411
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The use of telomeric length as authenticity marker in fish and seafood - a new perspective in the detection of adulteration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 12625-12636 | Published online: 27 Jul 2022

References

  • Adriaenssens, B., A. Pauliny, D. Blomqvist, and J. I. Johnsson. 2016. Telomere length covaries with personality in wild brown trout. Physiology & Behavior 165:217–22. doi: 10.1016/j.physbeh.2016.07.005.
  • Aviv, A. 2002. Telomeres, sex, reactive oxygen species, and human cardiovascular aging. Journal of Molecular Medicine (Berlin, Germany) 80 (11):689–95. doi: 10.1007/s00109-002-0377-8.
  • Aviv, A., J. Shay, K. Christensen, and W. Wright. 2005. The longevity gender gap: Are telomeres the explanation? Science of Aging Knowledge Environment 2005 (23):16. doi: 10.1126/sageke.2005.23.pe16.
  • Bacolod, E. T., S. Uno, S. S. Villamor, and J. Koyama. 2017. Oxidative stress and genotoxicity biomarker responses in tilapia (Oreochromis niloticus) exposed to environmental concentration of 1-nitropyrene. Marine Pollution Bulletin 124 (2):786–91. doi: 10.1016/j.marpolbul.2017.01.077.
  • Baroudi, F., J. Al Alam, Z. Fajloun, and M. Millet. 2020. Snail as sentinel organism for monitoring the environmental pollution; a review. Ecological Indicators 113:106240. doi: 10.1016/j.ecolind.2020.106240.
  • Bayne, S., M. E. E. Jones, H. Li, and J. P. Liu. 2007. Potential roles for estrogen regulation of telomerase activity in aging. Annals of the New York Academy of Sciences 1114:48–55. doi: 10.1196/annals.1396.023.
  • Beal, A. P., J. J. Kiszka, R. S. Wells, and J. M. Eirin-Lopez. 2019. The bottlenose dolphin epigenetic aging tool (BEAT): A molecular age estimation tool for small cetaceans. Frontiers in Marine Science 6:1–10. doi: 10.3389/fmars.2019.00561.
  • Carneiro, M. C., C. M. Henriques, J. Nabais, T. Ferreira, T. Carvalho, and M. G. Ferreira. 2016. Short telomeres in key tissues initiate local and systemic aging in Zebrafish. PLOS Genetics 12 (1):e1005798. doi: 10.1371/journal.pgen.1005798.
  • Davidson, J., J. Bebak, and P. Mazik. 2009. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss. Aquaculture 288 (3-4):337–43. doi: 10.1016/j.aquaculture.2008.11.037.
  • de Abechuco, E. L., N. Hartmann, M. Soto, and G. Díez. 2016. Assessing the variability of telomere length measures by means of Telomeric Restriction Fragments (TRF) in different tissues of cod Gadus morhua. Gene Reports 5:117–25. doi: 10.1016/j.genrep.2016.09.009.
  • Debes, P. V., M. Visse, B. Panda, P. Ilmonen, and A. Vasemägi. 2016. Is telomere length a molecular marker of past thermal stress in wild fish? Molecular Ecology 25 (21):5412–24. doi: 10.1111/mec.13856.
  • Delincée, H. 1998. Detection of food treated with ionizing radiation. Trends in Food Science & Technology 9 (2):73–82. doi: 10.1016/S0924-2244(98)00002-8.
  • Fallet, M., E. Luquet, P. David, and C. Cosseau. 2020. Epigenetic inheritance and intergenerational effects in mollusks. Gene 729:144166. doi: 10.1016/j.gene.2019.144166.
  • Feng, J. X, and N. C. Riddle. 2020. Epigenetics and genome stability. Mammalian Genome: Official Journal of the International Mammalian Genome Society 31 (5-6):181–95. doi: 10.1007/s00335-020-09836-2.
  • Fernández-Díez, C., S. González-Rojo, M. Lombó, and M. P. Herráez. 2016. Impact of sperm DNA damage and oocyte-repairing capacity on trout development. Reproduction (Cambridge, England) 152 (1):57–67. doi: 10.1530/REP-16-0077.
  • Foley, H. B., P. Y. Sun, R. Ramirez, B. K. So, Y. R. Venkataraman, E. N. Nixon, K. J. A. Davies, and S. Edmands. 2019. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Experimental Gerontology 119:146–56. doi: 10.1016/j.exger.2019.02.006.
  • Futami, K., M. Maita, and T. Katagiri. 2019. DNA demethylation with 5-aza-2′-deoxycytidine induces the senescence-associated secretory phenotype in the immortal fish cell line, EPC. Gene 697:194–200. doi: 10.1016/j.gene.2019.02.048.
  • Godwin, R. M., S. Frusher, S. S. Montgomery, and J. Ovenden. 2011. Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii. ICES Journal of Marine Science 68 (10):2053–8. doi: 10.1093/icesjms/fsr144.
