1,578
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Food gels: principles, interaction mechanisms and its microstructure

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 12530-12551 | Published online: 02 Aug 2022

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi: 10.1016/j.tifs.2017.10.011.
  • Abdolmaleki, K., M. Amin Mohammadifar, R. Mohammadi, G. Fadavi, and N. M. Meybodi. 2016. The effect of pH and salt on the stability and physicochemical properties of oil-in-water emulsions prepared with gum tragacanth. Carbohydrate Polymers 140:342–8. doi: 10.1016/j.carbpol.2015.12.081.
  • Ahmad, A., F. Muhammad Anjum, T. Zahoor, H. Nawaz, and S. M. R. Dilshad. 2012. Beta glucan: A valuable functional ingredient in foods. Critical Reviews in Food Science and Nutrition 52 (3):201–12. doi: 10.1080/10408398.2010.499806.
  • Ahmad, M., S. Qureshi, M. H. Akbar, S. A. Siddiqui, A. Gani, M. Mushtaq, I. Hassan, and S. B. Dhull. 2022. Plant-based meat alternatives: Compositional analysis, current development and challenges. Applied Food Research 2 (2):100154.
  • Ahmad, S., M. Ahmad, K. Manzoor, R. Purwar, and S. Ikram. 2019. A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules 136:870–90. doi: 10.1016/j.ijbiomac.2019.06.113.
  • Akkarachaneeyakorn, S., and S. Tinrat. 2015. Effects of types and amounts of stabilizers on physical and sensory characteristics of cloudy ready‐to‐drink mulberry fruit juice. Food Science & Nutrition 3 (3):213–20. doi: 10.1002/fsn3.206.
  • Alavi, F., Z. Emam-Djomeh, M. Saeid Yarmand, M. Salami, S. Momen, and A. A. Moosavi-Movahedi. 2018. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids 85:267–80. doi: 10.1016/j.foodhyd.2018.07.012.
  • Alejandre, M., I. Astiasarán, D. Ansorena, and S. Barbut. 2019. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Research International 122:129–36. doi: 10.1016/j.foodres.2019.03.056.
  • Ali, A., and S. Ahmed. 2018. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. Journal of Agricultural and Food Chemistry 66 (27):6940–67. doi: 10.1021/acs.jafc.8b01052.
  • Alvi, T., Z. Asif, and M. K. Iqbal Khan. 2022. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique—A review. Food Bioscience 46:101580. doi: 10.1016/j.fbio.2022.101580.
  • Apoorva, A., A. P. Rameshbabu, S. Dasgupta, S. Dhara, and M. Padmavati. 2020. Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals. International Journal of Biological Macromolecules 147:675–87. doi: 10.1016/j.ijbiomac.2020.01.027.
  • Baba, W. N., B. Baby, P. Mudgil, C.-Y. Gan, R. Vijayan, and S. Maqsood. 2021. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. LWT - Food Science and Technology 143:111135. doi: 10.1016/j.lwt.2021.111135.
  • Bai, L., S. Huan, Z. Li, and D. J. McClements. 2017. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids 66:144–53. doi: 10.1016/j.foodhyd.2016.12.019.
  • Banerjee, S., and S. Bhattacharya. 2012. Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition 52 (4):334–46. doi: 10.1080/10408398.2010.500234.
  • Barak, S., and D. Mudgil. 2014. Locust bean gum: Processing, properties and food applications—A review. International Journal of Biological Macromolecules 66:74–80. doi: 10.1016/j.ijbiomac.2014.02.017.
  • Bascuas, S., I. Hernando, G. Moraga, and A. Quiles. 2020. Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology 55 (4):1458–67. doi: 10.1111/ijfs.14469.
  • Beaumont, M., J. König, M. Opietnik, A. Potthast, and T. Rosenau. 2017. Drying of a cellulose II gel: Effect of physical modification and redispersibility in water. Cellulose 24 (3):1199–209. doi: 10.1007/s10570-016-1166-9.
  • Behare, P. V., S. Mazhar, V. Pennone, and O. McAuliffe. 2020. Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities. Journal of Dairy Science 103 (12):11138–51. doi: 10.3168/jds.2020-19120.
  • Behera, S. S., and R. C. Ray. 2017. Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review. Food Reviews International 33 (1):22–43. doi: 10.1080/87559129.2015.1137310.
  • Belali, N., N. Wathoni, and M. Muchtaridi. 2019. Advances in orally targeted drug delivery to colon. Journal of Advanced Pharmaceutical Technology & Research 10 (3):100–6. doi: 10.4103/japtr.JAPTR_26_19.
  • Blinov, A. V., S. A. Siddiqui, A. A. Nagdalian, A. A. Blinova, A. A. Gvozdenko, V. V. Raffa, N. P. Oboturova, A. B. Golik, D. G. Maglakelidze, and S. A. Ibrahim. 2021. Investigation of the influence of Zinc-containing compounds on the components of the colloidal phase of milk. Arabian Journal of Chemistry 14 (7):103229. doi: 10.1016/j.arabjc.2021.103229.
  • Boiko, Y. M., V. A. Marikhin, O. A. Moskalyuk, and L. P. Myasnikova. 2019. On the determination of the elastic modulus of ultraoriented high-strength film threads obtained by drawing of ultra-high-molecular-weight polyethylene xerogels. Physics of the Solid State 61 (1):44–7. doi: 10.1134/S1063783419010037.
  • Boostani, S., and S. M. Jafari. 2021. A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends in Food Science & Technology 109:303–21. doi: 10.1016/j.tifs.2021.01.040.
  • Calligaris, S., L. Manzocco, F. Valoppi, and M. C. Nicoli. 2013. Effect of palm oil replacement with monoglyceride organogel and hydrogel on sweet bread properties. Food Research International 51 (2):596–602. doi: 10.1016/j.foodres.2013.01.007.
