838
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Flavonoids in vegetables: improvement of dietary flavonoids by metabolic engineering to promote health

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ahmad, S., M. H. Jo, M. Ikram, A. Khan, and M. O. Kim. 2021. Deciphering the potential neuroprotective effects of luteolin against Aβ(1)-(42)-induced Alzheimer’s disease. International Journal of Molecular Sciences 22 (17):9583. doi: 10.3390/ijms22179583.
  • Ahmed, M., and J.-B. Eun. 2018. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Critical Reviews in Food Science and Nutrition 58 (18):3159–88. doi: 10.1080/10408398.2017.1353480.
  • Ahmed, S., H. Khan, D. Fratantonio, M. M. Hasan, S. Sharifi, N. Fathi, H. Ullah, and L. Rastrelli. 2019. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 59:152883. doi: 10.1016/j.phymed.2019.152883.
  • Alonso-Garrido, M., N. Pallarés, G. Font, P. Tedeschi, L. Manyes, and M. Lozano. 2021. The role of pumpkin pulp extract carotenoids against mycotoxin damage in the blood brain barrier in vitro. Arhiv za higijenu rada i toksikologiju 72 (3):173–81. doi: 10.2478/aiht-2021-72-3541.
  • Ansary, J., T. Y. Forbes-Hernández, E. Gil, D. Cianciosi, J. Zhang, M. Elexpuru-Zabaleta, J. Simal-Gandara, F. Giampieri, and M. Battino. 2020. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants (Basel) 9 (7):619. doi: 10.3390/antiox9070619.
  • Battino, M., T. Y. Forbes-Hernández, M. Gasparrini, S. Afrin, D. Cianciosi, J. Zhang, P. P. Manna, P. Reboredo-Rodríguez, A. Varela Lopez, J. L. Quiles, et al. 2019. Relevance of functional foods in the Mediterranean diet: The role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Critical Reviews in Food Science and Nutrition 59 (6):893–920. doi: 10.1080/10408398.2018.1526165.
  • Bell-Lelong, D. A., J. C. Cusumano, K. Meyer, and C. Chapple. 1997. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiology 113 (3):729–38. doi: 10.1104/pp.113.3.729.
  • Berkoz, M. 2019. Diosmin suppresses the proinflammatory mediators in lipopolysaccharide-induced RAW264.7 macrophages via NF-κB and MAPKs signal pathways. General Physiology and Biophysics 38 (4):315–24. doi: 10.4149/gpb_2019010.
  • Bhatia, C., A. Pandey, S. R. Gaddam, U. Hoecker, and P. K. Trivedi. 2018. Low temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana. Plant & Cell Physiology 59 (10):2099–112. doi: 10.1093/pcp/pcy132.
  • Bovy, A., E. Schijlen, and R. D. Hall. 2007. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics : Official Journal of the Metabolomic Society 3:399–412. doi: 10.1007/s11306-007-0074-2.
  • Calderón-Montaño, J. M., E. Burgos-Morón, C. Pérez-Guerrero, and M. López-Lázaro. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry 11 (4):298–344. doi: 10.2174/138955711795305335.
  • Cheng, A. X., X. Zhang, X. J. Han, Y. Y. Zhang, S. Gao, C. J. Liu, and H. X. Lou. 2018. Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids. The New Phytologist 217 (2):909–24. doi: 10.1111/nph.14852.
  • Chiu, L.-W., and L. Li. 2012. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236 (4):1153–64. doi: 10.1007/s00425-012-1665-3.
  • Cinar, A. K., S. A. Ozal, R. Serttas, and S. Erdogan. 2021. Eupatilin attenuates TGF-β2-induced proliferation and epithelial-mesenchymal transition of retinal pigment epithelial cells. Cutaneous and Ocular Toxicology 40 (2):103–14. doi: 10.1080/15569527.2021.1902343.
  • Coego, A., E. Brizuela, P. Castillejo, S. Ruíz, C. Koncz, P. J. Del, M. Piñeiro, J. A. Jarillo, J. Paz-Ares, and J. León. 2014. The TRANSPLANTA collection of Arabidopsis lines: A resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal : For Cell and Molecular Biology 77 (6):944–53. doi: 10.1111/tpj.12443.
