2,309
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abraham, K., F. Wohrlin, O. Lindtner, G. Heinemeyer, and A. Lampen. 2010. Toxicology and risk assessment of coumarin: Focus on human data. Molecular Nutrition & Food Research 54 (2):228–39. doi: 10.1002/mnfr.200900281.
  • Actis-Goretta, L., T. P. Dew, A. Leveques, G. Pereira-Caro, M. Rein, A. Teml, C. Schafer, U. Hofmann, M. Schwab, M. Eichelbaum, et al. 2015. Gastrointestinal absorption and metabolism of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside in healthy humans. Molecular Nutrition & Food Research 59 (9):1651–62. doi: 10.1002/mnfr.201500202.
  • Adams, T. B., D. B. Greer, J. Doull, I. C. Munro, P. Newberne, P. S. Portoghese, R. L. Smith, B. M. Wagner, C. S. Weil, L. A. Woods, et al. 1998. The FEMA GRAS assessment of lactones used as flavour ingredients. Food and Chemical Toxicology 36 (4):249–78. doi: 10.1016/S0278-6915(97)00163-4.
  • Adeva-Andany, M. M., N. Carneiro-Freire, M. Seco-Filgueira, C. Fernandez-Fernandez, and D. Mourino-Bayolo. 2019. Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion 46:73–90. doi: 10.1016/j.mito.2018.02.009.
  • Agnihotri, G, and H. W. Liu. 2003. Enoyl-CoA hydratase: Reaction, mechanism, and inhibition. Bioorganic & Medicinal Chemistry 11 (1):9–20. doi: 10.1016/S0968-0896(02)00333-4.
  • Agullo, V., D. Villano, C. Garcia-Viguera, and R. Dominguez-Perles. 2020. Anthocyanin metabolites in human urine after the intake of new functional beverages. Molecules 25 (2):371. doi: 10.3390/molecules25020371.
  • Amsel, L. P, and G. Levy. 1969. Drug biotransformation interactions in man. II. A pharmacokinetic study of the simultaneous conjugation of benzoic and salicylic acids with glycine. Journal of Pharmaceutical Sciences 58 (3):321–6. doi: 10.1002/jps.2600580307.
  • Andrade, F., I. Vitoria, E. M. Hernandez, G. Pintos-Morell, P. Correcher, R. Puig-Pina, P. Quijada-Fraile, L. Pena-Quintana, A. M. Marquez, O. Villate, et al. 2019. Quantification of urinary derivatives of phenylbutyric and benzoic acids by LC-MS/MS as treatment compliance biomarkers in Urea Cycle disorders. Journal of Pharmaceutical and Biomedical Analysis 176:112798. doi: 10.1016/j.jpba.2019.112798.
  • Anesi, A., P. Mena, A. Bub, M. Ulaszewska, D. Del Rio, S. E. Kulling, and F. Mattivi. 2019. Quantification of urinary phenyl-gamma-valerolactones and related valeric acids in human urine on consumption of apples. Metabolites 9 (11):254. doi: 10.3390/metabo9110254.
  • Antunez-Solis, J., F. Hernandez-Derramadero, M. Aquino-Vega, S. Ibarra-Ramirez, L. Rodriguez-Paez, I. Baeza, and C. Wong. 2009. 2,4,5-trimethoxycinnamic acid: The major metabolite of alpha-asarone, retains most of the pharmacological properties of alpha-asarone. Journal of Enzyme Inhibition and Medicinal Chemistry 24 (3):903–9. doi: 10.1080/14756360802318902.
  • Armstrong, M. D, and K. N. Shaw. 1957. The occurrence of (-)-beta-m-hydroxyphenyl-hydracrylic acid in human urine. Journal of Biological Chemistry 225 (1):269–78. doi: 10.1016/S0021-9258(18)64928-2.
  • Armstrong, M. D., P. E. Wall, and V. J. Parker. 1956. The excretion of m-hydroxyhippuric acid by humans. Journal of Biological Chemistry 218 (2):921–7. doi: 10.1016/S0021-9258(18)65854-5.
  • Aschoff, J. K., K. M. Riedl, J. L. Cooperstone, J. Hogel, A. Bosy-Westphal, S. J. Schwartz, R. Carle, and R. M. Schweiggert. 2016. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Molecular Nutrition & Food Research 60 (12):2602–10. doi: 10.1002/mnfr.201600315.
  • Baba, S., T. Furuta, M. Horie, and H. Nakagawa. 1981. Studies on drug metabolism by use of isotopes XXVI: Determination of urinary metabolites of rutin in humans. Journal of Pharmaceutical Sciences 70 (7):780–2. doi: 10.1002/jps.2600700717.
  • Baba, S., N. Osakabe, M. Natsume, A. Yasuda, Y. Muto, K. Hiyoshi, H. Takano, T. Yoshikawa, and J. Terao. 2005. Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans. European Journal of Nutrition 44 (1):1–9. doi: 10.1007/s00394-004-0482-2.
  • Bäckhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science (New York, N.Y.) 307 (5717):1915–20. doi: 10.1126/science.1104816.
  • Bahl, J. J., M. Matsuda, R. A. DeFronzo, and R. Bressler. 1997. In vitro and in vivo suppression of gluconeogenesis by inhibition of pyruvate carboxylase. Biochemical Pharmacology 53 (1):67–74. doi: 10.1016/S0006-2952(96)00660-0.
  • Baldwin, J. E. 1976. Rules for ring-closure. Journal of the Chemical Society, Chemical Communications (18):734–6. doi: 10.1039/c39760000734.
  • Barbier-Torres, L., K. A. Fortner, P. Iruzubieta, T. C. Delgado, E. Giddings, Y. D. H. Chen, D. Champagne, D. Fernandez-Ramos, D. Mestre, B. Gomez-Santos, et al. 2020. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. Nature Communications 11 (1):3360. doi: 10.1038/s41467-020-16991-2.
  • Bennett, M. J., A. Bhala, S. F. Poirier, M. C. Ragni, S. M. Willi, and D. E. Hale. 1992. When do gut flora in the newborn produce 3-phenylpropionic acid: Implications for early diagnosis of medium-chain acyl-CoA dehydrogenase-deficiency. Clinical Chemistry 38 (2):278–81. doi: 10.1093/clinchem/38.2.278.
  • Bennett, M. J, and W. G. Sherwood. 1993. 3-Hydroxydicarboxylic and 3-ketodicarboxylic aciduria in 3 patients: Evidence for a new defect in fatty-acid oxidation at the level of 3-ketoacyl-CoA thiolase. Clinical Chemistry 39 (5):897–901. doi: 10.1093/clinchem/39.5.896.
  • Benton, C. R., S. E. Campbell, M. Tonouchi, H. Hatta, and A. Bonen. 2004. Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondria. Biochemical and Biophysical Research Communications 323 (1):249–53. doi: 10.1016/j.bbrc.2004.08.084.
  • Berge, R. K., H. Osmundsen, A. Aarsland, and M. Farstad. 1983. The existence of separate peroxisomal pools of free Coenzyme-A and long-chain acyl-CoA in rat-liver, demonstrated by a specific high-performance liquid-chromatography method. International Journal of Biochemistry 15 (2):205–9. doi: 10.1016/0020-711X(83)90066-6.
  • Bhala, A., M. J. Bennett, K. L. McGowan, and D. E. Hale. 1993. Limitations of 3-phenylpropionylglycine in early screening for medium-chain acyl coenzyme a dehydrogenase-deficiency. The Journal of Pediatrics 122 (1):100–3. doi: 10.1016/S0022-3476(05)83499-7.
  • Bondia-Pons, I., T. Barri, K. Hanhineva, K. Juntunen, L. O. Dragsted, H. Mykkänen, and K. Poutanen. 2013. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Molecular Nutrition & Food Research 57 (3):412–22. doi: 10.1002/mnfr.201200571.
  • Booth, A. N., M. S. Masri, D. J. Robbins, O. H. Emerson, F. T. Jones, and F. Deeds. 1959. Urinary metabolites of coumarin and ortho-coumaric acid. Journal of Biological Chemistry 234 (4):946–8. doi: 10.1016/S0021-9258(18)70209-3.
  • Booth, A. N., M. S. Masri, D. J. Robbins, O. H. Emerson, F. T. Jones, and F. Deeds. 1960. Urinary phenolic acid metabolites of tyrosine. Journal of Biological Chemistry 235 (9):2649–52. doi: 10.1016/S0021-9258(19)76930-0.
  • Booth, A. N., O. H. Emerson, F. T. Jones, and F. DeEds. 1957. Urinary metabolites of caffeic and chlorogenic acids. Journal of Biological Chemistry 229 (1):51–9. doi: 10.1016/S0021-9258(18)70592-9.
  • Booth, A. N., F. T. Jones, and F. DeEds. 1958. Metabolic fate of hesperidin, eriodictyol, homoeridictyol, and diosmin. Journal of Biological Chemistry 230 (2):661–8.
  • Borges, G., J. I. Ottaviani, J. J. J. van der Hooft, H. Schroeter, and A. Crozier. 2018. Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings. Molecular Aspects of Medicine 61:18–30. doi: 10.1016/j.mam.2017.11.002.