  • Cao, Y., and R. Mezzenga. 2020. Design principles of food gels. Nature Food 1 (2):106–18. doi: 10.1038/s43016-019-0009-x.
  • Cargnin, M. A., B. C. Gasparin, D. dos Santos Rosa, and A. T. Paulino. 2021. Performance of lactase encapsulated in pectin-based hydrogels during lactose hydrolysis reactions. LWT - Food Science and Technology 150:111863. doi: 10.1016/j.lwt.2021.111863.
  • Carruthers, J. E., W. Carruthers, and I. Coldham. 2004. Modern methods of organic synthesis. Cambridge, UK: Cambridge University Press.
  • Catoira, M. C., L. Fusaro, D. Di Francesco, M. Ramella, and F. Boccafoschi. 2019. Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine 30 (10):1–10. doi: 10.1007/s10856-019-6318-7.
  • Chen, D., F. Fang, E. Federici, O. Campanella, and O. G. Jones. 2020. Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydrate Polymers 239:116247. doi: 10.1016/j.carbpol.2020.116247.
  • Chen, S., Y. Zhang, J. Qing, Y. Han, D. J. McClements, and Y. Gao. 2020. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocolloids 103:105651. doi: 10.1016/j.foodhyd.2020.105651.
  • Christiansen, L., D. Pathiraja, P. K. Bech, M. Schultz-Johansen, R. Hennessy, D. Teze, I.-G. Choi, and P. Stougaard. 2020. A multifunctional polysaccharide utilization gene cluster in Colwellia echini encodes enzymes for the complete degradation of κ-Carrageenan, ι-Carrageenan, and Hybrid β/κ-Carrageenan. mSphere 5 (1):e00792–19. doi: 10.1128/mSphere.00792-19.
  • Chuang, J.-J., Y.-Y. Huang, S.-H. Lo, T.-F. Hsu, W.-Y. Huang, S.-L. Huang, and Y.-S. Lin. 2017. Effects of pH on the shape of alginate particles and its release behavior. International Journal of Polymer Science 2017:1–9. doi: 10.1155/2017/3902704.
  • Cittadini, A., P. E. S. Munekata, M. Pateiro, M. V. Sarriés, R. Domínguez, and J. M. Lorenzo. 2021. Physicochemical composition and nutritional properties of foal burgers enhanced with healthy oil emulsion hydrogels. International Journal of Food Science & Technology 56 (12):6182–91. doi: 10.1111/ijfs.15087.
  • Cozmuta, A. M., A. Jastrzębska, R. Apjok, M. Petrus, L. Mihaly Cozmuta, A. Peter, and C. Nicula. 2021. Immobilization of baker’s yeast in the alginate-based hydrogels to impart sensorial characteristics to frozen dough bread. Food Bioscience 42:101143. doi: 10.1016/j.fbio.2021.101143.
  • da Silva, T. L. T., K. F. Chaves, G. D. Fernandes, J. B. Rodrigues, H. M. A. Bolini, and D. B. Arellano. 2018. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. Journal of the American Oil Chemists’ Society 95 (6):673–85. doi: 10.1002/aocs.12074.
  • Dafe, A., H. Etemadi, H. Zarredar, and G. R. Mahdavinia. 2017. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules 97:299–307. doi: 10.1016/j.ijbiomac.2017.01.016.
  • de Vries, A., D. Jansen, E. van der Linden, and E. Scholten. 2018. Tuning the rheological properties of protein-based oleogels by water addition and heat treatment. Food Hydrocolloids 79:100–9. doi: 10.1016/j.foodhyd.2017.11.043.
  • Diamantino, V. R., M. S. Costa, S. R. Taboga, P. S. L. Vilamaior, C. M. L. Franco, and A. L. B. Penna. 2019. Starch as a potential fat replacer for application in cheese: Behaviour of different starches in casein/starch mixtures and in the casein matrix. International Dairy Journal 89:129–38. doi: 10.1016/j.idairyj.2018.08.015.
  • Dickinson, E., and Y. Yamamoto. 1996. Rheology of milk protein gels and protein-stabilized emulsion gels cross-linked with transglutaminase. Journal of Agricultural and Food Chemistry 44 (6):1371–7. doi: 10.1021/jf950705y.
  • Dominguez, R., P. E. S. Munekata, M. Pateiro, O. López-Fernández, and J. M. Lorenzo. 2021. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Current Opinion in Food Science 37:135–44. doi: 10.1016/j.cofs.2020.10.005.
  • Dong, S., S. Feng, F. Liu, R. Li, W. Li, F. Liu, G. Shi, L. Chen, and Y. Zhang. 2021. Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications. International Journal of Biological Macromolecules 179:398–406. doi: 10.1016/j.ijbiomac.2021.03.027.
  • Dordevic, V., A. Paraskevopoulou, F. Mantzouridou, S. Lalou, M. Pantić, B. Bugarski, and V. Nedović. 2016. Encapsulation technologies for food industry. In Emerging and traditional technologies for safe, healthy and quality food, 329–82. Berlin, Heidelberg: Springer.
  • Du Le, H., S. M. Loveday, H. Singh, and A. Sarkar. 2020. Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength. Food Hydrocolloids 99:105344. doi: 10.1016/j.foodhyd.2019.105344.
  • Essa, E. A., T. T. Elebyary, M. M. Abdelquader, G. M. El Maghraby, and A. A. Elkordy. 2021. Smart liquids for oral controlled drug release: An overview of alginate and non-alginate based systems. Journal of Drug Delivery Science and Technology 61:102211. doi: 10.1016/j.jddst.2020.102211.
  • Fan, M., T. Hu, S. Zhao, S. Xiong, J. Xie, and Q. Huang. 2017. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chemistry 218:221–30. doi: 10.1016/j.foodchem.2016.09.068.