  • Hatakeyama, H., H. Yamazaki, K. I. Nakamura, N. Izumiyama, J. Shimomura, H. Aida, S. Suzuki, M. Tsuchida, T. Matsuura, N. Kaiyo, et al. 2016. Telomere attrition and restoration in the normal teleost Oryzias latipes are linked to growth rate and telomerase activity at each life stage. Aging 8 (1):62–76. ‐doi: 10.18632/aging.100873.
  • Haussmann, M. F, and N. M. Marchetto. 2010. Telomeres: Linking stress and survival, ecology and evolution. Current Zoology 56 (6):714–27. doi: 10.1093/czoolo/56.6.714.
  • Horn, T., N. J. Gemmell, B. C. Robertson, and C. R. Bridges. 2008. Telomere length change in European sea bass (Dicentrarchus labrax). Australian Journal of Zoology 56 (3):207–10. doi: 10.1071/ZO08046.
  • Izzo, C., T. Bertozzi, B. M. Gillanders, and S. C. Donnellan. 2014. Variation in telomere length of the common carp, Cyprinus carpio (Cyprinidae), in relation to body length. Copeia 2014 (1):87–94. doi: 10.1643/CI-11-162.
  • Koroleva, A. G., Y. P. Sapozhnikova, M. L. Tyagun, P. V. Gasarov, O. Y. Glyzina, L. V. Sukhanova, and S. V. Kirilchik. 2019. Telomere length decreases during ontogeny in peled. Limnology and Freshwater Biology 6 (6):326–31. doi: 10.31951/2658-3518-2019-A-6-326.
  • Kotsanopoulos, K. V., A. Exadactylos, G. A. Gkafas, P. V. Martsikalis, F. F. Parlapani, I. S. Boziaris, and I. S. Arvanitoyannis. 2021. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Comprehensive Reviews in Food Science and Food Safety 20 (2):1584–654. doi: 10.1111/1541-4337.12719.
  • L'Honoré, T., C. Lorin-Nebel, E. Blondeau-Bidet, J. Perez, F. Veyrunes, and E. Farcy. 2021. Intraspecific variation in freshwater tolerance has consequences for telomere dynamics in the euryhaline teleost Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 545:151611. doi: 10.1016/j.jembe.2021.151611.
  • Louzon, M., M. Coeurdassier, F. Gimbert, B. Pauget, and A. de Vaufleury. 2019. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. Environment International 131:105025. doi: 10.1016/j.envint.2019.105025.
  • Maluly, H. D. B., A. de Melo Porcari, I. B. da Silva Cunha, M. T. B. Pacheco, M. N. Eberlin, and R. M. Alberici. 2019. The impacts of the raising regime of Salmon species on their triacylglycerol composition revealed by easy ambient sonic-spray ionization mass spectrometry. Food Research International (Ottawa, ON) 120:19–25. doi: 10.1016/j.foodres.2019.01.066.
  • Martsikalis, P. V., G. A. Gkafas, C. Palaiokostas, and A. Exadactylos. 2019. Genomics era on breeding aquaculture stocks. In Organic aquaculture, eds. G. Lembo and E. Mente, 65–77. Cham: Springer. doi: 10.1007/978-3-030-05603-2_4.
  • Martsikalis, P. V., M. Kavouras, G. A. Gkafas, A. P. Apostolidis, I. S. Boziaris, and A. Exadactylos. 2018. Morphological and free amino acid profile variability, as a tool for stock identification among farmed rainbow trout oncorhynchus mykiss of different origin. Aquaculture Research 49 (2):621–30. doi: 10.1111/are.13491.
  • McLennan, D., J. D. Armstrong, D. C. Stewart, S. Mckelvey, W. Boner, P. Monaghan, and N. B. Metcalfe. 2016. Interactions between parental traits, environmental harshness and growth rate in determining telomere length in wild juvenile salmon. Molecular Ecology 25 (21):5425–38. doi: 10.1111/mec.13857.
  • McLennan, D., J. D. Armstrong, D. C. Stewart, S. Mckelvey, W. Boner, P. Monaghan, and N. B. Metcalfe. 2017. Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon. Functional Ecology 31 (11):2070–9. doi: 10.1111/1365-2435.12939.
  • McLennan, D., J. D. Armstrong, D. C. Stewart, S. Mckelvey, W. Boner, P. Monaghan, and N. B. Metcalfe. 2018. Telomere elongation during early development is independent of environmental temperatures in Atlantic salmon. Journal of Experimental Biology 221 (11). doi: 10.1242/jeb.178616.
  • Molbert, N., F. Angelier, F. Alliot, C. Ribout, and A. Goutte. 2021. Fish from urban rivers and with high pollutant levels have shorter telomeres. Biology Letters 17 (1):20200819. doi: 10.1098/rsbl.2020.0819.