  • Craig, C. S., B. A. Clevidence, S. J. Britz, and J. A. Novotny. 2007. Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. Var. capitata). Journal of Agricultural and Food Chemistry 55 (13):5354–62.
  • Crozier, A., M. Lean, M. S. Mcdonald, and C. Black. 1997. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. Journal of Agricultural and Food Chemistry 45 (3):590–5. doi: 10.1021/jf960339y.
  • Cushnie, T. P. T., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26 (5):343–56. doi: 10.1016/j.ijantimicag.2005.09.002.
  • Das, S., M. A. Laskar, S. D. Sarker, M. D. Choudhury, P. R. Choudhury, A. Mitra, S. Jamil, S. Lathiff, S. A. Abdullah, N. Basar, et al. 2017. Prediction of anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico. Phytochemical Analysis: PCA 28 (4):324–31. doi: 10.1002/pca.2679.
  • de Meaux, J., A. Pop, and T. Mitchell-Olds. 2006. Cis-regulatory evolution of chalcone-synthase expression in the genus Arabidopsis. Genetics 174 (4):2181–202. doi: 10.1534/genetics.106.064543.
  • D’Introno, A., A. Paradiso, E. Scoditti, L. D’Amico, A. De Paolis, M. A. Carluccio, I. Nicoletti, L. Degara, A. Santino, and G. Giovinazzo. 2009. Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnology Journal 7 (5):422–9. doi: 10.1111/j.1467-7652.2009.00409.x.
  • Edenharder, R., G. Keller, K. L. Platt, and K. K. Unger. 2001. Isolation and characterization of structurally novel antimutagenic flavonoids from spinach (Spinacia oleracea). Journal of Agricultural and Food Chemistry 49 (6):2767–73. doi: 10.1021/jf0013712.
  • Fan, R., F. Yuan, N. Wang, Y. Gao, and Y. Huang. 2015. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. Journal of Food Science and Technology 52 (5):2690–700. doi: 10.1007/s13197-014-1360-4.
  • Fan, X., Z. Fan, Z. Yang, T. Huang, Y. Tong, D. Yang, X. Mao, and M. Yang. 2022. Flavonoids—Natural gifts to promote health and longevity. International Journal of Molecular Sciences 23 (4):2176. doi: 10.3390/ijms23042176.
  • Fausther-Bovendo, H., and G. Kobinger. 2021. Plant-made vaccines and therapeutics. Science (New York, N.Y.) 373 (6556):740–1. doi: 10.1126/science.abf5375.
  • Ferreyra, M., P. Serra, and P. Casati. 2021. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiologia Plantarum 173 (3):736–49. doi: 10.1111/ppl.13543.
  • Gao, Y., J. Liu, Y. Chen, H. Tang, Y. Wang, Y. He, Y. Ou, X. Sun, S. Wang, and Y. Yao. 2018. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Horticulture Research 5:27. doi: 10.1038/s41438-018-0032-3.
  • Grosso, G., J. Godos, W. Currenti, A. Micek, L. Falzone, M. Libra, F. Giampieri, T. Y. Forbes-Hernández, J. L. Quiles, M. Battino, et al. 2022. The effect of dietary polyphenols on vascular health and hypertension: Current evidence and mechanisms of action. Nutrients 14 (3):545. doi: 10.3390/nu14030545.
  • Gulcan, H. O., and I. E. Orhan. 2021. Amendatory effect of flavonoids in Alzheimer’s disease against mitochondrial dysfunction. Current Drug Targets 22 (14):1618–28. doi: 10.2174/1389450122666210120144921.
  • Guo, Y. P., H. Yang, Y. L. Wang, X. X. Chen, K. Zhang, Y. L. Wang, Y. F. Sun, J. Huang, L. Yang, and J. H. Wang. 2021. Determination of flavonoids compounds of three species and different harvesting periods in Crataegi folium based on LC-MS/MS. Molecules 26 (6):1602. doi: 10.3390/molecules26061602.
  • Ha, T. K., I. Jung, M. E. Kim, S. K. Bae, and J. S. Lee. 2017. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 91:378–84. doi: 10.1016/j.biopha.2017.04.100.