  • Fan, Y., X. Zeng, J. Yi, and Y. Zhang. 2020. Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. International Journal of Biological Macromolecules 152:189–98. doi: 10.1016/j.ijbiomac.2020.02.248.
  • Feig, V. R., H. Tran, M. Lee, and Z. Bao. 2018. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nature Communications 9 (1):1–9. doi: 10.1038/s41467-018-05222-4.
  • Fournier, M., T. Ducasse, A. Perez, A. Barchouchi, D. Daval, and S. Gin. 2019. Effect of pH on the stability of passivating gel layers formed on International Simple Glass. Journal of Nuclear Materials 524:21–38. doi: 10.1016/j.jnucmat.2019.06.029.
  • Franco, D., A. J. Martins, M. López-Pedrouso, M. A. Cerqueira, L. Purriños, L. M. Pastrana, A. A. Vicente, C. Zapata, and J. M. Lorenzo. 2020. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture 100 (1):218–24. doi: 10.1002/jsfa.10025.
  • Franco, Y. L., L. I. Higuera-Ciapara, J. Lizardi-Mendoza, W. Wang, and F. M. Goycoolea. 2021. Other exudates: Tragacanth, karaya, mesquite gum, and larchwood arabinogalactan. In Handbook of hydrocolloids, 673–727. Sawston, UK: Woodhead Publishing.
  • Gautam, M., and D. Santhiya. 2019. Pectin/PEG food grade hydrogel blend for the targeted oral co-delivery of nutrients. Colloids and Surfaces A: Physicochemical and Engineering Aspects 577:637–44. doi: 10.1016/j.colsurfa.2019.06.027.
  • Gharibzahedi, S. M. T., and I. S. Chronakis. 2018. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products. Food Chemistry 245:620–32. doi: 10.1016/j.foodchem.2017.10.138.
  • Ghebremedin, M., C. Schreiber, B. Zielbauer, N. Dietz, and T. A. Vilgis. 2020. Interaction of xanthan gums with galacto-and glucomannans. Part II: Heat induced synergistic gelation mechanism and their interaction with salt. Journal of Physics: Materials 3 (3):034014. doi: 10.1088/2515-7639/ab9ac9.
  • Glisic, M., M. Baltic, M. Glisic, D. Trbovic, M. Jokanovic, N. Parunovic, M. Dimitrijevic, B. Suvajdzic, M. Boskovic, and D. Vasilev. 2019. Inulin-based emulsion-filled gel as a fat replacer in prebiotic- and PUFA-enriched dry fermented sausages. International Journal of Food Science & Technology 54 (3):787–97. doi: 10.1111/ijfs.13996.
  • Golik, A., N. Oboturova, A. Blinov, T. Bacholdina, and U. Rajabov. 2022. Development of raw semi-dry sausages enriched with colloidal chelate complexes of essential nutrients. Intelligent Biotechnologies of Natural and Synthetic Biologically Active Substances, Cham.
  • Graham, S., P. F. Marina, and A. Blencowe. 2019. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydrate Polymers 207:143–59. doi: 10.1016/j.carbpol.2018.11.053.
  • Granados, L., L. V. de Souza, G. Falk, D. Hotza, J. A. Escobar, J. B. R. Neto, and C. R. Rambo. 2017. Influence of synthesis parameters on sol–gel transition and physical properties of Nb 2 O 5 mesoporous ambigels. Journal of Sol-Gel Science and Technology 83 (3):537–44. doi: 10.1007/s10971-017-4435-7.
  • Grover, J. A. 2020. Methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC). In Food hydrocolloids, 121–54. Boca Raton, FL: CRC Press.
  • Gu, L., D. J. McClements, J. Li, Y. Su, Y. Yang, and J. Li. 2021. Formulation of alginate/carrageenan microgels to encapsulate, protect and release immunoglobulins: Egg Yolk IgY. Food Hydrocolloids 112:106349. doi: 10.1016/j.foodhyd.2020.106349.
  • Gupta, V., G. T. K. Ranjitha, J. Stephen, and M. Radhakrishnan. 2020. Cold plasma-assisted shape-shifting of a flat two-dimensional wheat xerogel and its morphological behavior. Journal of Food Process Engineering 43 (9):e13456. doi: 10.1111/jfpe.13456.
  • Harrison, S. M., P. W. Cleary, and M. D. Sinnott. 2018. Investigating mixing and emptying for aqueous liquid content from the stomach using a coupled biomechanical-SPH model. Food & Function 9 (6):3202–19. doi: 10.1039/c7fo01226h.
  • Hasanvand, E., M. Fathi, and A. Bassiri. 2018. Production and characterization of vitamin D 3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters. Journal of Food Science and Technology 55 (4):1314–24. doi: 10.1007/s13197-018-3042-0.
  • Heck, R. T., E. Saldaña, J. M. Lorenzo, L. P. Correa, M. B. Fagundes, A. J. Cichoski, C. R. de Menezes, R. Wagner, and P. C. B. Campagnol. 2019. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Science 156:174–82. doi: 10.1016/j.meatsci.2019.05.034.
  • Heinen, L., T. Heuser, A. Steinschulte, and A. Walther. 2017. Antagonistic enzymes in a biocatalytic pH feedback system program autonomous DNA hydrogel life cycles. Nano Letters 17 (8):4989–95. doi: 10.1021/acs.nanolett.7b02165.
  • Hoang, H. T., S.-H. Jo, Q.-T. Phan, H. Park, S. H. Park, C.-W. Oh, and K. T. Lim. 2021. Dual pH-/thermo-responsive chitosan-based hydrogels prepared using “click” chemistry for colon-targeted drug delivery applications. Carbohydrate Polymers 260:117812. doi: 10.1016/j.carbpol.2021.117812.
  • Holder, A. J., N. Badiei, K. Hawkins, C. Wright, P. R. Williams, and D. J. Curtis. 2018. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter 14 (4):574–80. doi: 10.1039/c7sm01933e.
