, L. Vanhaecke, and S. D. Saeger. 2014. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated alternaria toxins in cereal-based foodstuffs. Journal of Chromatography A 1372C: :91–101. doi: 10.1016/j.chroma.2014.10.083.
  • Wan, H., B. Zhang, X. L. Bai, Y. Zhao, M. W. Xiao, and X. Liao. 2017. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes. Journal of Separation Science 40 (20):4022–31. doi: 10.1002/jssc.201700697.
  • Wan, J., B. Chen, and J. Rao. 2020. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Comprehensive Reviews in Food Science and Food Safety 19 (3):928–53. doi: 10.1111/1541-4337.12546.
  • Wang, C., J. Qian, K. An, X. Lu, and X. Huang. 2019. A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1. The Analyst 144 (16):4772–80. doi: 10.1039/c9an00825j.
  • Wang, H., J. Mao, Z. Zhang, Q. Zhang, L. Zhang, and P. Li. 2019. Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe2O3 under visible light irradiation. Toxins 11 (2):105. doi: 10.3390/toxins11020105.
  • Wang, L., W. Chen, W. Ma, L. Liu, W. Ma, Y. Zhao, Y. Zhu, L. Xu, H. Kuang, and C. Xu. 2011. Fluorescent strip sensor for rapid determination of toxins. Chemical Communications (Cambridge, England) 47 (5):1574–6. doi: 10.1039/c0cc04032k.
  • Wang, L., F. Zhu, M. Chen, Y. Zhu, J. Xiao, H. Yang, and X. Chen. 2019. Rapid and visual detection of aflatoxin B1 in foodstuffs using aptamer/G-quadruplex DNAzyme probe with low background noise. Food Chemistry 271:581–7. doi: 10.1016/j.foodchem.2018.08.007.
  • Wang, X., X. Liu, J. Chen, H. Han, and Z. Yuan. 2014. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806. doi: 10.1016/j.carbon.2013.11.072.
  • Wang, X., R. Niessner, D. Tang, and D. Knopp. 2016. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta 912:10–23. doi: 10.1016/j.aca.2016.01.048.
  • Wang, Y., G. Ning, H. Bi, Y. Wu, G. Liu, and Y. Zhao. 2018. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochimica Acta 285:120–7. doi: 10.1016/j.electacta.2018.07.195.
  • Wang, Y., C. Zhao, D. Zhang, M. Zhao, D. Zheng, M. Peng, W. Cheng, P. Guo, and Z. Cui. 2018. Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium. Toxicon: Official Journal of the International Society on Toxinology 146:69–76. doi: 10.1016/j.toxicon.2018.04.007.
  • Wei, J., Q. Hu, Y. Gao, N. Hao, J. Qian, and K. Wang. 2021. A multiplexed self-powered dual-photoelectrode biosensor for detecting dual analytes based on an electron-transfer-regulated conversion strategy. Analytical Chemistry 93 (15):6214–22. doi: 10.1021/acs.analchem.1c00503.
  • White, P. M., T. L. Potter, and A. K. Culbreath. 2010. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. The Science of the Total Environment 408 (6):1393–402. doi: 10.1016/j.scitotenv.2009.11.012.
  • Wildermuth, M. C. 2019. Plants fight fungi using kiwellin proteins. Nature 565 (7741):575–7. doi: 10.1038/d41586-019-00092-2.
  • Winter, G, and L. Pereg. 2019. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. European Journal of Soil Science 70 (4):882–97. doi: 10.1111/ejss.12813.
  • Wu, C., J. He, Y. Li, N. Chen, Z. Huang, L. You, L. He, and S. Zhang. 2018. Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Mikrochimica Acta 185 (11):515. doi: 10.1007/s00604-018-3051-8.
  • Wu, H., R. Liu, X. Kang, C. Liang, L. Lv, and Z. Guo. 2017. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Mikrochimica Acta 185 (1):27. doi: 10.1007/s00604-017-2592-6.
  • Wu, L., F. Ding, W. Yin, J. Ma, B. Wang, A. Nie, and H. Han. 2017. From electrochemistry to electroluminescence: Development and application in ratiometric aptasensor for aflatoxin B1. Analytical Chemistry 89 (14):7578–85. doi: 10.1021/acs.analchem.7b01399.