  • Borges, G., J. J. J. van der Hooft, and A. Crozier. 2016. A comprehensive evaluation of the [2-C-14](-)-epicatechin metabolome in rats. Free Radical Biology and Medicine 99:128–38. doi: 10.1016/j.freeradbiomed.2016.08.001.
  • Braune, A, and M. Blaut. 2011. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environmental Microbiology 13 (2):482–94. doi: 10.1111/j.1462-2920.2010.02352.x.
  • Braune, A, and M. Blaut. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7 (3):216–34. doi: 10.1080/19490976.2016.1158395.
  • Braune, A., W. Engst, and M. Blaut. 2005. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. Journal of Agricultural and Food Chemistry 53 (5):1782–90. doi: 10.1021/jf0484982.
  • Braune, A., R. Maul, N. H. Schebb, S. E. Kulling, and M. Blaut. 2010. The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota. Molecular Nutrition & Food Research 54 (7):929–38. doi: 10.1002/mnfr.200900233.
  • Bresciani, L., G. Di Pede, C. Favari, L. Calani, V. Francinelli, A. Riva, G. Petrangolini, P. Allegrini, P. Mena, and D. Del Rio. 2021. In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry ( Vaccinium macrocarpon ) extracts. Food Research International 141:110137. doi: 10.1016/j.foodres.2021.110137.
  • Buckel, W. 2019. Enzymatic reactions involving ketyls: From a chemical curiosity to a general biochemical mechanism. Biochemistry 58 (52):5221–33. doi: 10.1021/acs.biochem.9b00171.
  • Caldwell, J, and J. D. Sutton. 1988. Influence of dose size on the disposition of trans-methoxy-C-14 anethole in human volunteers. Food and Chemical Toxicology 26 (2):87–91. doi: 10.1016/0278-6915(88)90103-2.
  • Cao, J., H. Xu, H. Zhao, W. M. Gong, and D. Dunaway-Mariano. 2009. The mechanisms of human hotdog-fold thioesterase 2 (hTHEM2) substrate recognition and catalysis illuminated by a structure and function based analysis. Biochemistry 48 (6):1293–304. doi: 10.1021/bi801879z.
  • Cao, Y. G., L. Zhang, C. Ma, B. B. Chang, Y. C. Chen, Y. Q. Tang, X. D. Liu, and X. Q. Liu. 2009. Metabolism of protocatechuic acid influences fatty acid oxidation in rat heart: New anti-angina mechanism implication. Biochemical Pharmacology 77 (6):1096–104. doi: 10.1016/j.bcp.2008.11.029.
  • Cardenas, C. L. L., J. Bourgine, C. Cauffiez, D. Allorge, J. M. Lo-Guidice, F. Broly, and D. Chevalier. 2010. Genetic polymorphisms of Glycine N-acyltransferase (GLYAT) in a French Caucasian population. Xenobiotica 40 (12):853–61. doi: 10.3109/00498254.2010.519407.
  • Carter, S. M., J. M. Midgley, D. G. Watson, and R. W. Logan. 1991. Measurement of urinary medium chain acyl glycines by gas-chromatography negative-ion chemical ionization mass-spectrometry. Journal of Pharmaceutical and Biomedical Analysis 9 (10-12):969–75. doi: 10.1016/0731-7085(91)80032-5.
  • Cartus, A. T., K. Herrmann, L. W. Weishaupt, K. H. Merz, W. Engst, H. Glatt, and D. Schrenk. 2012. Metabolism of methyleugenol in liver microsomes and primary hepatocytes: Pattern of metabolites, cytotoxicity, and DNA-adduct formation. Toxicological Sciences 129 (1):21–34. doi: 10.1093/toxsci/kfs181.
  • Castello, F., G. Costabile, L. Bresciani, M. Tassotti, D. Naviglio, D. Luongo, P. Ciciola, M. Vitale, C. Vetrani, G. Galaverna, et al. 2018. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Archives of Biochemistry and Biophysics 646:1–9. doi: 10.1016/j.abb.2018.03.021.
  • Caterino, M., M. Ruoppolo, G. R. D. Villani, E. Marchese, M. Costanzo, G. Sotgiu, S. Dore, F. Franconi, and I. Campesi. 2020. Influence of sex on urinary organic acids: A cross-sectional study in children. International Journal of Molecular Sciences 21 (2):582. doi: 10.3390/ijms21020582.
  • Chaaban, H., I. Ioannou, L. Chebil, M. Slimane, C. Gerardin, C. Paris, C. Charbonnel, L. Chekir, and M. Ghoul. 2017. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation 41 (5):e13203. doi: 10.1111/jfpp.13203.
  • Cheema, A. K., K. Y. Mehta, M. U. Rajagopal, S. Y. Wise, O. O. Fatanmi, and V. K. Singh. 2019. Metabolomic Studies of Tissue Injury in Nonhuman Primates Exposed to Gamma-Radiation. International Journal of Molecular Sciences 20 (13):3360. doi: 10.3390/ijms20133360.
  • Chen, H., L. Lv, D. Soroka, R. F. Warin, T. A. Parks, Y. Hu, Y. Zhu, X. Chen, and S. Sang. 2012. Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metabolism and Disposition 40 (4):742–53. doi: 10.1124/dmd.111.043331.
  • Chen, H. D, and S. M. Sang. 2014. Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods 7:26–42. doi: 10.1016/j.jff.2014.01.013.
  • Chen, T. B., W. W. Su, Z. H. Yan, H. Wu, X. Zeng, W. Peng, L. Gan, Y. H. Zhang, and H. L. Yao. 2018. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 161:262–72. doi: 10.1016/j.jpba.2018.08.039.
  • Chen, T. B., H. Wu, Y. He, W. J. Pan, Z. H. Yan, Y. Liao, W. Peng, L. Gan, Y. H. Zhang, W. W. Su, et al. 2019. Simultaneously quantitative analysis of naringin and its major human gut microbial metabolites naringenin and 3-(4'-hydroxyphenyl) propanoic acid via stable isotope deuterium-labeling coupled with RRLC-MS/MS Method. Molecules 24 (23):4287. doi: 10.3390/molecules24234287.
  • Cheng, Z. J., F. Song, X. Y. Shan, Z. Y. Wei, Y. L. Wang, D. Dunaway-Mariano, and W. M. Gong. 2006. Crystal str ucture of human thioesterase superfamily member 2. Biochemical and Biophysical Research Communications 349 (1):172–7. doi: 10.1016/j.bbrc.2006.08.025.
  • Chohnan, S., S. Matsuno, K. Shimizu, Y. Tokutake, D. Kohari, and A. Toyoda. 2020. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients 12 (2):417. doi: 10.3390/nu12020417.
  • Clayton, T. A. 2012. Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Letters 586 (7):956–61. doi: 10.1016/j.febslet.2012.01.049.
  • Clifford, M. N., A. Kerimi, and G. Williamson. 2020. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Comprehensive Reviews in Food Science and Food Safety 19 (4):1299–352. doi: 10.1111/1541-4337.12518.
  • Clifford, M. N. 2000. Chlorogenic acids and other cinnamates: Nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture 80 (7):1033–43. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T.
  • Clifford, M. N., E. L. Copeland, J. P. Bloxsidge, and L. A. Mitchell. 2000. Hippuric acid is a major excretion product associated with black tea consumption. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 30 (3):317–26. doi: 10.1080/004982500237703.
  • Clifford, M. N., I. B. Jaganath, I. A. Ludwig, and A. Crozier. 2017. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports 34 (12):1391–421. doi: 10.1039/c7np00030h.
  • Clifford, M. N., S. Knight, B. Surucu, and N. Kuhnert. 2006. Characterization by LC-MSn of four new classes of chlorogenic acids in green coffee beans: Dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. Journal of Agricultural and Food Chemistry 54 (6):1957–69. doi: 10.1021/jf0601665.
  • Clifford, M. N., V. Lopez, L. Poquet, G. Williamson, and N. Kuhnert. 2007. A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression. Rapid Communications in Mass Spectrometry: RCM 21 (13):2014–8. doi: 10.1002/rcm.3038.
  • Clifford, M. N., S. Marks, S. Knight, and N. Kuhnert. 2006. Characterization by LC–MSn of four novel classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. Journal of Agricultural and Food Chemistry 54 (12):4095–101. doi: 10.1021/jf060536p.
  • Clifford, M. N., W. Wu, J. Kirkpatrick, R. Jaiswal, and N. Kuhnert. 2010. Profiling and characterisation by liquid chromatography/multi-stage mass spectrometry of the chlorogenic acids in Gardeniae Fructus. Rapid Communications in Mass Spectrometry: RCM 24 (21):3109–20. doi: 10.1002/rcm.4751.
  • Coldham, N. G., C. Darby, M. Hows, L. J. King, A. Q. Zhang, and M. J. Sauer. 2002. Comparative metabolism of genistin by human and rat gut microflora: Detection and identification of the end-products of metabolism. Xenobiotica 32 (1):45–62. doi: 10.1080/00498250110085809.
  • Comte, B., T. Kasumov, B. A. Pierce, M. A. Puchowicz, M. E. Scott, W. Dahms, D. Kerr, I. Nissim, and H. Brunengraber. 2002. Identification of phenylbutyrylglutamine, a new metabolite of phenylbutyrate metabolism in humans. Journal of Mass Spectrometry 37 (6):581–90. doi: 10.1002/jms.316.