  • Hou, J.-J., J. Guo, J.-M. Wang, X.-T. He, Y. Yuan, S.-W. Yin, and X.-Q. Yang. 2015. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure. Food Hydrocolloids 50:94–101. doi: 10.1016/j.foodhyd.2015.04.012.
  • Hu, Y., T. Que, Z. Fang, W. Liu, S. Chen, D. Liu, and X. Ye. 2013. Effect of different drying methods on the protein and product quality of hairtail fish meat gel. Drying Technology 31 (13-14):1707–14. doi: 10.1080/07373937.2013.794831.
  • Huang, J., S. Zhu, C. Li, C. Zhang, and Y. Ji. 2020. Cost-effective optimization of gellan gum production by Sphingomonas paucimobilis using corn steep liquor. Preparative Biochemistry & Biotechnology 50 (2):191–7. doi: 10.1080/10826068.2019.1692215.
  • Hussain, I., N. B. Singh, A. Singh, H. Singh, and S. C. Singh. 2016. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38 (4):545–60. doi: 10.1007/s10529-015-2026-7.
  • Hwang, H.-S., M. Singh, and S. Lee. 2016. Properties of cookies made with natural wax–vegetable oil organogels. Journal of Food Science 81 (5):C1045–54. doi: 10.1111/1750-3841.13279.
  • Iacob, A.-T., M. Drăgan, O.-M. Ionescu, L. Profire, A. Ficai, E. Andronescu, L. G. Confederat, and D. Lupașcu. 2020. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics 12 (10):983. doi: 10.3390/pharmaceutics12100983.
  • Incoronato, A. L., A. Conte, G. G. Buonocore, and M. A. Del Nobile. 2011. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. Journal of Dairy Science 94 (4):1697–704. doi: 10.3168/jds.2010-3823.
  • Ishwarya, P., and P. Nisha. 2021. Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science Nutrition 2021:1–25. doi: 10.1080/10408398.2021.1875394.
  • Jaipan, P., A. Nguyen, and R. J. Narayan. 2017. Gelatin-based hydrogels for biomedical applications. MRS Communications 7 (3):416–26. doi: 10.1557/mrc.2017.92.
  • Jakinala, P., N. Lingampally, B. Hameeda, R. Z. Sayyed, K. M. Yahya, E. A. Elsayed, and H. El Enshasy. 2021. Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLoS One 16 (3):e0241729. doi: 10.1371/journal.pone.0241729.
  • Jakóbik-Kolon, A., J. Bok-Badura, K. Karoń, K. Mitko, and A. Milewski. 2017. Hybrid pectin-based biosorbents for zinc ions removal. Carbohydrate Polymers 169:213–9. doi: 10.1016/j.carbpol.2017.03.095.
  • Jian, W., H. Wu, L. Wu, Y. Wu, L. Jia, J. Pang, and Y-m Sun. 2016. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein. Carbohydrate Polymers 150:21–31. doi: 10.1016/j.carbpol.2016.05.001.
  • Jiang, Y., C. K. Reddy, K. Huang, L. Chen, and B. Xu. 2019. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. International Journal of Biological Macromolecules 133:1156–63. doi: 10.1016/j.ijbiomac.2019.04.187.
  • Jin, W., L. Xiang, D. Peng, G. Liu, J. He, S. Cheng, B. Li, and Q. Huang. 2020. Study on the coupling progress of thermo-induced anthocyanins degradation and polysaccharides gelation. Food Hydrocolloids 105:105822. doi: 10.1016/j.foodhyd.2020.105822.
  • Khan, M. K. I., Y. M. Ghauri, T. Alvi, U. Amin, M. Khan, A. Nazir, F. Saeed, R. M. Aadil, M T. i Nadeem, and I. Babu. 2021. Microwave assisted drying and extraction technique; kinetic modelling, energy consumption and influence on antioxidant compounds of fenugreek leaves. Food Science & Technology 42:e56020.
  • Kim, M. H., Y. W. Lee, W.-K. Jung, J. Oh, and S. Y. Nam. 2019. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials 98:187–94. doi: 10.1016/j.jmbbm.2019.06.014.
  • Koli, J. M., S. Basu, N. Kannuchamy, and V. Gudipati. 2013. Effect of pH and ionic strength on functional properties of fish gelatin in comparison to mammalian gelatin. Fish Technology 50:126–32.
  • Koshani, R., and A. Madadlou. 2018. A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends in Food Science & Technology 71:268–73. doi: 10.1016/j.tifs.2017.10.023.
  • Krop, E. M., M. M. Hetherington, S. Miquel, and A. Sarkar. 2019. The influence of oral lubrication on food intake: A proof-of-concept study. Food Quality and Preference 74:118–24. doi: 10.1016/j.foodqual.2019.01.016.
  • Kupiec, M., A. Zbikowska, K. Marciniak-Lukasiak, and M. Kowalska. 2020. Rapeseed oil in new application: Assessment of structure of oleogels based on their physicochemical properties and microscopic observations. Agriculture 10 (6):211. doi: 10.3390/agriculture10060211.
  • Kwan, A., and G. Davidov-Pardo. 2018. Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels. Food Chemistry 250:46–53. doi: 10.1016/j.foodchem.2017.12.089.
  • Lazarte, A., F. F. J. Moreno, C. Cueva, I. Gil-Sánchez, and M. Villamiel. 2019. Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®). Carbohydrate Polymers 207:382–90. doi: 10.1016/j.carbpol.2018.11.088.
  • Lee, T., and Y. H. Chang. 2020. Structural, physicochemical, and in-vitro release properties of hydrogel beads produced by oligochitosan and de-esterified pectin from yuzu (Citrus junos) peel as a quercetin delivery system for colon target. Food Hydrocolloids 108:106086. doi: 10.1016/j.foodhyd.2020.106086.
