564
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Fruit pomace as a promising source to obtain biocompounds with antibacterial activity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 12597-12609 | Published online: 22 Jul 2022

References

  • Alara, O. R., N. H. Abdurahman, and C. I. Ukaegbu. 2021. Extraction of phenolic compounds: A review. Current Research in Food Science 4:200–14. doi: 10.1016/j.crfs.2021.03.011.
  • Andrade, M. A., V. Lima, A. S. Silva, F. Vilarinho, M. C. Castilho, K. Khwaldia, and F. Ramos. 2019. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends in Food Science & Technology 86:68–84.
  • Bambeni, T., T. Tayengwa, O. C. Chikwanha, M. Manley, P. A. Gouws, J. Marais, A. O. Fawole, and C. Mapiye. 2021. Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties. Meat Science 181:108609. doi: 10.1016/j.meatsci.2021.108609.
  • Banerjee, J., R. Singh, R. Vijayaraghavan, D. MacFarlane, A. F. Patti, and A. Arora. 2017. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry 225:10–22. doi: 10.1016/j.foodchem.2016.12.093.
  • Barba, F. J., Z. Zhu, M. Koubaa, A. S. Sant’Ana, and V. Orlien. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology 49:96–109. doi: 10.1016/j.tifs.2016.01.006.
  • Barreira, J. C., A. A. Arraibi, and I. C. Ferreira. 2019. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science & Technology 90:76–87. doi: 10.1016/j.tifs.2019.05.014.
  • Benvenutti, L., P. del, A. Sanchez-Camargo, A. A. F. Zielinski, and S. R. S. Ferreira. 2020. NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection. Journal of Molecular Liquids 315:113761. doi: 10.1016/j.molliq.2020.113761.
  • Benvenutti, L., A. A. F. Zielinski, and S. R. S. Ferreira. 2021. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends in Food Science & Technology 112:118–36. doi: 10.1016/j.tifs.2021.03.044.
  • Berk, Z. 2016. By-products of the citrus processing industry. In Citrus fruit processing, ed. Z. Berk, 219–33. Cambridge, MA: Academic Press.
  • Bobinaitė, R., C. Grootaert, J. Van Camp, A. Šarkinas, M. Liaudanskas, V. Žvikas, P. Viškelis, and P. R. Venskutonis. 2020. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Research International (Ottawa, Ont.) 136:109310. doi: 10.1016/j.foodres.2020.109310.
  • Bousbia, N., M. A. Vian, M. A. Ferhat, E. Petitcolas, B. Y. Meklati, and F. Chemat. 2009. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry 114 (1):355–62. doi: 10.1016/j.foodchem.2008.09.106.
  • Caldas, T. W., K. E. Mazza, A. S. Teles, G. N. Mattos, A. I. S. Brígida, C. A. Conte-Junior, R. G. Borguini, R. L. O. Godoy, L. M. C. Cabral, and R. V. Tonon. 2018. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products 111:86–91. doi: 10.1016/j.indcrop.2017.10.012.
  • Castro-Vargas, H. I., W. Baumann, S. R. Ferreira, and F. Parada-Alfonso. 2019. Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. Journal of Food Science and Technology 56 (6):3055–66.
  • Cargnin, S. T, and S. B. Gnoatto. 2017. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chemistry 220:477–89. doi: 10.1016/j.foodchem.2016.10.029.
  • Carocho, M., R. C. Calhelha, M. J. R. Queiroz, A. Bento, P. Morales, M. Soković, and I. C. Ferreira. 2014. Infusions and decoctions of Castanea sativa flowers as effective antitumor and antimicrobial matrices. Industrial Crops and Products 62:42–6. doi: 10.1016/j.indcrop.2014.08.016.
  • Carpes, S. T., C. Bertotto, A. P. Bilck, F. Yamashita, O. Anjos, M. A. B. Siddique, S. M. Harrison, and N. P. Brunton. 2021. Bio-based films prepared with apple pomace: Volatiles compound composition and mechanical, antioxidant and antibacterial properties. LWT 144:111241. doi: 10.1016/j.lwt.2021.111241.