  • Correia, M. S. P., A. Jain, W. Alotaibi, P. Y. T. Yang, A. Rodriguez-Mateos, and D. Globisch. 2020. Comparative dietary sulfated metabolome analysis reveals unknown metabolic interactions of the gut microbiome and the human host. Free Radical Biology and Medicine 160:745–54. doi: 10.1016/j.freeradbiomed.2020.09.006.
  • Cortes-Martin, A., M. V. Selma, J. C. Espin, and R. Garcia-Villalba. 2019. The human metabolism of nuts proanthocyanidins does not reveal urinary metabolites consistent with distinctive gut microbiota metabotypes. Molecular Nutrition & Food Research 63 (2):1800819. doi: 10.1002/mnfr.201800819.
  • Cova, D., L. Deangelis, F. Giavarini, G. Palladini, and R. Perego. 1992. Pharmacokinetics and metabolism of oral diosmin in healthy-volunteers. International Journal of Clinical Pharmacology and Therapeutics 30 (1):29–33.
  • Crozier, A., M. N. Clifford, and H. Ashihara. 2006. Plant secondary metabolites. Occurrence, structure and role in the human diet. Oxford, UK: Blackwell.
  • Curtius, H. C. 1973. Use of deuterated compounds in study of tyrosine-dopa metabolism in phenylketonuria. Angewandte Chemie International Edition in English 12 (2):165. doi: 10.1002/anie.197301651.
  • Curtius, H. C., J. A. Vollmin, and K. Baerloch. 1972. Use of deuterated phenylalanine for elucidation of phenylalanine-tyrosine metabolism. Clinica Chimica Acta 37:277–85. doi: 10.1016/0009-8981(72)90442-1.
  • Curtius, H. C., M. Mettler, and L. Ettlinger. 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography–mass spectrometry. Journal of Chromatography A 126:569–80. doi: 10.1016/S0021-9673(01)84102-9.
  • Cvetanović, M., M. Moreno de la Garza, V. Dommes, and W. H. Kunau. 1985. Purification and characterization of 2-enoyl-CoA reductase from bovine liver. Biochemical Journal 227 (1):49–56. doi: 10.1042/bj2270049.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. 97/5/995 [pii];doi: 10.3945/ajcn.112.049247.
  • Dakin, H. D. 1908a. Further studies of the mode of oxidation of phenyl derivatives of fatty acids in the animal organism. (Phenylbutyric acid, phenyl-ss-oxybutyric acid, phenylacetone, phenylisocrotonic acid, phenyl-ss,r- dioxybutyric acid. Journal of Biological Chemistry 5 (1):173–85. doi: 10.1016/S0021-9258(18)91686-8.
  • Dakin, H. D. 1908b. Comparative studies of the mode of oxidation of phenyl derivatives of fatty acids by the animal organism and by hydrogen peroxide. Journal of Biological Chemistry 4 (6):419–35. doi: 10.1016/S0021-9258(20)85455-6.
  • Dakin, H. D. 1909. The mode of oxidation in the animal organism of phenyl derivatives of fatty acids. Part IV: Further studies on the fate of phenylpropionic acid and some of its derivatives. Journal of Biological Chemistry 6 (3):203–19. doi: 10.1016/S0021-9258(18)91615-7.
  • Das, N. P. 1969. Studies on flavonoid metabolism. Degradation of (+)-catechin by rat intestinal contents. Biochimica et Biophysica Acta 177 (3):668–70. doi: 10.1016/0304-4165(69)90340-7.
  • Das, N. P, and L. A. Griffiths. 1969. Studies on flavonoid metabolism. Metabolism of (+)-[14C]catechin in the rat and guinea pig. The Biochemical Journal 115 (4):831–6. doi: 10.1042/bj1150831.
  • Das, N. P, and S. P. Sothy. 1971. Studies on flavonoid metabolism. Biliary and urinary excretion of metabolites of (+)-(U-14C)catechin. Biochemical Journal 125 (2):417–23. doi: 10.1042/bj1250417.
  • Dayman, J, and J. B. Jepson. 1969. The metabolism of caffeic acid in humans: The dehydroxylating action of intestinal bacteria. Biochemical Journal 113 (2):11P. doi: 10.1042/bj1130011P.
  • de Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, P. A. Kroon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • De Preter, V., K. Geboes, K. Verbrugghe, L. D. Vuyst, T. Vanhoutte, G. Huys, J. Swings, B. Pot, and K. Verbeke. 2004. The in vivo use of the stable isotope-labelled biomarkers lactose-N-15 ureide and H-2(4) tyrosine to assess the effects of pro- and prebiotics on the intestinal flora of healthy human volunteers. British Journal of Nutrition 92 (3):439–46. doi: 10.1079/BJN20041228.
  • De Santiago, E., G. Pereira-Caro, J. M. Moreno-Rojas, C. Cid, and M. P. De Pena. 2018. Digestibility of (poly)phenols and antioxidant activity in raw and cooked cactus cladodes (Opuntia ficus-indica). Journal of Agricultural and Food Chemistry 66 (23):5832–44. doi: 10.1021/acs.jafc.8b01167.
  • Dessaignes, V. 1845. Nouvelles recherches sur l’acide hippurique, l’acide benzoique et le sucre de gelatine. Compte Rendu de L’Academie Des Sciences (Paris) 21:1224–7.
  • Di Pede, G., L. Bresciani, F. Brighenti, M. N. Clifford, A. Crozier, D. Del Rio, and P. Mena. 2022. In vitro faecal fermentation of monomeric and oligomeric flavan-3-ols: Metabolic pathways and stoichiometry. Molecular Nutrition & Food Research 2022:2101090. doi: 10.1002/mnfr.202101090.
  • Diao, Z., J. Li, Q. Liu, and Y. T. Wang. 2018. In-vivo metabolite profiling of chicoric acid in rat plasma, urine and feces after oral administration using liquid chromatography quadrupole time of flight mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1081:12–8. doi: 10.1016/j.jchromb.2018.02.016.
  • Dı́az, E., A. Ferrández, M. A. Prieto, and J. L. Garcı́a. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 65 (4):523–69. doi: 10.1128/MMBR.65.4.523-569.2001.
  • Dickert, S., A. J. Pierik, D. Linder, and W. Buckel. 2000. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. European Journal of Biochemistry 267 (12):3874–84. doi: 10.1046/j.1432-1327.2000.01427.x.
  • Dickinson, R. G. 2011. Iso-glucuronides. Current Drug Metabolism 12 (3):222–8. doi: 10.2174/138920011795101796.
  • Dominguez-Fernandez, M., P. Young Tie Yang, I. A. Ludwig, M. N. Clifford, C. Cid, and A. Rodriguez-Mateos. 2022. In vivo study of the bioavailability and metabolic profile of (poly)phenols after sous-vide artichoke consumption. Food Chemistry 367:130620. doi: 10.1016/j.foodchem.2021.130620.
  • D’Ordine, R. L., P. J. Tonge, P. R. Carey, and V. E. Anderson. 1994. Electronic rearrangement induced by substrate-analog binding to the enoyl-CoA hydratase active-site: Evidence for substrate activation. Biochemistry 33 (42):12635–43. doi: 10.1021/bi00208a014.
  • Duran, M., R. J. Wanders, J. P. de Jager, L. Dorland, L. Bruinvis, D. Ketting, L. Ijlst, and F. J. van Sprang. 1991. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: Protective effect of medium-chain triglyceride treatment. European Journal of Pediatrics 150 (3):190–5. doi: 10.1007/BF01963564.
  • Durazo, S. A., R. S. Kadam, D. Drechsel, M. Patel, and U. B. Kompella. 2011. Brain Mitochondrial Drug Delivery: Influence of Drug Physicochemical Properties. Pharmaceutical Research 28 (11):2833–47. doi: 10.1007/s11095-011-0532-4.
  • Egi, N. 1963. Glucuronic acids conjugates of amino acids in urine. 1. Glucuronic acid conjugates of glycine, aspartic and glutamic acids in normal human urine. Hiroshima Journal of Medical Sciences 12 (2):137–42.
  • Eich, M.-L., D. S. Chandrashekar, M. D. C. Rodriguez Pen A, A. D. Robinson, J. Siddiqui, S. Daignault-Newton, B. V. S. K. Chakravarthi, L. P. Kunju, G. J. Netto, and S. Varambally. 2019. Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer. The Prostate 79 (14):1629–39. doi: 10.1002/pros.23887.
  • Eisner, T., W. E. Conner, K. Hicks, K. R. Dodge, H. I. Rosenberg, T. H. Jones, M. Cohen, and J. Meinwald. 1977. Stink of Stinkpot Turtle identified omega-phenylalkanoic acids. Science (New York, N.Y.) 196 (4296):1347–9. doi: 10.1126/science.196.4296.1347.
  • Eldrup, E., S. E. Moller, J. Andreasen, and N. J. Christensen. 1997. Effects of ordinary meals on plasma concentrations of 3,4-dihydroxyphenylalanine, dopamine sulphate and 3,4-dihydroxyphenylacetic acid. Clinical Science (London, England: 1979) 92 (4):423–30. doi: 10.1042/cs0920423.