  • Li, H., D. Wang, C. Liu, J. Zhu, M. Fan, X. Sun, T. Wang, Y. Xu, and Y. Cao. 2019. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin. Food Hydrocolloids 87:342–51. doi: 10.1016/j.foodhyd.2018.08.002.
  • Li, H., Y. J. Tan, and L. Li. 2018. A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels. Carbohydrate Polymers 198:261–9. doi: 10.1016/j.carbpol.2018.06.081.
  • Li, L., J. Zhao, Y. Sun, F. Yu, and J. Ma. 2019. Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chemical Engineering Journal 372:1091–103. doi: 10.1016/j.cej.2019.05.007.
  • Li, Y., X. Dou, J. Pang, M. Liang, C. Feng, M. Kong, Y. Liu, X. Cheng, Y. Wang, and X. Chen. 2019. Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel: Delivery system for oral efficacy enhancement of functional food ingredients. Journal of Functional Foods 63:103573. doi: 10.1016/j.jff.2019.103573.
  • Lim, H.-P., K.-W. Ho, C. K. Surjit Singh, C.-W. Ooi, B.-T. Tey, and E.-S. Chan. 2020. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids 103:105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Liu, K., R.-L. Huang, X.-Q. Zha, Q.-M. Li, L.-H. Pan, and J.-P. Luo. 2020. Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydrate Polymers 232:115810. doi: 10.1016/j.carbpol.2019.115810.
  • Liu, K., Q.-M. Li, X.-Q. Zha, L.-H. Pan, L.-J. Bao, H.-L. Zhang, and J.-P. Luo. 2019. Effects of calcium or sodium ions on the properties of whey protein isolate-lotus root amylopectin composite gel. Food Hydrocolloids 87:629–36. doi: 10.1016/j.foodhyd.2018.08.050.
  • Liu, K., X.-Q. Zha, W.-D. Shen, Q.-M. Li, L.-H. Pan, and J.-P. Luo. 2020. The hydrogel of whey protein isolate coated by lotus root amylopectin enhance the stability and bioavailability of quercetin. Carbohydrate Polymers 236:116009. doi: 10.1016/j.carbpol.2020.116009.
  • Liu, L., B. Wang, Y. Gao, and T.-C. Bai. 2013. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Carbohydrate Polymers 97 (1):152–8. doi: 10.1016/j.carbpol.2013.04.043.
  • Liu, R., L. Wang, Y. Liu, T. Wu, and M. Zhang. 2018. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocolloids 81:39–47. doi: 10.1016/j.foodhyd.2018.01.031.
  • Liu, Y., J. Yu, L. Liu, and Y. Fan. 2022. Shape-recoverable, piezoresistive, and thermally insulated xerogels based on nanochitin-stabilized Pickering foams. Carbohydrate Polymers 278:118934. doi: 10.1016/j.carbpol.2021.118934.
  • Lu, X., J. Chen, Z. Guo, Y. Zheng, M. C. Rea, H. Su, X. Zheng, B. Zheng, and S. Miao. 2019. Using polysaccharides for the enhancement of functionality of foods: A review. Trends in Food Science & Technology 86:311–27. doi: 10.1016/j.tifs.2019.02.024.
  • Lu, X., and Q. Huang. 2020. Stability and in vitro digestion study of curcumin-encapsulated in different milled cellulose particle stabilized Pickering emulsions. Food & Function 11 (1):606–16. doi: 10.1039/c9fo02029b.
  • Mackie, A., S. Gourcy, N. Rigby, J. Moffat, I. Capron, and B. Bajka. 2019. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale 11 (6):2991–8. doi: 10.1039/c8nr05860a.
  • Mahmoud, D. B. E. D., and S. Marzok. 2020. In situ supersaturable polyhydrogels: A feasible modification of the conventional hydrogels for the enhanced delivery of stomach specific hydrophobic drugs. Journal of Drug Delivery Science and Technology 58:101744. doi: 10.1016/j.jddst.2020.101744.
  • Manzano, V. E., M. N. Pacho, J. E. Tasqué, and N. B. D’Accorso. 2019. Alginates: Hydrogels, their chemistry, and applications. In Alginates, 89–140. Palm Bay, FL: Apple Academic Press.
  • Mascaraque, L. G. G., M. Martínez- Sanz, S. A. Hogan, A. López-Rubio, and A. Brodkorb. 2019. Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydrate Polymers 223:115121. doi: 10.1016/j.carbpol.2019.115121.
  • Mascaraque, L. G. G., C. Soler, and A. Lopez-Rubio. 2016. Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study. Food Hydrocolloids 61:128–38. doi: 10.1016/j.foodhyd.2016.05.009.
  • McClements, D. J. 2017. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloids 68:238–45. doi: 10.1016/j.foodhyd.2016.05.037.
  • Mi, H., Y. Li, C. Wang, S. Yi, X. Li, and J. Li. 2021. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocolloids 112:106290. doi: 10.1016/j.foodhyd.2020.106290.
  • Mirhosseini, H., and B. T. Amid. 2012. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International 46 (1):387–98. doi: 10.1016/j.foodres.2011.11.017.
  • Mun, S., Y.-R. Kim, and D. J. McClements. 2015. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry 173:454–61. doi: 10.1016/j.foodchem.2014.10.053.
  • Nazir, A., A. Asghar, and A. Aslam Maan. 2017. Chapter 13 - Food gels: Gelling process and new applications. In Advances in food rheology and its applications, eds. J. Ahmed, P. Ptaszek and S. Basu, 335–53. Sawston, UK: Woodhead Publishing.
  • Nejatian, M., S. Abbasi, and F. Azarikia. 2020. Gum Tragacanth: Structure, characteristics and applications in foods. International Journal of Biological Macromolecules 160:846–60. doi: 10.1016/j.ijbiomac.2020.05.214.