  • Chada, P. S. N., P. H. Santos, L. G. G. Rodrigues, G. A. S. Goulart, J. D. A. dos Santos, M. Maraschin, and M. Lanza. 2022. Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chemistry: X 13:100237. doi: 10.1016/j.fochx.2022.100237.
  • Chanfrau, C. J. E. R, and T. M. L. Armas. 2014. Ultrasound assisted extraction of polyphenols from Punica granatum (Grenada) fruit. Revista Cubana de Farmacia 48 (2):469–76.
  • Cheaib, D., N. El Darra, H. N. Rajha, I. El-Ghazzawi, R. G. Maroun, and N. Louka. 2018. Effect of the extraction process on the biological activity of lyophilized apricot extracts recovered from apricot pomace. Antioxidants 7 (1):11. doi: 10.3390/antiox7010011.
  • Chuyen, H. V., P. D. Roach, J. B. Golding, S. E. Parks, and M. H. Nguyen. 2017. Optimisation of extraction conditions for recovering carotenoids and antioxidant capacity from Gac peel using response surface methodology. International Journal of Food Science & Technology 52 (4):972–80. doi: 10.1111/ijfs.13361.
  • Corrêa, A. N. R, and C. D. Ferreira. 2022. Essential oil for the control of fungi, bacteria, yeasts and viruses in food: An overview. Critical Reviews in Food Science and Nutrition 2022:1–15. doi: 10.1080/10408398.2022.2062588.
  • Cruz, P. N., T. C. Pereira, C. Guindani, D. A. Oliveira, M. J. Rossi, and S. R. Ferreira. 2017. Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. The Journal of Supercritical Fluids 119:229–37. doi: 10.1016/j.supflu.2016.09.022.
  • Cueva, C., M. V. Moreno-Arribas, P. J. Martín-Álvarez, G. Bills, M. F. Vicente, A. Basilio, C. L. Rivas, T. Requena, J. M. Rodríguez, and B. Bartolomé. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161 (5):372–82. doi: 10.1016/j.resmic.2010.04.006.
  • Ćurko, N., M. Tomašević, M. C. Bubalo, L. Gracin, I. R. Redovniković, and K. K. Ganić. 2017. Extraction of proanthocyanidins and anthocyanins from grape skin by using ionic liquids. Food Technology and Biotechnology 55 (3):429–37. doi: 10.17113/ftb.55.03.17.5200.
  • Da Silva, L. M. R., E. A. T. De Figueiredo, N. M. P. S. Ricardo, I. G. P. Vieira, R. W. De Figueiredo, I. M. Brasil, and C. L. Gomes. 2014. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry 143:398–404. doi: 10.1016/j.foodchem.2013.08.001.
  • Das, Q., D. Lepp, X. Yin, K. Ross, J. L. McCallum, K. Warriner, M. F. Marcone, and M. S. Diarra. 2019. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PloS One 14 (7):e0219163. doi: 10.1371/journal.pone.0219163.
  • Das, Q., J. Tang, X. Yin, K. Ross, K. Warriner, M. F. Marcone, and M. S. Diarra. 2021. Organic cranberry pomace and its ethanolic extractives as feed supplement in broiler: Impacts on serum Ig titers, liver and bursal immunity. Poultry Science 100 (2):517–26. doi: 10.1016/j.psj.2020.09.044.
  • Diarra, M. S., Y. I. Hassan, G. S. Block, J. C. Drover, P. Delaquis, and B. D. Oomah. 2020. Antibacterial activities of a polyphenolic-rich extract prepared from American cranberry (Vaccinium macrocarpon) fruit pomace against Listeria spp. LWT 123:109056. doi: 10.1016/j.lwt.2020.109056.