  • Erk, T., G. Williamson, M. Renouf, C. Marmet, H. Steiling, F. Dionisi, D. Barron, R. Melcher, and E. Richling. 2012. Dose-dependent absorption of chlorogenic acids in the small intestine assessed by coffee consumption in ileostomists. Molecular Nutrition & Food Research 56 (10):1488–500. doi: 10.1002/mnfr.201200222.
  • Farrell, T. L., T. P. Dew, L. Poquet, P. Hanson, and G. Williamson. 2011. Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metabolism and Disposition: The Biological Fate of Chemicals 39 (12):2338–46. doi: 10.1124/dmd.111.040147.
  • Farrell, T. L., M. Gomez-Juaristi, L. Poquet, K. Redeuil, K. Nagy, M. Renouf, and G. Williamson. 2012. Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption. Molecular Nutrition & Food Research 56 (9):1413–23. doi: 10.1002/mnfr.201200021.
  • Farrell, T. L., L. Poquet, F. Dionisi, D. Barron, and G. Williamson. 2011. Characterization of hydroxycinnamic acid glucuronide and sulfate conjugates by HPLC-DAD-MS(2): Enhancing chromatographic quantification and application in Caco-2 cell metabolism. Journal of Pharmaceutical and Biomedical Analysis 55 (5):1245–54. doi: 10.1016/j.jpba.2011.03.023.
  • Fedotcheva, N. I., V. V. Teplova, and N. V. Beloborodova. 2010. Participation of phenolic acids of microbial origin in the dysfunction of mitochondria in sepsis. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 4 (1):50–5. doi: 10.1134/S1990747810010083.
  • Feher, J. 2017. Quantitative human physiology: An introduction. 2nd ed. New York, NY: Elsevier Inc.
  • Fell, V., J. A. Hoskins, and R. J. Pollitt. 1978. The labelling of urinary acids after oral doses of deuterated L-phenylalanine and L-tyrosine in normal subjects. Quantitative studies with implications for the deuterated phenylalanine load test in phenylketonuria. Clinica Chimica Acta. 83 (3):259–69. doi: 10.1016/0009-8981(78)90114-6.
  • Fidélix, M., D. Milenkovic, K. Sivieri, and T. Cesar. 2020. Microbiota modulation and effects on metabolic biomarkers by orange juice: A controlled clinical trial. Food & Function 11 (2):1599–610. doi: 10.1039/C9FO02623A.
  • Fischer, G. M., B. Nemeti, V. Farkas, B. Debreceni, A. Laszlo, Z. Schaffer, C. Somogyi, and A. Sandor. 2000. Metabolism of carnitine in phenylacetic acid-treated rats and in patients with phenylketonuria. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1501 (2-3):200–10. doi: 10.1016/S0925-4439(00)00023-5.
  • Fuchs-Mettler, M., H. C. Curtius, K. Baerlocher, and L. Ettlinger. 1980. A new rearrangement reaction in tyrosine metabolism. European Journal of Biochemistry 108 (2):527–34. doi: 10.1111/j.1432-1033.1980.tb04749.x.
  • Gallice, P., J. P. Monti, A. Crevat, C. Durand, and A. Murisasco. 1985. A compound from uremic plasma and from normal urine isolated by liquid chromatography and identified by nuclear magnetic resonance. Clinical Chemistry 31 (1):30–4.
  • Garcia-Aloy, M., R. Llorach, M. Urpi-Sarda, S. Tulipani, J. Salas-Salvadó, M. A. Martínez-González, D. Corella, M. Fitó, R. Estruch, L. Serra-Majem, et al. 2015. Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort. Metabolomics 11 (1):155–65. doi: 10.1007/s11306-014-0682-6.
  • Glasgow, J. F., T. R. Moore, P. H. Robinson, and P. J. McKiernan. 1992. The phenylpropionic acid load test: Experience with 72 children at-risk for beta-oxidation disorders. Irish Journal of Medical Science 161 (10):586–8. doi: 10.1007/bf02942363.
  • Gomez-Juaristi, M., S. Martinez-Lopez, B. Sarria, L. Bravo, and R. Mateos. 2018a. Absorption and metabolism of yerba mate phenolic compounds in humans. Food Chemistry 240:1028–38. doi: 10.1016/j.foodchem.2017.08.003.
  • Gomez-Juaristi, M., S. Martinez-Lopez, B. Sarria, L. Bravo, and R. Mateos. 2018b. Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food & Function 9 (1):331–43. doi: 10.1039/c7fo01553d.
  • Gomez-Juaristi, M., B. Sarria, S. Martinez-Lopez, L. Bravo Clemente, and R. Mateos. 2019. Flavanol bioavailability in two cocoa products with different phenolic content. A comparative study in humans. Nutrients 11 (7):1441. doi: 10.3390/nu11071441.
  • Gonzalez, L., R. Bressler, and K. Brendel. 1973. Inhibition of gluconeogenesis in isolated perfused rat-liver by omega-phenylalkanoic acids. Journal of Biological Chemistry 248 (7):2514–20. doi: 10.1016/S0021-9258(19)44138-0.[Mismatch
  • Goodwin, B. L., C. R. J. Ruthven, and M. Sandler. 1994. Gut flora and the origin of some urinary aromatic phenolic compounds. Biochemical Pharmacology. 47 (12):2294–7. doi: 10.1016/0006-2952(94)90268-2.
  • Griffiths, L. A. 1969. Metabolism of sinapic acid and related compounds in the rat. The Biochemical Journal 113 (4):603–9. doi: 10.1042/bj1130603.
  • Griffiths, L. A, and G. E. Smith. 1972. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. The Biochemical Journal 128 (4):901–11. doi: 10.1042/bj1280901.
  • Groenewoud, G, and H. K. L. Hundt. 1986. The microbial metabolism of condensed (+)-catechins by rat caecal microflora. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 16 (2):99–107. doi: 10.3109/00498258609043512.
  • Guan, R. G., W. F. Hong, J. F. Huang, T. Y. Peng, Z. Zhao, Y. Lin, M. Yu, and Z. X. Jian. 2020. The expression and prognostic value of GLYATL1 and its potential role in hepatocellular carcinoma. Journal of Gastrointestinal Oncology 11 (6):1305–21. +. doi: 10.21037/jgo-20-186.
  • Guertin, K. A., E. Loftfield, S. M. Boca, J. N. Sampson, S. C. Moore, Q. Xiao, W. Y. Huang, X. Xiong, N. D. Freedman, A. J. Cross, et al. 2015. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. American Journal of Clinical Nutrition. 101 (5):1000–11. doi: 10.3945/ajcn.114.096099.
  • Gultekin-Ozguven, M., F. Davarci, A. A. Pasli, N. Demir, and B. Ozcelik. 2015. Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT - Food Science and Technology 64 (1):42–9. doi: 10.1016/j.lwt.2015.05.014.
  • Gumbinger, H. G., U. Vahlensieck, and H. Winterhoff. 1993. Metabolism of caffeic acid in the isolated-perfused rat-liver. Planta Medica 59 (6):491–3. doi: 10.1055/s-2006-959745.
  • Guo, X., A. Guo, and E. Li. 2021. Biotransformation of two citrus flavanones by lactic acid bacteria in chemical defined medium. Bioprocess and Biosystems Engineering 44 (2):235–46. doi: 10.1007/s009-020-02437-y.
  • Guroff, G., J. W. Daly, D. M. Jerina, J. Renson, B. Witkop, and S. Udenfrie. 1967. Hydroxylation-induced migration: NIH shift. Science (New York, N.Y.) 157 (3796):1524–30. doi: 10.1126/science.157.3796.1524.
  • Guroff, G., C. A. Reifsnyder, and J. Daly. 1966. Retention of deuterium in p-tyrosine formed enzymatically from p-deuterophenylalanine. Biochemical and Biophysical Research Communications 24 (5):720–4. doi: 10.1016/0006-291X(66)90384-6.
  • Gyawali, A, and Y. S. Kang. 2021. Transport alteration of 4-phenyl butyric acid mediated by a sodium- and proton-coupled monocarboxylic acid transporter system in ALS model cell lines (NSC-34) under inflammatory states. Journal of Pharmaceutical Sciences 110 (3):1374–84. doi: 10.1016/j.xphs.2020.10.030.
  • Hackett, A. M., L. A. Griffiths, A. Broillet, and M. Wermeille. 1983. The metabolism and excretion of (+)-[14C]cyanidanol-3 in man following oral administration. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 13 (5):279–86. doi: 10.3109/00498258309052265.
  • Hanhineva, K., C. Brunius, A. Andersson, M. Marklund, R. Juvonen, P. Keski-Rahkonen, S. Auriola, and R. Landberg. 2015. Discovery of urinary biomarkers of whole grain rye intake in free-living subjects using nontargeted LC-MS metabolite profiling. Molecular Nutrition & Food Research 59 (11):2315–25. doi: 10.1002/mnfr.201500423.
  • Hanske, L., G. Loh, S. Sczesny, M. Blaut, and A. Braune. 2009. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. The Journal of Nutrition 139 (6):1095–102. doi: 10.3945/jn.108.102814.
  • Hasyima Omar, M., R. González Barrio, G. Pereira-Caro, T. M. Almutairi, and A. Crozier. 2020. In vitro catabolism of 3′,4′-dihydroxycinnamic acid by human colonic microbiota. International Journal of Food Sciences and Nutrition 2020:1–7. doi: 10.1080/09637486.2020.1850650.