  • Nepovinnykh, N. V., O. N. Kliukina, N. M. Ptichkina, and A. Bostan. 2019. Hydrogel based dessert of low calorie content. Food Hydrocolloids 86:184–92. doi: 10.1016/j.foodhyd.2018.03.036.
  • Nguyen, M. N. U., P. H. L. Tran, and T. T. D. Tran. 2019. A single-layer film coating for colon-targeted oral delivery. International Journal of Pharmaceutics 559:402–9. doi: 10.1016/j.ijpharm.2019.01.066.
  • Nojima, T., and T. Iyoda. 2018. Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Materials 10 (1):e460. doi: 10.1038/am.2017.219.
  • Oh, I., J. Lee, H. G. Lee, and S. Lee. 2019. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International (Ottawa, Ont.) 122:566–72. doi: 10.1016/j.foodres.2019.01.012.
  • Panahi, Y., A. Gharekhani, H. Hamishehkar, P. Zakeri-Milani, and H. Gharekhani. 2019. Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: Synthesis, characterization and in vitro drug release study. Advanced Pharmaceutical Bulletin 9 (1):159–73. doi: 10.15171/apb.2019.019.
  • Park, S., S. Mun, and Y.-R. Kim. 2018. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels. Food Research International 105:440–5. doi: 10.1016/j.foodres.2017.11.039.
  • Paulraj, T., A. V. Riazanova, and A. J. Svagan. 2018. Bioinspired capsules based on nanocellulose, xyloglucan and pectin – The influence of capsule wall composition on permeability properties. Acta Biomaterialia 69:196–205. doi: 10.1016/j.actbio.2018.01.003.
  • Pedrali, D., S. Barbarito, and V. Lavelli. 2020. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads – Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT - Food Science and Technology 133:109952. doi: 10.1016/j.lwt.2020.109952.
  • Peng, J., V. Calabrese, J. Geurtz, K. P. Velikov, P. Venema, and E. van der Linden. 2019. Composite Gels Containing Whey Protein Fibrils and Bacterial Cellulose Microfibrils. Journal of Food Science 84 (5):1094–103. doi: 10.1111/1750-3841.14509.
  • Pereira, L., J. Cotas, and M. Blumenberg. 2020. Alginates: recent uses of this natural polymer. Norderstedt, Germany: BoD–Books on Demand.
  • Pettitt, D. J. 2020. Xanthan gum. In Food hydrocolloids, 127–49. Boca Raton, FL: CRC Press.
  • Preis, M., and H. Oblom. 2017. 3D-printed drugs for children—Are we ready yet? AAPS PharmSciTech 18 (2):303–8. doi: 10.1208/s12249-016-0704-y.
  • Qiu, C., Y. Huang, A. Li, D. Ma, and Y. Wang. 2018. Fabrication and characterization of oleogel stabilized by gelatin-polyphenol-polysaccharides nanocomplexes. Journal of Agricultural and Food Chemistry 66 (50):13243–52. doi: 10.1021/acs.jafc.8b02039.
  • Rahimi, S., S. Khoee, and M. Ghandi. 2018. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release. Carbohydrate Polymers 201:236–45. doi: 10.1016/j.carbpol.2018.08.074.
  • Rahimi, S., S. Khoee, and M. Ghandi. 2019. Preparation and characterization of rod-like chitosan–quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. International Journal of Biological Macromolecules 128:279–89. doi: 10.1016/j.ijbiomac.2019.01.137.
  • Raj, V., J.-H. Lee, J.-J. Shim, and J. Lee. 2021. Recent findings and future directions of grafted gum karaya polysaccharides and their various applications: A review. Carbohydrate Polymers 258:117687. doi: 10.1016/j.carbpol.2021.117687.
  • Sadovoy, V., V. M. A. Selimov, T. V. Shchedrina, and A. A. Nagdalian. 2016. Usage of biological active supplements in technology of prophilactic meat products. Research Journal of Pharmaceutical, Biological & Chemical Sciences 7 (5):1861–5.
  • Sala, G., M. Stieger, and F. van de Velde. 2010. Serum release boosts sweetness intensity in gels. Food Hydrocolloids 24 (5):494–501. doi: 10.1016/j.foodhyd.2009.12.001.
  • Sarker, B., J. Rompf, R. Silva, N. Lang, R. Detsch, J. Kaschta, B. Fabry, and A. R. Boccaccini. 2015. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. International Journal of Biological Macromolecules 78:72–8. doi: 10.1016/j.ijbiomac.2015.03.061.
  • Schmidt, U. S., L. Schütz, and H. P. Schuchmann. 2017. Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification. Food Hydrocolloids 62:288–98. doi: 10.1016/j.foodhyd.2016.08.016.
  • Siddiqui, S. A., N. A. Bahmid, A. Taha, I. Khalifa, S. Khan, H. Rostamabadi, and S. M. Jafari. 2022. Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: A critical compilation of a decade of research. Critical Reviews in Food Science and Nutrition 2022:1–22. doi: 10.1080/10408398.2022.2036096.
  • Singhvi, G., N. Hans, N. Shiva, and S. K. Dubey. 2019. Xanthan gum in drug delivery applications. In Natural polysaccharides in drug delivery and biomedical applications, 121–44. New York, NY: Elsevier.
  • Song, F., J. Gong, Y. Tao, Y. Cheng, J. Lu, and H. Wang. 2021. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. International Journal of Biological Macromolecules 176:448–58. doi: 10.1016/j.ijbiomac.2021.02.104.
  • Sorde, K. L., and L. Ananthanarayan. 2019. Effect of transglutaminase treatment on properties of coconut protein-guar gum composite film. LWT - Food Science and Technology 115:108422. doi: 10.1016/j.lwt.2019.108422.
  • Souto, V. O. d., M. M. F. Santos, D. A. S. Lima, G. I. B. Florentino, M. de Sousa Galvão, T. K. A. Bezerra, M. S. Madruga, and F. A. P. da Silva. 2021. Olive oil-in-water emulsion as a source of desirable fatty acids in free-range “Caipira” chicken ham. LWT - Food Science and Technology 144:111216. doi: 10.1016/j.lwt.2021.111216.