  • Doane-Weideman, T, and P. B. Liecheski. 2004. Chapter 5. Analytical supercritical fluid extraction for food applications. In Oil extraction and analysis: Critical issues and comparative studies, ed. D. L. Luthria, 69–99. American Oil Chemists’ Society, Maryland.
  • Ekezie, F. G. C., D. W. Sun, and J. H. Cheng. 2017. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends in Food Science & Technology 67:160–72. doi: 10.1016/j.tifs.2017.06.006.
  • Espinosa-Pardo, F. A., V. M. Nakajima, G. A. Macedo, J. A. Macedo, and J. Martínez. 2017. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing 101:1–10. doi: 10.1016/j.fbp.2016.10.002.
  • Ferrentino, G., K. Morozova, O. K. Mosibo, M. Ramezani, and M. Scampicchio. 2018. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. Journal of Cleaner Production 186:253–61. doi: 10.1016/j.jclepro.2018.03.165.
  • Friedman, M. 2014. Antibacterial, antiviral, and antifungal properties of wines and winery by-products in relation to their flavonoid content. Journal of Agricultural and Food Chemistry 62 (26):6025–42. doi: 10.1021/jf501266s.
  • García, P., C. Fredes, I. Cea, J. Lozano-Sánchez, F. J. Leyva-Jiménez, P. Robert, C. Vergara, and P. Jimenez. 2021. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 10 (2):203. doi: 10.3390/foods10020203.
  • Gaur, P., S. Bhatia, H. C. Andola, and R. K. Gupta. 2017. In vitro radical scavenging activity and antimicrobial potential of Berberis asiatica Roxb. ex DC. fruit extracts in four different processed forms. Indian Journal of Traditional Knowledge (IJTK) 16 (4):706–13.
  • Gerardi, C., L. Pinto, F. Baruzzi, and G. Giovinazzo. 2021. Comparison of Antibacterial and Antioxidant Properties of Red (cv. Negramaro) and White (cv. Fiano) Skin Pomace Extracts. Molecules 26 (19):5918. doi: 10.3390/molecules26195918.
  • Giacometti, J., D. B. Kovačević, P. Putnik, D. Gabrić, T. Bilušić, G. Krešić, V. Stulićb, F. J. Barba, F. Chematf, G. Barbosa-Cánovas, et al. 2018. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International (Ottawa, Ont.) 113:245–62. doi: 10.1016/j.foodres.2018.06.036.
  • Giacometti, J., G. Žauhar, and M. Žuvić. 2018. Optimization of ultrasonic-assisted extraction of major phenolic compounds from olive leaves (Olea europaea L.) using response surface methodology. Foods 7 (9):149. doi: 10.3390/foods7090149.
  • Gómez-Mejía, E., C. L. Roriz, S. A. Heleno, R. Calhelha, M. I. Dias, J. Pinela, N. Rosales-Conrado, M. E. León-González, I. C. Ferreira, and L. Barros. 2021. Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chemistry 337:127998. doi: 10.1016/j.foodchem.2020.127998.
  • Goldsmith, C. D., Q. V. Vuong, C. E. Stathopoulos, P. D. Roach, and C. J. Scarlett. 2018. Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT 89:284–90. doi: 10.1016/j.lwt.2017.10.065.
  • He, B., L. L. Zhang, X. Y. Yue, J. Liang, J. Jiang, X. L. Gao, and P. X. Yue. 2016. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry 204:70–6. doi: 10.1016/j.foodchem.2016.02.094.
  • Huzar, E., M. Dzięcioł, A. Wodnicka, H. Örün, A. İçöz, and E. Çiçek. 2018. Influence of hydrodistillation conditions on yield and composition of coriander (Coriandrum sativum L.) Essential oil. Polish Journal of Food and Nutrition Sciences 68 (3):243–9. doi: 10.1515/pjfns-2018-0003.