  • Haughton, E., M. N. Clifford, and P. Sharp. 2007. Monocarboxylate transporter expression is associated with the absorption of benzoic acid in human intestinal epithelial cells. Journal of the Science of Food and Agriculture 87 (2):239–44. doi: 10.1002/jsfa.2703.
  • Hirom, P. C., R. L. Smith, R. T. Williams, and P. Millburn. 1972. Species variations in threshold molecular-weight factor for biliary-excretion of organic anions. Biochemical Journal 129 (5):1071–7. doi: 10.1042/bj1291071.
  • Hollands, W. J., M. Philo, N. Perez-Moral, P. W. Needs, G. M. Savva, and P. A. Kroon. 2020. Monomeric Flavanols are More Efficient Substrates for gut Microbiota Conversion to Hydroxyphenyl- γ-Valerolactone Metabolites than Oligomeric Procyanidins: A Randomized, Placebo-Controlled Human Intervention Trial. Molecular Nutrition & Food Research 64 (10):e1901135. doi: 10.1002/mnfr.201901135.
  • Honohan, T., R. L. Hale, J. P. Brown, and R. E. Wingard. Jr. 1976. Synthesis and metabolic fate of hesperetin-3-14C. Journal of Agricultural and Food Chemistry 24 (5):906–11. doi: 10.1021/jf60207a031.
  • Hoskins, J. A., S. B. Holliday, and A. M. Greenway. 1984. The metabolism of cinnamic acid by healthy and phenylketonuric adults: A kinetic-study. Biological Mass Spectrometry 11 (6):296–300. doi: 10.1002/bms.1200110609.
  • Houten, S. M., S. Violante, F. V. Ventura, R. J, and A. Wanders. 2016. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annual Review of Physiology 78 (1):23–44. doi: 10.1146/annurev-physiol-021115-105045.
  • Huang, H. J., A. Y. Zhang, H. C. Cao, H. F. Lu, B. H. Wang, Q. Xie, W. Xu, and L. J. Li. 2013. Metabolomic analyses of faeces reveals malabsorption in cirrhotic patients. Digestive and Liver Disease 45 (8):677–82. doi: 10.1016/j.dld.2013.01.001.
  • Hunt, M. C., K. Solaas, B. F. Kase, and S. E. H. Alexson. 2002. Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. Journal of Biological Chemistry 277 (2):1128–38. doi: 10.1074/jbc.M106458200.
  • Indahl, S. R, and R. R. Scheline. 1971. The metabolism of umbelliferone and herniarin in rats and by the rat intestinal microflora. Xenobiotica 1 (1):13–24. doi: 10.3109/00498257109044375.
  • Jacobi, J. L., B. Yang, X. Li, A. K. Menze, S. M. Laurentz, E. M. Janle, M. G. Ferruzzi, G. P. McCabe, C. Chapple, and A. L. Kirchmaier. 2016. Impacts on sirtuin function and bioavailability of the dietary bioactive compound dihydrocoumarin. PLoS One 11 (2):e0149207. doi: 10.1371/journal.pone.0149207.
  • Jaiswal, R., M. A. Patras, P. J. Eravuchira, and N. Kuhnert. 2010. Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC-MS(n): Identification of seven new classes of compounds. Journal of Agricultural and Food Chemistry 58 (15):8722–37. doi: 10.1021/jf1014457.
  • James, M. O, and R. L. Smith. 1973. The conjugation of phenylacetic acid in phenylketonurics. European Journal of Clinical Pharmacology 5 (4):243–6. doi: 10.1007/BF00567012.
  • James, M. O., R. L. Smith, R. T. Williams, and M. Reidenberg. 1972. The conjugation of phenylacetic acid in man, sub-human primates and some non-primate species. Proceedings of the Royal Society of London - Series B: Biological Sciences 182 (66):25–35. doi: 10.1098/rspb.1972.0064.
  • Jeffrey, A. M., D. M. Jerina, R. Self, and W. C. Evans. 1972. The bacterial degradation of flavonoids. Oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp. Biochemical Journal 130 (2):383–90. doi: 10.1042/bj1300383.
  • Jenner, A. M., J. Rafter, and B. Halliwell. 2005. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radical Biology and Medicine 38 (6):763–72. doi: 10.1016/j.freeradbiomed.2004.11.020.
  • Jeon, S. M., H. K. Kim, H. J. Kim, G. M. Do, T. S. Jeong, Y. B. Park, and M. S. Choi. 2007. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Translational Research 149 (1):15–21. doi: 10.1016/j.trsl.2006.08.001.
  • Jin, S. J., C. L. Hoppel, and K. Y. Tserng. 1992. Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids. Journal of Biological Chemistry 267 (1):119–25. doi: 10.1016/S0021-9258(18)48467-0.
  • Ju, L., Y. Wen, J. Yin, S. Z. Deng, J. G. Zheng, L. Wang, H. Y. Deng, Z. G. Hou, X. F. Zhao, S. He, et al. 2016. Metabonomic study of the effects of different acupuncture directions on therapeutic efficacy. Journal of Chromatography B 1009-1010:87–95. doi: 10.1016/j.jchromb.2015.12.006.
  • Kasaragod, P., W. Schmitz, J. K. Hiltunen, and R. K. Wierenga. 2013. The isomerase and hydratase reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from structures of complexes with 3S-hydroxy-acyl-CoA. The FEBS Journal 280 (13):3160–75. doi: 10.1111/febs.12150.
  • Kasumov, T., L. L. Brunengraber, B. Comte, M. A. Puchowicz, K. Jobbins, K. Thomas, F. David, R. Kinman, S. Wehrli, W. Dahms, et al. 2004. New secondary metabolites of phenylbutyrate in humans and rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 32 (1):10–9. doi: 10.1124/dmd.32.1.10.
  • Kasuya, F., K. Igarashi, and M. Fukui. 1990. Glycine conjugation of the substituted benzoic acids in vitro: Structure-metabolism relationship study. Journal of Pharmacobio-Dynamics 13 (7):432–40. doi: 10.1248/bpb1978.13.432.
  • Kasuya, F., K. Igarashi, M. Fukui, and K. Nokihara. 1996. Purification and characterization of a medium chain acyl-coenzyme A synthetase. Drug Metabolism and Disposition 24 (8):879–83.
  • Kasuya, F., Y. Yamaoka, K. Igarashi, and M. Fukui. 1998. Molecular specificity of a medium chain acyl-CoA synthetase for substrates and inhibitors. Biochemical Pharmacology 55 (11):1769–75. doi: 10.1016/S0006-2952(97)00640-0.
  • Kay, C. D., M. N. Clifford, P. Mena, J. G. McDougall, C. Andres-Lacueva, A. Cassidy, D. Del Rio, N. Kuhnert, C. Manach, G. Pereira-Caro, et al. 2020. Special Article Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. The American Journal of Clinical Nutrition 112 (4):1051–68. doi: 10.1093/ajcn/nqaa204.
  • Kazakoff, C. W, and O. A. Mamer. 1978. Biological conversion of beta-phenylhydracrylic acid to hippuric acid. Biomedical Mass Spectrometry 5 (11):612–4. doi: 10.1002/bms.1200051104.
  • Kelley, M, and D. A. Vessey. 1993. Isolation and characterization of mitochondrial acyl-CoA: Glycine N-acyltransferases from kidney. Journal of Biochemical Toxicology 8 (2):63–9. doi: 10.1002/jbt.2570080203.
  • Kelley, M, and D. A. Vessey. 1994. Characterization of the acyl-CoA: Amino acid N-acyltransferases from primate liver mitochondria. Journal of Biochemical Toxicology 9 (3):153–8. doi: 10.1002/jbt.2570090307.
  • Kern, S. M., R. N. Bennett, P. W. Needs, F. A. Mellon, P. A. Kroon, and M. T. Garcia-Conesa. 2003. Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium caco-2 cells. Journal of Agricultural and Food Chemistry 51 (27):7884–91. doi: 10.1021/jf030470n.
  • Kim, D.-G., J. C. Yoo, E. Kim, Y.-S. Lee, O. V. Yarishkin, D. Y. Lee, K. H. Lee, S.-G. Hong, E. M. Hwang, and J.-Y. Park. 2014. A novel cytosolic isoform of mitochondrial trans-2-enoyl-CoA reductase enhances peroxisome proliferator-activated receptor α activity. Endocrinology and Metabolism (Seoul, Korea) 29 (2):185–94. doi: 10.3803/EnM.2014.29.2.185.
  • Kim, H. K., T. S. Jeong, M. K. Lee, Y. B. Park, and M. S. Choi. 2003. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica Chimica Acta; International Journal of Clinical Chemistry 327 (1-2):129–37. doi: 10.1016/S0009-8981(02)00344-3.
  • Kim, J., M. Hetzel, C. D. Boiangiu, and W. Buckel. 2004. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiology Reviews 28 (4):455–68. doi: 10.1016/j.femsre.2004.03.001.
  • Kim, M, and J. Han. 2014. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism. Bulletin of the Korean Chemical Society 35 (6):1883–6. doi: 10.5012/bkcs.2014.35.6.1883.
  • Klungsoyr, J, and R. R. Scheline. 1981. Metabolism in rats of several carboxylic acid derivatives containing the 3,4-methylenedioxyphenyl group. Acta Pharmacologica et Toxicologica 49 (4):305–12. doi: 10.1111/j.1600-0773.1981.tb00911.x.