  • Wu, S., F. Wang, Q. Li, J. Wang, Y. Zhou, N. Duan, S. Niazi, and Z. Wang. 2020. Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chemistry 323:126823. doi: 10.1016/j.foodchem.2020.126823.
  • Wu, S., F. Wang, Q. Li, Y. Zhou, C. He, and N. Duan. 2019. Detoxification of DON by photocatalytic degradation and quality evaluation of wheat. RSC Advances 9 (59):34351–8. doi: 10.1039/C9RA04316K.
  • Wu, Y., J. Sun, X. Huang, W. Lai, and Y. Xiong. 2021. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 118:658–78. doi: 10.1016/j.tifs.2021.10.025.
  • Xu, M., J. Li, H. Iwai, Q. Mei, D. Fujita, H. Su, H. Chen, and N. Hanagata. 2012. Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions. Scientific Reports 2:406. doi: 10.1038/srep00406.
  • Xu, X., X. Xu, M. Han, S. Qiu, and X. Hou. 2019. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chemistry 276:419–26. doi: 10.1016/j.foodchem.2018.10.051.
  • Xue, Z., Y. Zhang, W. Yu, J. Zhang, J. Wang, F. Wan, Y. Kim, Y. Liu, and X. Kou. 2019. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Analytica Chimica Acta 1069:1–27. doi: 10.1016/j.aca.2019.04.032.
  • Yang, J., P. Gao, Y. Liu, R. Li, H. Ma, B. Du, and Q. Wei. 2015. Label-free photoelectrochemical immunosensor for sensitive detection of ochratoxin A. Biosensors & Bioelectronics 64:13–8. doi: 10.1016/j.bios.2014.08.025.
  • Yang, M., B. Jiang, J. Xie, Y. Xiang, R. Yuan, and Y. Chai. 2014. Electrochemiluminescence recovery-based aptasensor for sensitive ochratoxin A detection via exonuclease-catalyzed target recycling amplification. Talanta 125:45–50. doi: 10.1016/j.talanta.2014.02.061.
  • Yang, X., J. Qian, L. Jiang, Y. Yan, K. Wang, Q. Liu, and K. Wang. 2014. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry (Amsterdam, Netherlands) 96:7–13. doi: 10.1016/j.bioelechem.2013.11.006.
  • Yang, Y., G. Li, D. Wu, J. Liu, X. Li, P. Luo, N. Hu, H. Wang, and Y. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–52. doi: 10.1016/j.tifs.2019.12.021.
  • Yemmireddy, V. K, and Y. C. Hung. 2017. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety 16 (4):617–31. doi: 10.1111/1541-4337.12267.
  • Zekavati, R., S. Safi, S. J. Hashemi, T. Rahmani-Cherati, M. Tabatabaei, A. Mohsenifar, and M. Bayat. 2013. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchimica Acta 180 (13-14):1217–23. doi: 10.1007/s00604-013-1047-y.
  • Zeng, X., H. Gao, D. Pan, Y. Sun, J. Cao, Z. Wu, and Z. Pan. 2015. Highly sensitive electrochemical determination of alfatoxin B1 using quantum dots-assembled amplification labels. Sensors (Basel, Switzerland) 15 (8):20648–58. doi: 10.3390/s150820648.
  • Zhai, W., T. You, X. Ouyang, and M. Wang. 2021. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 20 (2):1887–909. doi: 10.1111/1541-4337.12686.
  • Zhang, C., J. Chen, S. Wang, L. Kong, S. W. Lewis, X. Yang, A. L. Rogach, and G. Jia. 2020. Metal halide perovskite nanorods: Shape matters. Advanced Materials (Deerfield Beach, Fla.) 32 (46):e2002736. doi: 10.1002/adma.202002736.
  • Zhang, J., Y. Liu, Q. Li, X. Zhang, and J. K. Shang. 2013. Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS Applied Materials & Interfaces 5 (21):10953–9. doi: 10.1021/am4031196.