  • Ilyas, R. A., S. M. Sapuan, M. S. N. Atikah, M. R. M. Asyraf, S. A. Rafiqah, H. A. Aisyah, N. M. Nurazzi, and M. N. F. Norrrahim. 2021. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Textile Research Journal 91 (1-2):152–67. doi: 10.1177/0040517520932393.
  • Jha, A. K, and N. Sit. 2022. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology 119:579–91. doi: 10.1016/j.tifs.2021.11.019.
  • Kalinowska, M., A. Bielawska, H. Lewandowska-Siwkiewicz, W. Priebe, and W. Lewandowski. 2014. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiology and Biochemistry : PPB 84:169–88. doi: 10.1016/j.plaphy.2014.09.006.
  • Kehili, M., M. Kammlott, S. Choura, A. Zammel, C. Zetzl, I. Smirnova, N. Allouche, and S. Sayadi. 2017. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food and Bioproducts Processing 102:340–9. doi: 10.1016/j.fbp.2017.02.002.
  • Khalifa, I., H. Barakat, H. A. El-Mansy, and S. A. Soliman. 2016. Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packaging and Shelf Life 9:10–9. doi: 10.1016/j.fpsl.2016.05.006.
  • Kołodziejczyk, K., M. Sójka, M. Abadias, I. Viñas, S. Guyot, and A. Baron. 2013. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Industrial Crops and Products 51:279–88. doi: 10.1016/j.indcrop.2013.09.030.
  • Kumar, M., A. Dahuja, A. Sachdev, C. Kaur, E. Varghese, S. Saha, and K. V. S. S. Sairam. 2019. Valorisation of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology 56 (2):995–1007. doi:10.1007/s13197-018-03566-9.
  • Kuznetsova, E., A. Emelyanov, E. Klimova, T. Bychkova, A. Vinokurov, N. Selifonova, V. Zomitev, and J. Brindza. 2017. Antioxidant, antimicrobial activity and mineral composition of low-temperature fractioning products of Malus domestica Borkh (common Antonovka). Potravinarstvo Slovak Journal of Food Sciences 11 (1):658–63. doi: 10.5219/820.
  • Lasta, H. F. B., L. Lentz, L. G. G. Rodrigues, N. Mezzomo, L. Vitali, and S. R. S. Ferreira. 2019. Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatalysis and Agricultural Biotechnology 21:101353. doi: 10.1016/j.bcab.2019.101353.
  • Lima, Á. S., C. M. F. Soares, R. Paltram, H. Halbwirth, and K. Bica. 2017. Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions. Fluid Phase Equilibria 451:68–78. doi: 10.1016/j.fluid.2017.08.006.
  • Ma, M., J. Zhao, X. Yan, Z. Zeng, D. Wan, P. Yu, J. Xia, G. Zhang, and D. Gong. 2022. Synergistic effects of monocaprin and carvacrol against Escherichia coli O157: H7 and Salmonella Typhimurium in chicken meat preservation. Food Control. 132:108480. doi: 10.1016/j.foodcont.2021.108480.
  • Mallek-Ayadi, S., N. Bahloul, and N. Kechaou. 2018. Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection 113:68–77. doi: 10.1016/j.psep.2017.09.016.
  • Martínez-Abad, A., M. Ramos, M. Hamzaoui, S. Kohnen, A. Jiménez, and M. C. Garrigós. 2020. Optimisation of sequential microwave-assisted extraction of essential oil and pigment from lemon peels waste. Foods 9 (10):1493. doi: 10.3390/foods9101493.
  • Medina-Torres, N., T. Ayora-Talavera, H. Espinosa-Andrews, A. Sánchez-Contreras, and N. Pacheco. 2017. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 7 (3):47. doi: 10.3390/agronomy7030047.
  • Mir, S. A., B. N. Dar, A. A. Wani, and M. A. Shah. 2018. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends in Food Science & Technology 80:141–54. doi: 10.1016/j.tifs.2018.08.004.
  • Nasirpour, N., M. Mohammadpourfard, and S. Z. Heris. 2020. Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chemical Engineering Research and Design 160:264–300. doi: 10.1016/j.cherd.2020.06.006.