  • Hang, N. T., T. U. T. Thi, and N. Van Phuong. 2022. Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent. Journal of Pharmaceutical and Biomedical Analysis 207:114406. doi: 10.1016/j.jpba.2021.114406.
  • He, L., N. Zhang, L. Wang, L. Du, C. Li, Y. Li, X. Li, X. Zhu, Q. Lu, and X. Yin. 2021. Quercetin inhibits AQP1 translocation in high-glucose-cultured SRA01/04 cells through PI3K/Akt/mTOR pathway. Current Molecular Pharmacology 14 (4):587–96. doi: 10.2174/1874467213666200908120501.
  • Horiba, T., I. Nishimura, Y. Nakai, K. Abe, and R. Sato. 2010. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Molecular and Cellular Endocrinology 323 (2):208–14. doi: 10.1016/j.mce.2010.03.020.
  • Hwang, S. L., P. H. Shih, and G. C. Yen. 2012. Neuroprotective effects of citrus flavonoids. Journal of Agricultural and Food Chemistry 60 (4):877–85. doi: 10.1021/jf204452y.
  • Imran, M., B. Salehi, J. Sharifi-Rad, G. T. Aslam, F. Saeed, A. Imran, M. Shahbaz, F. P. Tsouh, A. M. Umair, H. Khan, et al. 2019. Kaempferol: A key emphasis to its anticancer potential. Molecules 24 (12):2277. doi: 10.3390/molecules24122277.
  • Jiang, M., L. Ren, H. Lian, Y. Liu, and H. Chen. 2016. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). Plant Science 249:46–58. doi: 10.1016/j.plantsci.2016.04.001.
  • Jiménez-Aliaga, K., P. Bermejo-Bescós, J. Benedí, and S. Martín-Aragón. 2011. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences 89 (25-26):939–45. doi: 10.1016/j.lfs.2011.09.023.
  • Kang, J. H., J. Mcroberts, F. Shi, J. E. Moreno, A. D. Jones, and G. A. Howe. 2014. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiology 164 (3):1161–74. doi: 10.1104/pp.113.233395.
  • Karaaslan Ayhan, N., and E. Rosenberg. 2021. Development of comprehensive liquid chromatography with diode array and mass spectrometric detection for the characterization of (poly-)phenolic and flavonoid compounds and application to asparagus. Food Chemistry 354:129518. doi: 10.1016/j.foodchem.2021.129518.
  • Kevers, C., M. Falkowski, J. Tabart, J. O. Defraigne, J. Dommes, and J. Pincemail. 2007. Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry 55 (21):8596–603. doi: 10.1021/jf071736j.
  • Kim, J., Y. Matsuba, J. Ning, A. L. Schilmiller, D. Hammar, A. D. Jones, E. Pichersky, and R. L. Last. 2014. Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. The Plant Cell 26 (8):3272–85. doi: 10.1105/tpc.114.129460.
  • Kooti, W., and N. Daraei. 2017. A review of the antioxidant activity of celery (Apium graveolens L). Journal of Evidence-Based Complementary & Alternative Medicine 22 (4):1029–34. doi: 10.1177/2156587217717415.
  • Kopsell, D. A., and D. E. Kopsell. 2006. Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends in Plant Science 11 (10):499–507. doi: 10.1016/j.tplants.2006.08.006.
  • Kopustinskiene, D. M., V. Jakstas, A. Savickas, and J. Bernatoniene. 2020. Flavonoids as anticancer agents. Nutrients 12 (2):457. doi: 10.3390/nu12020457.
  • Lako, J., V. C. Trenerry, M. Wahlqvist, N. Wattanapenpaiboon, S. Sotheeswaran, and R. Premier. 2007. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry 101 (4):1727–41. doi: 10.1016/j.foodchem.2006.01.031.
  • Lan, C. Y., S. Y. Chen, C. W. Kuo, C. C. Lu, and G. C. Yen. 2019. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Journal of Food and Drug Analysis 27 (4):887–96. doi: 10.1016/j.jfda.2019.07.001.
  • Lan, X., J. Yang, K. Abhinandan, Y. Nie, X. Li, Y. Li, and M. A. Samuel. 2017. Flavonoids and ROS play opposing roles in mediating pollination in ornamental kale (Brassica oleracea var. acephala). Molecular Plant 10 (10):1361–4. doi: 10.1016/j.molp.2017.08.002.