  • Knights, K. M., M. J. Sykes, and J. O. Miners. 2007. Amino acid conjugation: Contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opinion on Drug Metabolism & Toxicology 3 (2):159–68. doi: 10.1517/17425255.3.2.159.
  • Knights, K. M, and D. A. Vessey. 2010. Enzymology of amino acid conjugation reactions. In Comprehensive toxicology, vol 4: biotransformation, 2nd ed., C. A. McQueen. Amsterdam, the Netherlands: Elsevier.
  • Knottnerus, S. J. G., J. C. Bleeker, R. C. I. Wust, S. Ferdinandusse, L. Ijlst, F. A. Wijburg, R. J. A. Wanders, G. Visser, and R. H. Houtkooper. 2018. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Reviews in Endocrine & Metabolic Disorders 19 (1):93–106. doi: 10.1007/s11154-018-9448-1.
  • Knust, U., G. Erben, B. Spiegelhalder, H. Bartsch, and R. W. Owen. 2006. Identification and quantitation of phenolic compounds in faecal matrix by capillary gas chromatography and nano-electrospray mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 20 (20):3119–29. doi: 10.1002/rcm.2702.
  • Kohri, T., N. Matsumoto, M. Yamakawa, M. Suzuki, F. Nanjo, Y. Hara, and N. Oku. 2001. Metabolic fate of (–)-[4-3H]epigallocatechin gallate in rats after oral administration. Journal of Agricultural and Food Chemistry 49 (8):4102–12. doi: 10.1021/jf001491+.
  • Kohri, T., F. Nanjo, M. Suzuki, R. Seto, N. Matsumoto, M. Yamakawa, H. Hojo, Y. Hara, D. Desai, S. Amin, et al. 2001. Synthesis of (–)-[4-3H]epigallocatechin gallate and its metabolic fate in rats after intravenous administration. Journal of Agricultural and Food Chemistry 49 (2):1042–8. doi: 10.1021/jf0011236.
  • Koli, R., I. Erlund, A. Jula, J. Marniemi, P. Mattila, and G. Alfthan. 2010. Bioavailability of Various Polyphenols from a Diet Containing Moderate Amounts of Berries. Journal of Agricultural and Food Chemistry 58 (7):3927–32. doi: 10.1021/jf9024823.
  • Krupp, D., N. Doberstein, L. Shi, and T. Remer. 2012. Hippuric acid in 24-hour urine is a potential biomarker for fruit and vegetable consumption in healthy children and adolescents. The Journal of Nutrition 142 (7):1314–20. doi: 10.3945/jn.112.159319.
  • Kuhnert, N, and M. N. Clifford. 2022. A practitioner’s dilemma: Mass spectrometry-based annotation and identification of human plasma and urinary polyphenol metabolites. Molecular Nutrition & Food Research 2022:e2100985. doi: 10.1002/mnfr.202100985.
  • Labib, S., S. Hummel, E. Richling, H. U. Humpf, and P. Schreier. 2006. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds. Molecular Nutrition & Food Research 50 (1):78–86. doi: 10.1002/mnfr.200500144.
  • Lafay, S., C. Morand, C. Manach, C. Besson, and A. Scalbert. 2006. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. British Journal of Nutrition 96 (1):39–46. doi: 10.1079/BJN20061714.
  • Lagatie, O., E. N. Ediage, D. Van Roosbroeck, S. Van Asten, A. Verheyen, L. B. Debrah, A. Debrah, M. R. Odiere, R. T’Kindt, E. Dumont, et al. 2021. Multimodal biomarker discovery for active Onchocerca volvulus infection. PLOS Neglected Tropical Diseases 15 (11):e0009999. doi: 10.1371/journal.pntd.0009999.
  • Landberg, R., A.-M. Linko, A. Kamal-Eldin, B. Vessby, H. Adlercreutz, and P. Åman. 2006. Human plasma kinetics and relative bioavailability of alkylresorcinols after intake of rye bran. The Journal of Nutrition 136 (11):2760–5. doi: 10.1093/jn/136.11.2760.
  • Landberg, R., R. Wierzbicka, L. Shi, S. Nybacka, A. Kamal-Eldin, B. Hedblad, A. K. Lindroos, A. Winkvist, and H. B. Forslund. 2018. New alkylresorcinol metabolites in spot urine as biomarkers of whole grain wheat and rye intake in a Swedish middle-aged population. European Journal of Clinical Nutrition 72 (10):1439–46. doi: 10.1038/s41430-017-0079-5.
  • Lazarow, P. B, and C. De Duve. 1976. Fatty acyl-CoA oxidizing system in rat-liver peroxisomes: Enhancement by clofibrate, a hypolipidemic drug. Proceedings of the National Academy of Sciences of the United States of America 73 (6):2043–6. doi: 10.1073/pnas.73.6.2043.
  • Le Bourvellec, C., P. Bagano Vilas Boas, P. Lepercq, S. Comtet-Marre, P. Auffret, P. Ruiz, R. Bott, C. Renard, C. Dufour, J.-M. Chatel, et al. 2019. Procyanidin-cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients 11 (3):664. doi: 10.3390/nu11030664.
  • Lee, M. K., E. M. Park, S. H. Bok, U. J. Jung, J. Y. Kim, Y. B. Park, T. L. Huh, O. S. Kwon, and M. S. Choi. 2003. Two cinnamate derivatives produce similar alteration in mRNA expression and activity of antioxidant enzymes in rats. Journal of Biochemical and Molecular Toxicology 17 (5):255–62. doi: 10.1002/jbt.10087.
  • Lee, N. Y, and Y. S. Kang. 2016. In vivo and in vitro evidence for brain uptake of 4-phenylbutyrate by the monocarboxylate transporter 1 (MCT1). Pharmaceutical Research 33 (7):1711–22. doi: 10.1007/s11095-016-1912-6.
  • Leonart, L. P., J. C. Gasparetto, F. L. D. Pontes, L. B. Cerqueira, T. M. G. de Francisco, and R. Pontarolo. 2017. New metabolites of coumarin detected in human urine using ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry. Molecules 22 (11)2031. doi: 10.3390/molecules2211:.
  • Lewis-Stanislaus, A. E, and L. Li. 2010. A method for comprehensive analysis of urinary acylglycines by using ultra-performance liquid chromatography quadrupole linear ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry 21 (12):2105–16. doi: 10.1016/j.jasms.2010.09.004.
  • Lewis, D. F. V., Y. Ito, and B. G. Lake. 2006. Metabolism of coumarin by human P450s: A molecular modelling study. Toxicology In Vitro 20 (2):256–64. doi: 10.1016/j.tiv.2005.08.001.
  • Liu, C., J. Vervoort, J. van den Elzen, K. Beekmann, M. Baccaro, L. de Haan, and I. Rietjens. 2021. Interindividual differences in human in vitro intestinal microbial conversion of green tea (-)-epigallocatechin-3-O-gallate and consequences for activation of Nrf2 mediated gene expression. Molecular Nutrition & Food Research 65 (2)2000934. doi: 10.1002/mnfr.20:.
  • Liu, C., J. Vervoort, K. Beekmann, M. Baccaro, L. Kamelia, S. Wesseling, and I. M. C. M. Rietjens. 2020. Interindividual differences in human intestinal microbial conversion of (−)-epicatechin to bioactive phenolic compounds. Journal of Agricultural and Food Chemistry 68 (48):14168–81. doi: 10.1021/acs.jafc.0c05890.
  • Liu, I., Min, C.-C. Tsai, T.-Y. Lai, and J.-T. Cheng. 2001. Stimulatory effect of isoferulic acid on α1a-adrenoceptor to increase glucose uptake into cultured myoblast C2C12 cell of mice. Autonomic Neuroscience 88 (3):175–80. doi: 10.1016/S1566-0702(01)00241-7.
  • Liu, I. M., F. L. Hsu, C. F. Chen, and J. T. Cheng. 2000. Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic rats. British Journal of Pharmacology 129 (4):631–6. doi: 10.1038/sj.bjp.0703082.
  • Llorach, R., M. Urpi-Sarda, O. Jauregui, M. Monagas, and C. Andres-Lacueva. 2009. An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. Journal of Proteome Research 8 (11):5060–8. doi: 10.1021/pr900470a.
  • Llorach, R., M. Urpi-Sarda, S. Tulipani, M. Garcia-Aloy, M. Monagas, and C. Andres-Lacueva. 2013. Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention. Molecular Nutrition & Food Research 57 (6):962–73. doi: 10.1002/mnfr.201200736.
  • Longo, N., C. A. D. Filippo, and M. Pasquali. 2006. Disorders of carnitine transport and the carnitine cycle. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics 142C (2):77–85. doi: 10.1002/ajmg.c.30087.
  • Longo, N., M. Frigeni, and M. Pasquali. 2016. Carnitine transport and fatty acid oxidation. Biochimica et Biophysica Acta 1863 (10):2422–35. doi: 10.1016/j.bbamcr.2016.01.023.
  • Ludwig, I. A., M. N. Clifford, M. E. Lean, H. Ashihara, and A. Crozier. 2014. Coffee: Biochemistry and potential impact on health. Food & Function 5 (8):1695–717. doi: 10.1039/c4fo00042k.