  • Nayak, A., B. Bhushan, A. Rosales, L. R. Turienzo, and J. L. Cortina. 2018. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food and Bioproducts Processing 109:74–85. doi: 10.1016/j.fbp.2018.03.004.
  • Nazari, M. T., J. F. Freitag, V. A. F. Cavanhi, and L. M. Colla. 2020. Microalgae harvesting by fungal-assisted bioflocculation. Reviews in Environmental Science and Bio/Technology 19 (2):369–88. doi: 10.1007/s11157-020-09528-y.
  • Nohynek, L. J., H. L. Alakomi, M. P. Kähkönen, M. Heinonen, I. M. Helander, K. M. Oksman-Caldentey, and R. H. Puupponen-Pimiä. 2006. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer 54 (1):18–32. doi: 10.1207/s15327914nc5401_4.
  • Oliveira, D. A., A. A. Salvador, A. Smânia, Jr, E. F. Smânia, M. Maraschin, and S. R. Ferreira. 2013. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. Journal of Biotechnology 164 (3):423–32. doi: 10.1016/j.jbiotec.2012.09.014.
  • Otero-Pareja, M. J., L. Casas, M. T. Fernández-Ponce, C. Mantell, and E. J. Ossa. 2015. Green extraction of antioxidants from different varieties of red grape pomace. Molecules (Basel, Switzerland) 20 (6):9686–702. doi: 10.3390/molecules20069686.
  • Pal, C. B. T, and G. C. Jadeja. 2020. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 26 (1):78–92.
  • Pascoalino, L. A., F. S. Reis, M. A. Prieto, J. Barreira, I. C. Ferreira, and L. Barros. 2021. Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules 26 (9):2624. doi: 10.3390/molecules26092624.
  • Pedras, B. M., G. Regalin, I. Sá-Nogueira, P. Simões, A. Paiva, and S. Barreiros. 2020. Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. The Journal of Supercritical Fluids 160:104793. doi: 10.1016/j.supflu.2020.104793.
  • Peixoto, C. M., M. I. Dias, M. J. Alves, R. C. Calhelha, L. Barros, S. P. Pinho, and I. C. Ferreira. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry 253:132–8. doi: 10.1016/j.foodchem.2018.01.163.
  • Pfukwa, T. M., O. A. Fawole, M. Manley, P. A. Gouws, U. L. Opara, and C. Mapiye. 2019. Food preservative capabilities of grape (vitis vinifera) and clementine mandarin (citrus reticulata) By-products Extracts in South Africa. Sustainability 11 (6):1746. doi: 10.3390/su11061746.
  • Pinto, V. Z., D. Pilatti-Riccio, E. S. D. Costa, Y. M. S. Micheletto, E. Quast, and G. H. F. D. Santos. 2021. Phytochemical composition of extracts from yerba mate chimarrão. SN Applied Sciences 3 (3):1–5. doi: 10.1007/s42452-021-04373-2.
  • Quiroz, J. Q., A. C. Torres, L. M. Ramirez, M. S. Garcia, G. C. Gomez, and J. Rojas. 2019. Optimization of the microwave-assisted extraction process of bioactive compounds from annatto seeds (Bixa orellana L.). Antioxidants 8 (2):37. doi: 10.3390/antiox8020037.
  • Radenkovs, V., J. Kviesis, K. Juhnevica-Radenkova, A. Valdovska, T. Püssa, M. Klavins, and I. Drudze. 2018. Valorization of wild apple (Malus spp.) by-products as a source of essential fatty acids, tocopherols and phytosterols with antimicrobial activity. Plants 7 (4):90. doi: 10.3390/plants7040090.
  • Radványi, D., R. Juhász, S. Kun, B. Szabó-Nótin, and J. Barta. 2013. Preliminary study of extraction of biologically active compounds from elderberry (Sambucus nigra L.) pomace. Acta Alimentaria 42 (Supplement 1):63–72. doi: 10.1556/AAlim.42.2013.Suppl.8.