  • Souza, A. G. d., C. T. Cesco, G. F. de Lima, S. E. Artifon, D. d S. Rosa, and A. T. Paulino. 2019. Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. International Journal of Biological Macromolecules 140:33–42. doi: 10.1016/j.ijbiomac.2019.08.106.
  • Sriprablom, J., P. Luangpituksa, J. Wongkongkatep, T. Pongtharangkul, and M. Suphantharika. 2019. Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum. Journal of Food Engineering 242:141–52. doi: 10.1016/j.jfoodeng.2018.08.031.
  • Stieger, M., and F. van de Velde. 2013. Microstructure, texture and oral processing: New ways to reduce sugar and salt in foods. Current Opinion in Colloid & Interface Science 18 (4):334–48. doi: 10.1016/j.cocis.2013.04.007.
  • Strobel, S. A., H. B. Scher, N. Nitin, and T. Jeoh. 2016. In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocolloids 58:141–9. doi: 10.1016/j.foodhyd.2016.02.031.
  • Sun, C., R. Liu, B. Liang, T. Wu, W. Sui, and M. Zhang. 2018. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Research International (Ottawa, Ont.) 108:151–60. doi: 10.1016/j.foodres.2018.01.036.
  • Susilo, U., and F. N. Rachmawati. 2020. Protease, Lipase and Amylase Activities in Barred Loach, Nemacheilus fasciatus CV. Jurnal Biodjati 5 (1):115–24. doi: 10.15575/biodjati.v5i1.6530.
  • Tabassum, N., S. Joshi, and R. U. Islam. 2020. Functional and nutritional aspects of hydrocolloids and lipids. In Functional Food Products and Sustainable Health, 169–89. Berlin, Heidelberg: Springer.
  • Tallo, K., R. Pons, C. González, and O. López. 2021. Monitoring the formation of a colloidal lipid gel at the nanoscale: Vesicle aggregation driven by a temperature-induced mechanism. Journal of Materials Chemistry. B 9 (36):7472–81. doi: 10.1039/d1tb01020d.
  • Tang, S., J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, and W. Yao. 2020. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chemical Engineering Journal 393:124728. doi: 10.1016/j.cej.2020.124728.
  • Tavernier, I., A. R. Patel, P. Van der Meeren, and K. Dewettinck. 2017. Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocolloids 65:107–20. doi: 10.1016/j.foodhyd.2016.11.008.
  • Thakur, S., J. Chaudhary, V. Kumar, and V. K. Thakur. 2019. Progress in pectin based hydrogels for water purification: Trends and challenges. Journal of Environmental Management 238:210–23. doi: 10.1016/j.jenvman.2019.03.002.
  • Thakur, S., B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, and V. K. Thakur. 2018. Recent approaches in guar gum hydrogel synthesis for water purification. International Journal of Polymer Analysis and Characterization 23 (7):621–32. doi: 10.1080/1023666X.2018.1488661.
  • Toft, K., H. Grasdalen, and O. Smidsrød. 1986. Synergistic gelation of alginates and pectins. Washington, DC: ACS Publications.
  • Torres, M. D., F. Chenlo, and R. Moreira. 2017. Thermal reversibility of kappa/iota-hybrid carrageenan gels extracted from Mastocarpus stellatus at different ionic strengths. Journal of the Taiwan Institute of Chemical Engineers 71:414–20. doi: 10.1016/j.jtice.2016.11.028.
  • Tuncer, S. 2021. Biopolysaccharides: Properties and applications. In Polysaccharides: Properties and applications, 95–134. Hoboken, NJ: Wiley. doi: 10.1002/9781119711414.ch6.
  • Ullah, F., M. B. H. Othman, F. Javed, Z. Ahmad, and H. Md Akil. 2015. Classification, processing and application of hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications 57:414–33. doi: 10.1016/j.msec.2015.07.053.
  • Valero, C., H. Amaveda, M. Mora, and J. M. García-Aznar. 2018. Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PloS One 13 (4):e0195820. doi: 10.1371/journal.pone.0195820.
  • Wang, C., Y. Lan, W. Yu, X. Li, Y. Qian, and H. Liu. 2016. Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Applied Surface Science 362:11–9. doi: 10.1016/j.apsusc.2015.11.201.
  • Wang, M., T. Doi, X. Hu, and D. J. McClements. 2019. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocolloids 93:24–33. doi: 10.1016/j.foodhyd.2019.02.013.
  • Wang, T., Y. Yang, W. Feng, R. Wang, and Z. Chen. 2020. Co-folding of hydrophobic rice proteins and shellac in hydrophilic binary microstructures for cellular uptake of apigenin. Food Chemistry 309:125695. doi: 10.1016/j.foodchem.2019.125695.
  • Wi, G., J. Bae, H. Kim, Y. Cho, and M.-J. Choi. 2020. Evaluation of the physicochemical and structural properties and the sensory characteristics of meat analogues prepared with various non-animal based liquid additives. Foods 9 (4):461. doi: 10.3390/foods9040461.
  • Wu, T., J. Huang, Y. Jiang, Y. Hu, X. Ye, D. Liu, and J. Chen. 2018. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chemistry 240:361–9. doi: 10.1016/j.foodchem.2017.07.052.
  • Wu, C., Y. Hua, Y. Chen, X. Kong, and C. Zhang. 2017. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids 66:389–95. doi: 10.1016/j.foodhyd.2016.12.007.
  • Wu, M., J. Wang, Q. Ge, H. Yu, and Y. L. Xiong. 2018. Rheology and microstructure of myofibrillar protein–starch composite gels: Comparison of native and modified starches. International Journal of Biological Macromolecules 118 (Pt A):988–96. doi: 10.1016/j.ijbiomac.2018.06.173.