  • Lee, A. Y., S. Kang, S. J. Park, J. Huang, and D. S. Im. 2016. Anti-allergic effect of oroxylin A from oroxylum indicum using in vivo and in vitro experiments. Biomolecules & Therapeutics 24 (3):283–90. doi: 10.4062/biomolther.2016.071.
  • Lee, D., M. Ellard, L. A. Wanner, K. R. Davis, and C. J. Douglas. 1995. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: Stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Molecular Biology 28 (5):871–84. doi: 10.1007/BF00042072.
  • Li, M. Y., X. L. Hou, F. Wang, G. F. Tan, Z. S. Xu, and A. S. Xiong. 2018. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology 38 (2):172–83. doi: 10.1080/07388551.2017.1312275.
  • Li, M., J. Li, H. Tan, Y. Luo, Y. Zhang, Q. Chen, Y. Wang, Y. Lin, Y. Zhang, X. Wang, et al. 2022. Comparative metabolomics provides novel insights into the basis of petiole color differences in celery (Apiumgraveolens L.). Journal of Zhejiang University. Science. B 23 (4):300–14. doi: 10.1631/jzus.B2100806.
  • Li, Q., Y. Jin, R. Jiang, Y. Xu, Y. Zhang, Y. Luo, J. Huang, K. Wang, and Z. Liu. 2021. Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chemistry 344:128576. doi: 10.1016/j.foodchem.2020.128576.
  • Li, Y., X. Shan, R. Gao, T. Han, J. Zhang, Y. Wang, S. Kimani, L. Wang, and X. Gao. 2020. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology 3 (1):396. doi: 10.1038/s42003-020-01134-6.
  • Lin, L. Z., S. Lu, and J. M. Harnly. 2007. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. Journal of Agricultural and Food Chemistry 55 (4):1321–6.
  • Lin, Y., R. Shi, X. Wang, and H. M. Shen. 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets 8 (7):634–46. doi: 10.2174/156800908786241050.
  • Liu, B., B. Li, D. Zhou, X. Wen, Y. Wang, G. Chen, and N. Li. 2021. Steroidal saponins with cytotoxic effects from the rhizomes of Asparagus cochinchinensis. Bioorganic Chemistry 115:105237. doi: 10.1016/j.bioorg.2021.105237.
  • Liu, X., M. Xiang, Y. Fan, C. Yang, L. Zeng, Q. Zhang, M. Chen, and Z. Liao. 2017. A root-preferential DFR-like gene encoding dihydrokaempferol reductase involved in anthocyanin biosynthesis of purple-fleshed sweet potato. Frontiers in Plant Science 8:279. doi: 10.3389/fpls.2017.00279.
  • Liu, X., P. Zhang, Q. Zhao, and A. C. Huang. 2022. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. Journal of Integrative Plant Biology. doi: 10.1111/jipb.13330.
  • Long, Y., X. Wei, S. Wu, N. Wu, Q. X. Li, B. Tan, and X. Wan. 2022. Plant molecular farming, a tool for functional food production. Journal of Agricultural and Food Chemistry 70 (7):2108–16. doi: 10.1021/acs.jafc.1c07185.
  • Luca, S. V., I. Macovei, A. Bujor, A. Miron, K. Skalicka-Woźniak, A. C. Aprotosoaie, and A. Trifan. 2020. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition 60 (4):626–59. doi: 10.1080/10408398.2018.1546669.
  • Lv, L. L., L. Y. Li, W. Li, and K. Li. 2021. SmFLS negatively regulates peel coloring of eggplant (Solanum melongena) under high temperature. Genome 64 (8):813–9. doi: 10.1139/gen-2020-0141.
  • Maleki, S. J., J. F. Crespo, and B. Cabanillas. 2019. Anti-inflammatory effects of flavonoids. Food Chemistry 299:125124. doi: 10.1016/j.foodchem.2019.125124.
  • Malla, A., B. Shanmugaraj, A. Sharma, and S. Ramalingam. 2021. Production of genistein in Amaranthus tricolor var. tristis and Spinacia oleracea by expression of glycine max isoflavone synthase. Plants (Basel) 10 (11):2311. doi: 10.3390/plants10112311.