  • Monaghan, P, and S. E. Ozanne. 2018. Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences 373 (1741):20160446. doi: 10.1098/rstb.2016.0446.
  • Montpetit, A. J., A. A. Alhareeri, M. Montpetit, A. R. Starkweather, L. W. Elmore, K. Filler, L. Mohanraj, C. W. Burton, V. S. Menzies, D. E. Lyon, et al. 2014. Telomere length: A review of methods for measurement. Nursing Research 63 (4):289–99. doi: 10.1097/NNR.0000000000000037.
  • Pauliny, A., R. H. Devlin, J. I. Johnsson, and D. Blomqvist. 2015. Rapid growth accelerates telomere attrition in a transgenic fish. BMC Evolutionary Biology 15 (1):10. doi: 10.1186/s12862-015-0436-8.
  • Peterson, D. R., H. O. L. Mok, and D. W. T. Au. 2015. Modulation of telomerase activity in fish muscle by biological and environmental factors. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 178:51–9. doi: 10.1016/j.cbpc.2015.09.004.
  • Petitjean, Q., S. Jean, A. Gandar, J. Côte, P. Laffaille, and L. Jacquin. 2019. Stress responses in fish: From molecular to evolutionary processes. The Science of the Total Environment 684:371–80. doi: 10.1016/j.scitotenv.2019.05.357.
  • Rollings, N., E. Miller, and M. Olsson. 2014. Telomeric attrition with age and temperature in Eastern mosquitofish (Gambusia holbrooki). Die Naturwissenschaften 101 (3):241–4. doi: 10.1007/s00114-014-1142-x.
  • Sapozhnikova, Y. P., A. G. Koroleva, V. M. Yakhnenko, I. V. Khanaev, O. Y. Glyzina, T. N. Avezova, A. A. Volkova, A. V. Mushinskaya, M. L. Tyagun, A. N. Shagun, et al. 2021. Sex associated effects of noise pollution in stone sculpin (Paracottus knerii) as a model object in the context of human-induced rapid environmental change. Biology 10 (10):1063. doi: 10.3390/biology1010.
  • Sapozhnikova, Y. P., A. G. Koroleva, V. M. Yakhnenko, M. L. Tyagun, O. Y. Glyzina, A. B. Coffin, M. M. Makarov, A. N. Shagun, V. A. Kulikov, P. V. Gasarov, et al. 2020. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). The Journal of the Acoustical Society of America 148 (2):895–907. doi: 10.1121/10.0001674.
  • Shiomi, A., K. Nagao, H. Kasai, Y. Hara, and M. Umeda. 2020. Changes in the physicochemical properties of fish cell membranes during cellular senescence. Bioscience, Biotechnology, and Biochemistry 84 (3):583–93. doi: 10.1080/09168451.2019.1695576.
  • Simide, R., F. Angelier, S. Gaillard, and A. Stier. 2016. Age and heat stress as determinants of telomere length in a long-lived fish, the Siberian Sturgeon. Physiological and Biochemical Zoology: PBZ 89 (5):441–7. doi: 10.1086/687378.
  • Stauffer, J., M. Bruneaux, B. Panda, M. Visse, A. Vasemägi, and P. Ilmonen. 2017. Telomere length and antioxidant defense associate with parasite-induced retarded growth in wild brown trout. Oecologia 185 (3):365–74. doi: 10.1007/s00442-017-3953-x.
  • Tarricone, S., A. Caputi Jambrenghi, P. Cagnetta, and M. Ragni. 2022. Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes 7 (1):45. doi:10.3390/fishes7010045.
  • Wojtczyk-Miaskowska, A, and B. Schlichtholz. 2018. DNA damage and oxidative stress in long-lived aquatic organisms. DNA Repair 69:14–23. doi: 10.1016/j.dnarep.2018.07.003.
  • Yip, B. W., H. O. Mok, D. R. Peterson, M. T. Wan, Y. Taniguchi, W. Ge, and D. W. Au. 2017. Sex-dependent telomere shortening, telomerase activity and oxidative damage in marine medaka Oryzias melastigma during aging. Marine Pollution Bulletin 124 (2):701–9. doi: 10.1016/j.marpolbul.2017.01.021.
  • Zhou, H., C. M. Chen, and X. Diao. 2020. The metabolic responses of aquatic animal exposed to POPs. In Environmental metabolomics, applications in field and laboratory studies to understand from exposome to metabolome, ed. D. Álvarez-Muñoz and M. Farré, 121–61, 1st ed. Amsterdam: Elsevier Inc. doi: 10.1016/B978-0-12-818196-6.00005-4.
  • Zhu, J., B. Yang, W. Liu, B. Li, and Y. Jin. 2021. In-situ generation of potassium ferricyanide for label-free and enzyme-free chemiluminescence detection of telomerase activity. Analytica Chimica Acta 1165:338550. doi: 10.1016/j.aca.2021.338550.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.