  • Rempel, A., J. P. Gutkoski, M. T. Nazari, G. N. Biolchi, V. A. F. Cavanhi, H. Treichel, and L. M. Colla. 2021. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of The Total Environment 772:144918. doi: 10.1016/j.scitotenv.2020.144918.
  • Ribeiro, T. B., A. Oliveira, M. Coelho, M. Veiga, E. M. Costa, S. Silva, J. Nunes, A. A. Vicente, and M. Pintado. 2021. Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science of Food and Agriculture 101 (5):1963–78. doi: 10.1002/jsfa.10812.
  • Sagdic, O., I. Ozturk, M. T. Yilmaz, and H. Yetim. 2011. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science 76 (7):M515–M521. doi: 10.1111/j.1750-3841.2011.02323.x.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing 6 (1):1–12. doi: 10.1186/s40643-019-0261-9.
  • Salaheen, S., J. A. Almario, and D. Biswas. 2014. Inhibition of growth and alteration of host cell interactions of Pasteurella multocida with natural byproducts. Poultry Science 93 (6):1375–82. doi: 10.3382/ps.2013-03828.
  • Salaheen, S., E. Jaiswal, J. Joo, M. Peng, R. Ho, D. OConnor, K. Adlerz, J. H. Aranda-Espinoza, and D. Biswas. 2016. Bioactive extracts from berry by-products on the pathogenicity of Salmonella Typhimurium. International Journal of Food Microbiology 237:128–35. doi: 10.1016/j.ijfoodmicro.2016.08.027.
  • Sampaio, S. L., S. A. Petropoulos, M. I. Dias, C. Pereira, R. C. Calhelha, Â. Fernandes, C. M. M. Leme, A. Alexopoulos, C. Santos-Buelga, I. C. F. R. Ferreira, et al. 2021. Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chemistry 363:130360. doi: 10.1016/j.foodchem.2021.130360.
  • Santos, L. F., B. K. Vargas, C. D. Bertol, B. Biduski, T. E. Bertolin, L. R. dos Santos, and V. B. Brião. 2020. Clarification and concentration of yerba mate extract by membrane technology to increase shelf life. Food and Bioproducts Processing 122:22–30. doi: 10.1016/j.fbp.2020.04.002.
  • Silva, A., S. A. Silva, M. Carpena, P. Garcia-Oliveira, P. Gullón, M. F. Barroso, M. A. Prieto, and J. Simal-Gandara. 2020. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics 9 (10):642. doi: 10.3390/antibiotics9100642.
  • Sirohi, R., A. Tarafdar, S. Singh, T. Negi, V. K. Gaur, E. Gnansounou, and B. Bharathiraja. 2020. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology 314:123771. doi: 10.1016/j.biortech.2020.123771.
  • Sójka, M., K. Kołodziejczyk, J. Milala, M. Abadias, I. Viñas, S. Guyot, and A. Baron. 2015. Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. Journal of Functional Foods 12:168–78. doi: 10.1016/j.jff.2014.11.015.
  • Souza, V. B., A. Fujita, M. Thomazini, E. R. da Silva, J. F. Lucon, Jr, M. I. Genovese, and C. S. Favaro-Trindade. 2014. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chemistry 164:380–6. doi: 10.1016/j.foodchem.2014.05.049.
  • Stobnicka, A, and M. Gniewosz. 2018. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. Journal of Food Science and Technology 55 (1):62–71. doi: 10.1007/s13197-017-2770-x.
  • Struck, S., M. Plaza, C. Turner, and H. Rohm. 2016. Berry pomace–a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology 51 (6):1305–18. doi: 10.1111/ijfs.13112.
  • Sudha, M. L., P. Viswanath, V. Siddappa, S. Rajarathnam, and M. N. Shashirekha. 2016. Control of rope spore forming bacteria using carambola (Averrhoa carambola) fruit pomace powder in wheat bread preparation. Quality Assurance and Safety of Crops & Foods 8 (4):555–64. doi: 10.3920/QAS2014.0409.