  • Meng, X., X. Zhao, X. Ding, Y. Li, G. Cao, Z. Chu, X. Su, Y. Liu, X. Chen, J. Guo, et al. 2020. Integrated functional omics analysis of flavonoid-related metabolism in AtMYB12 transcript factor overexpressed tomato. Journal of Agricultural and Food Chemistry 68 (24):6776–87. doi: 10.1021/acs.jafc.0c01894.
  • Miao, H., W. Zeng, J. Wang, F. Zhang, B. Sun, and Q. Wang. 2021. Improvement of glucosinolates by metabolic engineering in Brassica crops. aBIOTECH 2 (3):314–29. doi: 10.1007/s42994-021-00057-y.
  • Michael, G., L. Hertog, C. Peter, H. Hollman, and B. Martijn. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry 40 (12):2379–83.
  • Miean, K. H., and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12. doi: 10.1021/jf000892m.
  • Monteiro, A., J. O. Viana, A. Nayarisseri, E. N. Zondegoumba, J. F. Mendonça, M. T. Scotti, and L. Scotti. 2018. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxidative Medicine and Cellular Longevity 2018:7912765. doi: 10.1155/2018/7912765.
  • Mun, H. I., M. C. Kwon, N. R. Lee, S. Y. Son, D. H. Song, and C. H. Lee. 2021. Comparing metabolites and functional properties of various tomatoes using mass spectrometry-based metabolomics approach. Frontiers in Nutrition 8:659646. doi: 10.3389/fnut.2021.659646.
  • Murata, K., T. Kitano, R. Yoshimoto, R. Takata, N. Ube, K. Ueno, M. Ueno, Y. Yabuta, M. Teraishi, C. K. Holland, et al. 2020. Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. The Plant Journal: For Cell and Molecular Biology 101 (5):1103–17. doi: 10.1111/tpj.14577.
  • Nabavi, S. M., D. šamec, M. Tomczyk, L. Milella, D. Russo, S. Habtemariam, I. Suntar, L. Rastrelli, M. Daglia, J. Xiao, et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances 38:107316. doi: 10.1016/j.biotechadv.2018.11.005.
  • Nagarani, G., A. Abirami, P. Nikitha, and P. Siddhuraju. 2014. Effect of hydrothermal processing on total polyphenolics and antioxidant potential of underutilized leafy vegetables, Boerhaavia diffusa and Portulaca oleracea. Asian Pacific Journal of Tropical Biomedicine 4 (Suppl 1):S468–S477. doi: 10.12980/APJTB.4.2014C1108.
  • Nakatsuka, T., M. Saito, E. Yamada, K. Fujita, Y. Kakizaki, and M. Nishihara. 2012. Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers. Journal of Experimental Botany 63 (18):6505–17. doi: 10.1093/jxb/ers306.
  • Ohshima, K., and E. Morii. 2021. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites 11 (1):28. doi: 10.3390/metabo11010028.
  • Olsen, K. M., A. Hehn, H. Jugdé, R. Slimestad, R. Larbat, F. Bourgaud, and C. Lillo. 2010. Identification and characterisation of CYP75A31, a new flavonoid 3′5′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology 10:21. doi: 10.1186/1471-2229-10-21.
  • Oteiza, P. I., C. G. Fraga, and M. Galleano. 2021. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biology 42:101914. doi: 10.1016/j.redox.2021.101914.
  • Panda, V., N. Bhandare, K. Mistry, S. S, and P. Dande. 2022. Cardioprotective potential of Spinacia oleracea (Spinach) against isoproterenol-induced myocardial infarction in rats. Archives of Physiology and Biochemistry 128 (1):101–10. doi: 10.1080/13813455.2019.1665074.
  • Park, S., Kim, D. H. Lee, J. Y. Ha, S. H. Lim, and S. H. 2017. Comparative Analysis of Two Flavonol Synthases from Different-Colored Onions Provides Insight into Flavonoid Biosynthesis. Journal of Agricultural and Food Chemistry 65 (26):5287–98. doi: 10.1021/acs.jafc.7b01036.
  • Pascual-Teresa, S. D., C. Santos-Buelga, and J. C. Rivas-Gonzalo. 2000. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. Journal of Agricultural and Food Chemistry 48 (11):5331–7.