  • Madrid-Gambin, F., M. Garcia-Aloy, R. Vazquez-Fresno, E. Vegas-Lozano, M. Jubany, K. Misawa, T. Hase, A. Shimotoyodome, and C. Andres-Lacueva. 2016. Impact of chlorogenic acids from coffee on urine metabolome in healthy human subjects. Food Research International 89:1064–70. doi: 10.1016/j.foodres.2016.03.038.
  • Mansoorian, B., E. Combet, A. Alkhaldy, A. L. Garcia, and C. A. Edwards. 2019. Impact of fermentable fibres on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. International Journal of Environmental Research and Public Health 16 (2)292. doi: 10.3390/ijerph16020:.
  • Mao, L. F., C. H. Chu, and H. Schulz. 1994. Hepatic β-oxidation of 3-phenylpropionic acid and the stereospecific dehydration of (R)-3-hydroxy-3-phenylpropionyl-CoA and (S)-3-hydroxy-3-phenylpropionyl-CoA by different enoyl-CoA hydratases. Biochemistry 33 (11):3320–6. doi: 10.1021/bi00177a024.
  • Marklund, M., N. M. McKeown, J. B. Blumberg, and C. Y. O. Chen. 2013. Hepatic biotransformation of alkylresorcinols is mediated via cytochrome P450 and beta-oxidation: A proof of concept study. Food Chemistry 139 (1-4):925–30. doi: 10.1016/j.foodchem.2013.01.122.
  • Marklund, M., E. A. Stromberg, A. C. Hooker, M. Hammarlund-Udenaes, P. Aman, R. Landberg, and A. Kamal-Eldin. 2013. Chain Length of Dietary alkylresorcinols affects their in vivo elimination kinetics in rats. The Journal of Nutrition 143 (10):1573–8. doi: 10.3945/jn.113.178392.
  • Marklund, M., E. A. Strömberg, H. N. Laerke, K. E. B. Knudsen, A. Kamal-Eldin, A. C. Hooker, and R. Landberg. 2014. Simultaneous pharmacokinetic modeling of alkylresorcinols and their main metabolites indicates dual absorption mechanisms and enterohepatic elimination in humans. The Journal of Nutrition 144 (11):1674–80. doi: 10.3945/jn.114.196220.
  • Marsh, M. V., J. Caldwell, A. J. Hutt, R. L. Smith, M. W. Horner, E. Houghton, and M. S. Moss. 1982. 3-Hydroxy- and 3-keto-3-phenylpropionic acids: Novel metabolites of benzoic acid in horse urine. Biochemical Pharmacology 31 (20):3225–30. doi: 10.1016/0006-2952(82)90554-8.
  • Marsh, M. V., J. Caldwell, R. L. Smith, M. W. Horner, E. Houghton, and M. S. Moss. 1981. Metabolic conjugation of some carboxylic acids in the horse. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 11 (10):655–63. doi: 10.3109/00498258109049085.
  • Martini, S., A. Conte, and D. Tagliazucchi. 2019. Antiproliferative Activity and Cell Metabolism of Hydroxycinnamic Acids in Human Colon Adenocarcinoma Cell Lines. Journal of Agricultural and Food Chemistry 67 (14):3919–31. doi: 10.1021/acs.jafc.9b00522.
  • Matei, M. F., R. Jaiswal, M. A. Patras, and N. Kuhnert. 2016. LC-MS(n) study of the chemical transformations of hydroxycinnamates during yerba mate (Ilex paraguariensis) tea brewing. Food Research International (Ottawa, Ont.) 90:307–12. doi: 10.1016/j.foodres.2016.10.017.
  • Matei, M. F., R. Jaiswal, and N. Kuhnert. 2012. Investigating the chemical changes of chlorogenic acids during coffee brewing: Conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides. Journal of Agricultural and Food Chemistry 60 (49):12105–15. doi: 10.1021/jf3028599.
  • Matsuo, M., K. Terai, N. Kameda, A. Matsumoto, Y. Kurokawa, Y. Funase, K. Nishikawa, N. Sugaya, N. Hiruta, and T. Kishimoto. 2012. Designation of enzyme activity of glycine-N-acyltransferase family genes and depression of glycine-N-acyltransferase in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications 420 (4):901–6. doi: 10.1016/j.bbrc.2012.03.099.
  • McKeown, N. M., M. Marklund, J. T. Ma, A. B. Ross, A. H. Lichtenstein, K. A. Livingston, P. F. Jacques, H. M. Rasmussen, J. B. Blumberg, and C. Y. O. Chen. 2016. Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. European Journal of Nutrition 55 (3):1235–44. doi: 10.1007/s00394-015-0936-8.
  • Meija, J, and V. G. Soukup. 2004. Phenyl-terminated fatty acids in seeds of various aroids. Phytochemistry 65 (15):2229–37. doi: 10.1016/j.phytochem.2004.06.033.
  • Meineke, I., H. Desel, R. Kahl, G. F. Kahl, and U. Gundert-Remy. 1998. Determination of 2-hydroxyphenylacetic acid (2HPAA) in urine after oral and parenteral administration of coumarin by gas-liquid chromatography with flame-ionization detection. Journal of Pharmaceutical and Biomedical Analysis 17 (3):487–92. doi: 10.1016/S0731-7085(97)00224-0.
  • Mena, P., L. Bresciani, N. Brindani, I. A. Ludwig, G. Pereira-Caro, D. Angelino, R. Llorach, L. Calani, F. Brighenti, M. N. Clifford, et al. 2019. Phenyl-gamma-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: Synthesis, analysis, bioavailability, and bioactivity. Natural Product Reports 36 (5):714–52. doi: 10.1039/c8np00062j.
  • Mena, P., I. A. Ludwig, V. B. Tomatis, A. Acharjee, L. Calani, A. Rosi, F. Brighenti, S. Ray, J. L. Griffin, L. J. Bluck, et al. 2019. Inter-individual variability in the production of flavan-3-ol colonic metabolites: Preliminary elucidation of urinary metabotypes. European Journal of Nutrition 58 (4):1529–43. doi: 10.1007/s00394-018-1683-4.
  • Mena, P., M. Tassotti, L. Andreu, N. Nuncio-Jauregui, P. Legua, D. Del Rio, and F. Hernandez. 2018. Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Research International (Ottawa, Ont.) 108:301–8. doi: 10.1016/j.foodres.2018.03.062.
  • Meng, X., S. Sang, N. Zhu, H. Lu, S. Sheng, M. J. Lee, C. T. Ho, and C. S. Yang. 2002. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chemical Research in Toxicology 15 (8):1042–50. doi: 10.1021/tx010184a.
  • Meng, X., J. Jiang, H. Pan, S. Wu, S. Wang, Y. Lou, and G. Fan. 2019. Preclinical absorption, distribution, metabolism, and excretion of sodium danshensu, one of the main water-soluble ingredients in Salvia miltiorrhiza, in rats. Frontiers in Pharmacology 10(:554. doi: 10.3389/fphar.2019.00554.
  • Merinas-Amo, T., L. Luque-Bravo, A. De Prado-Amian, L. Lujan-Amoraga, M. Canadilla-Tendero, D. Fragoso-Recio, F. Valenzuela-Gomez, Z. N. Fernandez-Bedmar, M. Martinez-Jurado, A. Alonso-Moraga, et al. 2015. Toxicity, cytotoxicity and lifespan induction studies of cider, apple and 3-(2-hydroxyphenyl)propionic acid. Toxicology Letters 238 (2):S84–S84. doi: 10.1016/j.toxlet.2015.08.283.
  • Meselhy, M. R., N. Nakamura, and M. Hattori. 1997. Biotransformation of (–)-epicatechin 3-O-gallate by human intestinal bacteria. Chemical & Pharmaceutical Bulletin 45 (5):888–93. doi: 10.1248/cpb.45.888.
  • Meyer, T, and R. R. Scheline. 1972a. 3,4,5-trimethoxycinnamic acid and related compounds. I. Metabolism by the rat intestinal microflora. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 2 (4):383–90. doi: 10.3109/00498257209111065.
  • Meyer, T, and R. R. Scheline. 1972b. 3,4,5-trimethoxycinnamic acid and related compounds. II. Metabolism in the rat. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 2 (4):391–8. doi: 10.3109/00498257209111066.
  • Mills, C. E., A. Flury, C. Marmet, L. Poquet, S. F. Rimoldi, C. Sartori, E. Rexhaj, R. Brenner, Y. Allemann, D. Zimmermann, et al. 2017. Mediation of coffee-induced improvements in human vascular function by chlorogenic acids and its metabolites: Two randomized, controlled, crossover intervention trials. Clinical Nutrition (Edinburgh, Scotland) 36 (6):1520–9. doi: 10.1016/j.clnu.2016.11.013.
  • Miners, J. O., N. Grgurinovich, A. G. Whitehead, R. A. Robson, and D. J. Birkett. 1986. Influence of gender and oral-contraceptive ­steroids on the metabolism of salicylic-acid and acetylsalicylic-acid. British Journal of Clinical Pharmacology 22 (2):135–42. doi: 10.1111/j.1365-2125.1986.tb05240.x.