  • Zhang, L., X. Dou, C. Zhang, G. Ying, C. Liu, J. Luo, Q. Li, P. Li, Y. Wang, and M. Yang. 2018. Facile preparation of stable PEG-functionalized quantum dots with glycine-enhanced photoluminescence and their application for screening of aflatoxin B1 in herbs. Sensors and Actuators B: Chemical 261:188–95. doi: 10.1016/j.snb.2018.01.124.
  • Zhang, L., J. Ran, S. Z. Qiao, and M. Jaroniec. 2019. Characterization of semiconductor photocatalysts. Chemical Society Reviews 48 (20):5184–206. doi: 10.1039/c9cs00172g.
  • Zhang, X., C.-R. Li, W.-C. Wang, J. Xue, Y.-L. Huang, X.-X. Yang, B. Tan, X.-P. Zhou, C. Shao, S.-J. Ding, et al. 2016. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chemistry 192:197–202. doi: 10.1016/j.foodchem.2015.06.044.
  • Zhang, X., G. Li, D. Wu, X. Li, N. Hu, J. Chen, G. Chen, and Y. Wu. 2019. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosensors & Bioelectronics 137:178–98. doi: 10.1016/j.bios.2019.04.061.
  • Zhang, X., G. Li, D. Wu, J. Liu, and Y. Wu. 2020. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Frontiers 1 (4):360–81. doi: 10.1002/fft2.42.
  • Zhang, X., G. Li, D. Wu, B. Zhang, N. Hu, H. Wang, J. Liu, and Y. Wu. 2019. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosensors & Bioelectronics 145:111699. doi: 10.1016/j.bios.2019.111699.
  • Zhang, X., D. Wu, X. Zhou, Y. Yu, J. Liu, N. Hu, H. Wang, G. Li, and Y. Wu. 2019. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 121:115668. doi: 10.1016/j.trac.2019.115668.
  • Zhang, X., X. Yu, K. Wen, C. Li, G. Mujtaba Mari, H. Jiang, W. Shi, J. Shen, and Z. Wang. 2017. Multiplex lateral flow Immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. Journal of Agricultural and Food Chemistry 65 (36):8063–71. doi: 10.1021/acs.jafc.7b02827.
  • Zhang, Z., Y. Li, P. Li, Q. Zhang, W. Zhang, X. Hu, and X. Ding. 2014. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts. Food Chemistry 146:314–9. doi: 10.1016/j.foodchem.2013.09.048.
  • Zhao, J., L. Wang, D. Xu, and Z. Lu. 2017. Involvement of ROS in nanosilver-caused suppression of aflatoxin production from Aspergillus flavus. RSC Advances 7 (37):23021–6. doi: 10.1039/C7RA02312J.
  • Zheng, F., W. Ke, L. Shi, H. Liu, and Y. Zhao. 2019. Plasmonic Au-Ag janus nanoparticle engineered ratiometric surface-enhanced Raman scattering aptasensor for ochratoxin A detection. Analytical Chemistry 91 (18):11812–20. doi: 10.1021/acs.analchem.9b02469.
  • Zhong, L., J. Carere, Z. Lu, F. Lu, and T. Zhou. 2018. Patulin in apples and apple-based food products: The burdens and the mitigation strategies. Toxins 10 (11):475. doi: 10.3390/toxins10110475.
  • Zhong, W. 2009. Nanomaterials in fluorescence-based biosensing. Analytical and Bioanalytical Chemistry 394 (1):47–59. doi: 10.1007/s00216-009-2643-x.
  • Zhou, Y., S. Wu, F. Wang, Q. Li, C. He, N. Duan, and Z. Wang. 2020. Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@TiO2 composite. Chemosphere 238:124648. doi: 10.1016/j.chemosphere.2019.124648.
  • Zhu, W., L. Li, Z. Zhou, X. Yang, N. Hao, Y. Guo, and K. Wang. 2020. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chemistry 319:126544. doi: 10.1016/j.foodchem.2020.126544.
  • Zhu, X., F. Kou, H. Xu, Y. Han, G. Yang, X. Huang, W. Chen, Y. Chi, and Z. Lin. 2018. Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sensors and Actuators B: Chemical 270:263–9. doi: 10.1016/j.snb.2018.05.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.