  • Paur, I., W. Lilleby, S. K. Bøhn, E. Hulander, W. Klein, L. Vlatkovic, K. Axcrona, N. Bolstad, T. Bjøro, P. Laake, et al. 2017. Tomato-based randomized controlled trial in prostate cancer patients: Effect on PSA. Clinical Nutrition (Edinburgh, Scotland) 36 (3):672–9. doi: 10.1016/j.clnu.2016.06.014.
  • Pelletier, M. K, and B. W. Shirley. 1996. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiology 111 (1):339–45. doi: 10.1104/pp.111.1.339.
  • Pietta, P. G. 2000. Flavonoids as antioxidants. Journal of Natural Products 63 (7):1035–42. doi: 10.1021/np9904509.
  • Pinela, J., C. Montoya, A. M. Carvalho, V. Martins, F. Rocha, A. M. Barata, L. Barros, and I. Ferreira. 2019. Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum L.) germplasm. Food Research International (Ottawa, Ont.) 125:108545. doi: 10.1016/j.foodres.2019.108545.
  • Reyes-Farias, M., and C. Carrasco-Pozo. 2019. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. International Journal of Molecular Sciences 20 (13):3177. doi: 10.3390/ijms20133177.
  • Roberts, J. L., and R. Moreau. 2016. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function 7 (8):3337–53. doi: 10.1039/c6fo00051g.
  • Ross, J. A., and C. M. Kasum. 2002. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition 22 (1):19–34. doi: 10.1146/annurev.nutr.22.111401.144957.
  • Saffer, A. M, and V. F. Irish. 2018. Flavonol rhamnosylation indirectly modifies the cell wall defects of rhamnose biosynthesis1 mutants by altering rhamnose flux. The Plant Journal: For Cell and Molecular Biology 94 (4):649–60. doi: 10.1111/tpj.13885.
  • Salehi, B., A. Venditti, M. Sharifi-Rad, D. Kręgiel, J. Sharifi-Rad, A. Durazzo, M. Lucarini, A. Santini, E. B. Souto, E. Novellino, et al. 2019. The therapeutic potential of apigenin. International Journal of Molecular Sciences 20 (6):1305. doi: 10.3390/ijms20061305.
  • Schilbert, H. M., M. Schöne, T. Baier, M. Busche, P. Viehöver, B. Weisshaar, and D. Holtgräwe. 2021. Characterization of the Brassica napus flavonol synthase gene family reveals bifunctional flavonol synthases. Frontiers in Plant Science 12:733762. doi: 10.3389/fpls.2021.733762.
  • Schwinn, K. E., H. Ngo, F. Kenel, D. A. Brummell, N. W. Albert, J. A. Mccallum, M. Pither-Joyce, R. N. Crowhurst, C. Eady, and K. M. Davies. 2016. The onion (Allium cepa L.) R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis. Frontiers in Plant Science 7:1865. doi: 10.3389/fpls.2016.01865.
  • Serafini, M., I. Peluso, and A. Raguzzini. 2010. Flavonoids as anti-inflammatory agents. The Proceedings of the Nutrition Society 69 (3):273–8. doi: 10.1017/S002966511000162X.
  • Shen, N., T. Wang, Q. Gan, S. Liu, L. Wang, and B. Jin. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531. doi: 10.1016/j.foodchem.2022.132531.
  • Shin, D. H., M. Cho, M. G. Choi, P. K. Das, S. K. Lee, S. B. Choi, and Y. I. Park. 2015. Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis. Plant Cell Reports 34 (5):805–15. doi: 10.1007/s00299-015-1743-7.
  • Shirley, B. W., S. Hanley, and H. M. Goodman. 1992. Effects of ionizing radiation on a plant genome: Analysis of two Arabidopsis transparent testa mutations. The Plant Cell 4 (3):333–47. doi: 10.1105/tpc.4.3.333.
  • Silva-Navas, J., M. A. Moreno-Risueno, C. Manzano, B. Téllez-Robledo, S. Navarro-Neila, V. Carrasco, S. Pollmann, F. J. Gallego, and P. J. Del. 2016. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition. The Plant Cell 28 (6):1372–87. doi: 10.1105/tpc.15.00857.