  • Suri, S., A. Singh, and P. K. Nema. 2022. Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research 2 (1):100050.
  • Susmitha, A., K. Sasikumar, D. Rajan, A. Padmakumar M, and K. M. Nampoothiri. 2021. Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Bioscience 41:100977. doi: 10.1016/j.fbio.2021.100977.
  • Tamkutė, L., B. M. Gil, J. R. Carballido, M. Pukalskienė, and P. R. Venskutonis. 2019. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Research International (Ottawa, Ont.) 120:38–51. doi: 10.1016/j.foodres.2019.02.025.
  • Teixeira, A., N. Baenas, R. Dominguez-Perles, A. Barros, E. Rosa, D. A. Moreno, and C. Garcia-Viguera. 2014. Natural bioactive compounds from winery by-products as health promoters: A review. International Journal of Molecular Sciences 15 (9):15638–78. doi: 10.3390/ijms150915638.
  • Tian, Y, and B. Yang. 2021. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Critical Reviews in Food Science and Nutrition 2021:1–33. doi: 10.1080/10408398.2021.1946673.
  • Tseng, A, and Y. Zhao. 2012. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). Journal of Food Science 77 (9):H192–H201. doi: 10.1111/j.1750-3841.2012.02840.x.
  • Uquiche, E., C. Campos, and C. Marillán. 2019. Assessment of the bioactive capacity of extracts from Leptocarpha rivularis stalks using ethanol-modified supercritical CO2. The Journal of Supercritical Fluids 147:1–8. doi: 10.1016/j.supflu.2019.02.005.
  • Vega, A. J.-D., R.-E. Hector, L.-G. Juan Jose, L.-G. Maria L, H.-C. Paola, Á.-S. Raúl, and O.-V. Carlos Enrique. 2017. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences 35 ( 5):456–65. doi: 10.17221/316/2016-CJFS.
  • Velásquez, P., D. Bustos, G. Montenegro, and A. Giordano. 2021. Ultrasound-assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films. Molecules 26 (4):984. doi: 10.3390/molecules26040984.
  • Velićanski, A. S., D. D. Cvetković, and S. L. Markov. 2012. Screening of antibacterial activity of raspberry (Rubus idaeus L.) fruit and pomace extracts. Acta Periodica Technologica 43 (43):305–13. doi: 10.2298/APT1243305V.
  • Yousefi, M., M. Rahimi-Nasrabadi, S. M. Pourmortazavi, M. Wysokowski, T. Jesionowski, H. Ehrlich, and S. Mirsadeghi. 2019. Supercritical fluid extraction of essential oils. TrAC - Trends in Analytical Chemistry 118:182–93. doi: 10.1016/j.trac.2019.05.038.
  • Waldbauer, K., R. McKinnon, and B. Kopp. 2017. Apple pomace as potential source of natural active compounds. Planta Medica 83 (12–13):994–1010. doi: 10.1055/s-0043-111898.
  • Xu, C., Y. Yagiz, W. Y. Hsu, A. Simonne, J. Lu, and M. R. Marshall. 2014. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. Journal of Agricultural and Food Chemistry 62 (28):6640–9.
  • Yu, J, and M. Ahmedna. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science & Technology 48 (2):221–37. doi: 10.1111/j.1365-2621.2012.03197.x.
  • Zardo, D. M., A. Alberti, A. A. F. Zielinski, A. A. Prestes, L. A. Esmerino, and A. Nogueira. 2021. Influence of solvents in the extraction of phenolic compounds with antibacterial activity from apple pomace. Separation Science and Technology 56 (5):903–11. doi: 10.1080/01496395.2020.1744652.
  • Zhang, Q. W., L. G. Lin, and W. C. Ye. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13 (1):20–6. doi: 10.1186/s13020-018-0177-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.