  • Xu, J., X. Liu, X. Ren, and G. Gao. 2018. The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. European Polymer Journal 100:86–95. doi: 10.1016/j.eurpolymj.2018.01.020.
  • Yadav, M., and F.-C. Chiu. 2019. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers 211:181–94. doi: 10.1016/j.carbpol.2019.01.114.
  • Yan, H., X. Chen, M. Feng, Z. Shi, W. Zhang, Y. Wang, C. Ke, and Q. Lin. 2019. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids and Surfaces. B, Biointerfaces 177:112–20. doi: 10.1016/j.colsurfb.2019.01.057.
  • Yan, W., B. Zhang, M. P. Yadav, L. Feng, J. Yan, X. Jia, and L. Yin. 2020. Corn fiber gum-soybean protein isolate double network hydrogel as oral delivery vehicles for thermosensitive bioactive compounds. Food Hydrocolloids 107:105865. doi: 10.1016/j.foodhyd.2020.105865.
  • Yang, B., and W. Yuan. 2019. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices. ACS Applied Materials & Interfaces 11 (18):16765–75. doi: 10.1021/acsami.9b01989.
  • Yang, X., T. Gong, Y.-H. Lu, A. Li, L. Sun, and Y. Guo. 2020a. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydrate Polymers 229:115468. doi: 10.1016/j.carbpol.2019.115468.
  • Yang, X., T. Gong, Y.-H. Lu, A. Li, L. Sun, and Y. Guo. 2020b. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydrate Polymers 229:115468. doi: 10.1016/j.carbpol.2019.115468.
  • Yang, X., A. Li, X. Li, L. Sun, and Y. Guo. 2020. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends in Food Science & Technology 102:1–15. doi: 10.1016/j.tifs.2020.05.020.
  • Yang, X., G. Liu, L. Peng, J. Guo, L. Tao, J. Yuan, C. Chang, Y. Wei, and L. Zhang. 2017. Highly efficient self‐healable and dual responsive cellulose‐based hydrogels for controlled release and 3D cell culture. Advanced Functional Materials 27 (40):1703174. doi: 10.1002/adfm.201703174.
  • Yegappan, R., V. Selvaprithiviraj, S. Amirthalingam, and R. Jayakumar. 2018. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers 198:385–400. doi: 10.1016/j.carbpol.2018.06.086.
  • Yılmaz, E., and M. Öğütcü. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food & Function 6 (4):1194–204. doi: 10.1039/c5fo00019j.
  • Yuan, Y., Y.-E. Sun, Z.-L. Wan, X.-Q. Yang, J.-F. Wu, S.-W. Yin, J.-M. Wang, and J. Guo. 2014. Chitin microfibers reinforce soy protein gels cross-linked by transglutaminase. Journal of Agricultural and Food Chemistry 62 (19):4434–42. doi: 10.1021/jf500922n.
  • Zhang, Z., X. Wang, Y. Wang, and J. Hao. 2018. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromolecules 19 (3):980–8. doi: 10.1021/acs.biomac.7b01764.
  • Zhang, Z., R. Zhang, L. Chen, Q. Tong, and D. J. McClements. 2015. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal 72:698–716. doi: 10.1016/j.eurpolymj.2015.01.013.
  • Zhang, M.-K., X.-H. Zhang, and G.-Z. Han. 2021. Magnetic alginate/PVA hydrogel microspheres with selective adsorption performance for aromatic compounds. Separation and Purification Technology 278:119547. doi: 10.1016/j.seppur.2021.119547.
  • Zhang, M., M. Yang, M. W. Woo, Y. Li, W. Han, and X. Dang. 2021. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydrate Polymers 256:117590. doi: 10.1016/j.carbpol.2020.117590.
  • Zhang, Y. S., and A. Khademhosseini. 2017. Advances in engineering hydrogels. Science 356 (6337):eaaf3627. doi: 10.1126/science.aaf3627.
  • Zhang, Z., R. Zhang, and D. J. McClements. 2017. Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity. Food Hydrocolloids 67:85–93. doi: 10.1016/j.foodhyd.2017.01.005.
  • Zhao, X., Y. Liang, Y. Huang, J. He, Y. Han, and B. Guo. 2020. Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing. Advanced Functional Materials 30 (17):1910748. doi: 10.1002/adfm.201910748.
  • Zheng, H., L. Mao, M. Cui, J. Liu, and Y. Gao. 2020. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids 105:105855. doi: 10.1016/j.foodhyd.2020.105855.
  • Zheng, J., R. Zeng, F. Zhang, and J. Kan. 2019. Effects of sodium carboxymethyl cellulose on rheological properties and gelation behaviors of sodium alginate induced by calcium ions. LWT - Food Science and Technology 103:131–8. doi: 10.1016/j.lwt.2018.12.081.
  • Zhou, M., T. Hou, J. Li, S. Yu, Z. Xu, M. Yin, J. Wang, and X. Wang. 2019. Self-propelled and targeted drug delivery of poly (aspartic acid)/iron–zinc microrocket in the stomach. ACS Nano 13 (2):1324–32. doi: 10.1021/acsnano.8b06773.
  • Zhou, T., J. Li, and P. Liu. 2018. Ionically crosslinked alginate-based nanohydrogels for tumor-specific intracellular triggered release: Effect of chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 553:180–6. doi: 10.1016/j.colsurfa.2018.05.061.
  • Zhu, B., D. Ma, J. Wang, and S. Zhang. 2015. Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydrate Polymers 133:448–55. doi: 10.1016/j.carbpol.2015.07.037.
  • Zhu, D., B. Bai, and J. Hou. 2017. Polymer gel systems for water management in high-temperature petroleum reservoirs: A chemical review. Energy & Fuels 31 (12):13063–87. doi: 10.1021/acs.energyfuels.7b02897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.