  • Simmonds, M. S. 2001. Importance of flavonoids in insect–plant interactions: Feeding and oviposition. Phytochemistry 56 (3):245–52. doi: 10.1016/s0031-9422(00)00453-2.
  • Singh, A., P. Singh, B. Kumar, S. Kumar, K. Dev, and R. Maurya. 2019. Detection of flavonoids from Spinacia oleracea leaves using HPLC-ESI-QTOF-MS/MS and UPLC-QqQ(LIT)-MS/MS techniques. Natural Product Research 33 (15):2253–6. doi: 10.1080/14786419.2018.1489395.
  • Singh, N., D. Baby, J. P. Rajguru, P. B. Patil, S. S. Thakkannavar, and V. B. Pujari. 2019. Inflammation and cancer. Annals of African Medicine 18 (3):121–6. doi: 10.4103/aam.aam_56_18.
  • Singh, P., Y. Arif, A. Bajguz, and S. Hayat. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry: PPB 166:10–9. doi: 10.1016/j.plaphy.2021.05.023.
  • Singla, R. K., A. K. Dubey, A. Garg, R. K. Sharma, M. Fiorino, S. M. Ameen, M. A. Haddad, and M. Al-Hiary. 2019. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International 102 (5):1397–400. doi: 10.5740/jaoacint.19-0133.
  • Song, X., L. Tan, M. Wang, C. Ren, C. Guo, B. Yang, Y. Ren, Z. Cao, Y. Li, and J. Pei. 2021. Myricetin: A review of the most recent research. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 134:111017. doi: 10.1016/j.biopha.2020.111017.
  • Stracke, R., H. Ishihara, G. Huep, A. Barsch, F. Mehrtens, K. Niehaus, and B. Weisshaar. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal: For Cell and Molecular Biology 50 (4):660–77. doi: 10.1111/j.1365-313X.2007.03078.x.
  • Stracke, R., O. Jahns, M. Keck, T. Tohge, K. Niehaus, A. R. Fernie, and B. Weisshaar. 2010. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. The New Phytologist 188 (4):985–1000. doi: 10.1111/j.1469-8137.2010.03421.x.
  • Su, W., Tao, R. Liu, W. Y. C. Yue, Z. He, S. Lavelle, D. Zhang, W. Zhang, L. An, G. Zhang, et al. 2020. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnology Journal 18 (2):479–90. doi: 10.1111/pbi.13213.
  • Sudheeran, P. K., R. Ovadia, O. Galsarker, I. Maoz, N. Sela, D. Maurer, O. Feygenberg, S. M. Oren, and N. Alkan. 2020. Glycosylated flavonoids: Fruit’s concealed antifungal arsenal. The New Phytologist 225 (4):1788–98. doi: 10.1111/nph.16251.
  • Tanaka, Y., F. Brugliera, G. Kalc, M. Senior, B. Dyson, N. Nakamura, Y. Katsumoto, and S. Chandler. 2010. Flower color modification by engineering of the flavonoid biosynthetic pathway: Practical perspectives. Bioscience, Biotechnology, and Biochemistry 74 (9):1760–9. doi: 10.1271/bbb.100358.
  • Tang, G.-Y., X. Meng, Y. Li, C.-N. Zhao, Q. Liu, and H.-B. Li. 2017. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients 9 (8):857. doi: 10.3390/nu9080857.
  • Tohge, T., and A. R. Fernie. 2016. Specialized metabolites of the flavonol class mediate root phototropism and growth. Molecular Plant 9 (12):1554–5. doi: 10.1016/j.molp.2016.10.019.
  • Ullah, A., S. Munir, S. L. Badshah, N. Khan, L. Ghani, B. G. Poulson, A. Emwas, and M. Jaremko. 2020. Important flavonoids and their role as a therapeutic agent. Molecules 25 (22):5243. doi: 10.3390/molecules25225243.
  • Vogt, T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3 (1):2–20. doi: 10.1093/mp/ssp106.
  • Wang, C., Y. Liao, S. Wang, D. Wang, N. Wu, Q. Xu, W. Jiang, M. Qiu, and C. Liu. 2018. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Molecular Medicine Reports 17 (5):7331–8. doi: 10.3892/mmr.2018.8750.
  • Wang, Q., X. Dong, R. Zhang, and C. Zhao. 2021. Flavonoids with potential anti-amyloidogenic effects as therapeutic drugs for treating Alzheimer’s disease. Journal of Alzheimer’s Disease : JAD 84 (2):505–33. doi: 10.3233/JAD-210735.
  • Wanner, L. A., G. Li, D. Ware, I. E. Somssich, and K. R. Davis. 1995. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Molecular Biology 27 (2):327–38. doi: 10.1007/BF00020187.
  • Wu, M., X. Xu, X. Hu, Y. Liu, H. Cao, H. Chan, Z. Gong, Y. Yuan, Y. Luo, B. Feng, et al. 2020. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiology 183 (3):854–68. doi: 10.1104/pp.20.00156.
  • Wu, X., Y. Zhao, D. B. Haytowitz, P. Chen, and P. R. Pehrsson. 2019. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 5 (3):e01310. doi: 10.1016/j.heliyon.2019.e01310.
  • Xu, D.-P., Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, J.-J. Zhang, and H.-B. Li. 2017. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences 18 (1):96. doi: 10.3390/ijms18010096.
  • Xu, Z. S., Q. Q. Yang, K. Feng, and A. S. Xiong. 2019. Changing carrot color: Insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiology 181 (1):195–207. doi: 10.1104/pp.19.00523.
  • Yadav, M., S. Jain, R. Tomar, G. B. Prasad, and H. Yadav. 2010. Medicinal and biological potential of pumpkin: An updated review. Nutrition Research Reviews 23 (2):184–90. doi: 10.1017/S0954422410000107.
  • Yan, S., N. Chen, Z. Huang, D. Li, J. Zhi, B. Yu, X. Liu, B. Cao, and Z. Qiu. 2020. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. The New Phytologist 225 (5):2048–63. doi: 10.1111/nph.16272.
  • Yan, X., J. Song, M. Yu, H. L. Sun, and H. Hao. 2020. Synthesis of flavonoids nitrogen mustard derivatives and study on their antitumor activity in vitro. Bioorganic Chemistry 96:103613. doi: 10.1016/j.bioorg.2020.103613.
  • Yang, L., D. Xian, X. Xiong, R. Lai, J. Song, and J. Zhong. 2018. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. BioMed Research International 2018:8584136. doi: 10.1155/2018/8584136.
  • Zhang, P., H. Du, J. Wang, Y. Pu, C. Yang, R. Yan, H. Yang, H. Cheng, and D. Yu. 2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal 18 (6):1384–95. doi: 10.1111/pbi.13302.
  • Zhong, X., Surh, Y. J. Do, S. G. Shin, E. Shim, K. S. Lee, C. K. Na, and H. K. 2019. Baicalein inhibits dextran sulfate sodium-induced mouse colitis. Journal of Cancer Prevention 24 (2):129–38. doi: 10.15430/JCP.2019.24.2.129.
  • Zhou, B., J. Leng, Y. Ma, P. Fan, Y. Li, H. Yan, and Q. Xu. 2020. BrmiR828 targets BrPAP1, BrMYB82, and BrTAS4 involved in the light induced anthocyanin biosynthetic pathway in Brassica rapa. International Journal of Molecular Sciences 21 (12):4326. doi: 10.3390/ijms21124326.
  • Zhou, K., R. Cheng, B. Liu, L. Wang, H. Xie, and C. Zhang. 2018. Eupatilin ameliorates dextran sulphate sodium-induced colitis in mice partly through promoting AMPK activation. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 46:46–56. doi: 10.1016/j.phymed.2018.04.033.
  • Zhou, L., Y. He, J. Li, Y. Liu, and H. Chen. 2020. CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant & Cell Physiology 61 (2):416–26. doi: 10.1093/pcp/pcz209.
  • Zhu, M., T. LiU, and M. Guo. 2016. Current Advances in the Metabolomics Study on Lotus Seeds. Frontiers in Plant Science 7:891. doi: 10.3389/fpls.2016.00891.
  • Zuo, A.-R., H.-H. Dong, Y.-Y. Yu, Q.-L. Shu, L.-X. Zheng, X.-Y. Yu, and S.-W. Cao. 2018. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Medicine 13:51. doi: 10.1186/s13020-018-0206-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.