  • Mitra, A., Y. Kitamura, M. J. Gasson, A. Narbad, A. J. Parr, J. Payne, M. J. C. Rhodes, C. Sewter, and N. J. Walton. 1999. 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL): An enzyme of phenylpropanoid chain cleavage from Pseudomonas. Archives of Biochemistry and Biophysics 365 (1):10–6. doi: 10.1006/abbi.1999.1140.
  • Miyake, Y., K. Shimoi, S. Kumazawa, K. Yamamoto, N. Kinae, and T. Osawa. 2000. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. Journal of Agricultural and Food Chemistry 48 (8):3217–24. doi: 10.1021/jf990994g.
  • Monti, J. P., P. Gallice, A. Crevat, and A. Murisasco. 1985. Identification by nuclear magnetic-resonance and mass-spectrometry of a glucuronic-acid conjugate of o-hydroxybenzoic acid in normal urine and uremic plasma. Clinical Chemistry 31 (10):1640–3. doi: 10.1093/clinchem/31.10.1640.
  • Moore, R., D. S. Millington, D. Norwood, N. Kodo, P. Robinson, and J. F. T. Glasgow. 1990. Identification of phenylpropionylcarnitine, a new metabolite of phenylpropionic acid, in a patient with medium chain acyl-coa dehydrogenase deficiency. Journal of Inherited Metabolic Disease 13 (3):325–9. doi: 10.1007/bf01799386.
  • Moridani, M. Y., H. Scobie, and P. J. O’Brien. 2002. Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions. Toxicology Letters 133 (2-3):141–51. doi: 10.1016/S0378-4274(02)00105-4.
  • Mosele, J. I., S. Martin-Pelaez, A. Macia, M. Farras, R. M. Valls, U. Catalan, and M. J. Motilva. 2014. Study of the catabolism of thyme phenols combining in vitro fermentation and human intervention. Journal of Agricultural and Food Chemistry 62 (45):10954–61. doi: 10.1021/jf503748y.
  • Muhrez, K., B. Largeau, P. Emond, F. Montigny, J.-M. Halimi, P. Trouillas, and C. Barin-Le Guellec. 2017. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions. Biochemical Pharmacology 140:124–38. doi: 10.1016/j.bcp.2017.05.012.
  • Mulder, T. P., A. G. Rietveld, and J. M. van Amelsvoort. 2005. Consumption of both black tea and green tea results in an increase in the excretion of hippuric acid into urine. The American Journal of Clinical Nutrition 81 (1):256S–60S. doi: 10.1093/ajcn/81.1.256S.
  • Mulek, M., A. Fekete, J. Wiest, U. Holzgrabe, M. J. Mueller, and P. Hogger. 2015. Profiling a gut microbiota-generated catechin metabolite’s fate in human blood cells using a metabolomic approach. Journal of Pharmaceutical and Biomedical Analysis 114:71–81. doi: 10.1016/j.jpba.2015.04.042.
  • Müller-Enoch, D., H. Thomas, P. Holzmann, K. Haider, and H. Harms. 1974. Metabolism of 3,4-dimethoxybenzaldehyde and 3,4-dimethoxybenzoic acid in perfused rat-liver. Zeitschrift Für Naturforschung C 29 (9-10):602–7. doi: 10.1515/znc-1974-9-1025.
  • Nakazawa, T, and K. Ohsawa. 1998. Metabolism of rosmarinic acid in rats. Journal of Natural Products 61 (8):993–6. doi: 10.1021/np980072s.
  • Nakazawa, T, and K. Ohsawa. 2000. Metabolites of orally administered Perilla frutescens extract in rats and humans. Biological & Pharmaceutical Bulletin 23 (1):122–7. doi: 10.1248/bpb.23.122.
  • Nakazawa, T, and K. Ohsawa. 2002. Metabolism of 6 -gingerol in rats. Life Sciences 70 (18):2165–75. doi: 10.1016/S0024-3205(01)01551-X.
  • Nakazawa, T., T. Yasuda, and K. Ohsawa. 2003. Metabolites of orally administered Magnolia officinalis extract in rats and man and its antidepressant-like effects in mice. The Journal of Pharmacy and Pharmacology 55 (11):1583–91. doi: 10.1211/0022357022188.
  • Navarro, S. L., M. R. Saracino, K. W. Makar, S. S. Thomas, L. Li, Y. Zheng, L. Levy, Y. Schwarz, J. Bigler, J. D. Potter, et al. 2011. Determinants of aspirin metabolism in healthy men and women: Effects of dietary inducers of UDP-glucuronosyltransferases. Journal of Nutrigenetics and Nutrigenomics 4 (2):110–8. doi: 10.1159/000327782.
  • Niciforovic, N, and H. Abramovic. 2014. Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety 13 (1):34–51. doi: 10.1111/1541-4337.12041.
  • Nowinski, S. M., J. G. Van Vranken, K. K. Dove, and J. Rutter. 2018. Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Current Biology: CB 28 (20):R1212–R1219. doi: 10.1016/j.cub.2018.08.022.
  • Nurmi, A., T. Nurmi, J. Mursu, R. Hiltunen, and S. Voutilainen. 2006. Ingestion of oregano extract increases excretion of urinary phenolic metabolites in humans. Journal of Agricultural and Food Chemistry 54 (18):6916–23. doi: 10.1021/jf060879n.
  • Nutley, B. P., P. Farmer, and J. Caldwell. 1994. Metabolism of trans-cinnamic acid in the rat and the mouse and its variation with dose. Food and Chemical Toxicology. 32 (10):877–86. doi: 10.1016/0278-6915(94)90085-X.
  • Oakley, S. E, and J. W. T. Seakins. 1971. Metabolism of homoanisic acid in man and guinea pigs. Biochemical Journal 121 (1):17P–8P. doi: 10.1042/bj1210017Pb.
  • Ohue-Kitano, R., S. Taira, K. Watanabe, Y. Masujima, T. Kuboshima, J. Miyamoto, Y. Nishitani, H. Kawakami, H. Kuwahara, and I. Kimura. 2019. 3-(4-Hydroxy-3-methoxyphenyl)propionic acid produced from 4-hydroxy-3-methoxycinnamic acid by gut microbiota improves host metabolic condition in diet-induced obese mice. Nutrients 11 (5):1036. doi: 10.3390/nu11051036.
  • Omar, M. H., W. Mullen, A. Stalmach, C. Auger, J. M. Rouanet, P. L. Teissedre, S. T. Caldwell, R. C. Hartley, and A. Crozier. 2012. Absorption, disposition, metabolism, and excretion of [3-(14)C]caffeic acid in rats. Journal of Agricultural and Food Chemistry 60 (20):5205–14. doi: 10.1021/jf3001185.
  • Ordonez, J. L., G. Pereira-Caro, I. Ludwig, J. M. Munoz-Redondo, M. J. Ruiz-Moreno, A. Crozier, and J. M. Moreno-Rojas. 2018. A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. Journal of Chromatography. A 1575:100–12. doi: 10.1016/j.chroma.2018.09.016.
  • Ottaviani, J. I., G. Borges, T. Y. Momma, J. P. E. Spencer, C. L. Keen, A. Crozier, and H. Schroeter. 2016. The metabolome of [2-C-14] (-)-epicatechin in humans: Implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Scientific Reports 6 (1):29034. doi: 10.1038/srep29034.
  • Palir, N., J. P. N. Ruiter, R. J. A. Wanders, and R. H. Houtkooper. 2017. Identification of enzymes involved in oxidation of phenylbutyrate. Journal of Lipid Research 58 (5):955–61. doi: 10.1194/jlr.M075317.
  • Palosaari, P. M, and J. K. Hiltunen. 1990. Peroxisomal bifunctional protein from rat-liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta-3,delta-2-enoyl-CoA isomerase activities. The Journal of Biological Chemistry 265 (5):2446–9. doi: 10.1016/S0021-9258(19)39819-9.
  • Pang, D., L. You, L. Zhou, T. Li, B. Zheng, and R. H. Liu. 2017. Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice. Food & Function 8 (12):4496–507. doi: 10.1039/C7FO00833C.
  • Peppercorn, M. A, and P. Goldman. 1972. Caffeic acid metabolism by gnotobiotic rats and their intestinal bacteria. Proceedings of the National Academy of Sciences of the United States of America 69 (6):1413–5. doi: 10.1073/pnas.69.6.1413.
  • Pereira-Caro, G., G. Borges, J. van der Hooft, M. N. Clifford, D. Del Rio, M. E. J. Lean, S. A. Roberts, M. B. Kellerhals, and A. Crozier. 2014. Orange juice (poly)phenols are highly bioavailable in humans. The American Journal of Clinical Nutrition 100 (5):1378–84. doi: 10.3945/ajcn.114.090282.
  • Pereira-Caro, G., B. Fernandez-Quiros, I. A. Ludwig, I. Pradas, A. Crozier, and J. M. Moreno-Rojas. 2018. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. European Journal of Nutrition 57 (1):231–42. doi: 10.1007/s00394-016-1312-z.
  • Pereira-Caro, G., I. A. Ludwig, T. Polyviou, D. Malkova, A. Garcia, J. M. Moreno-Rojas, and A. Crozier. 2016. Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: Analysis by high-performance liquid chromatography-high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry 64 (28):5724–35. doi: 10.1021/acs.jafc.6b02088.
  • Pereira-Caro, G., C. M. Oliver, R. Weerakkody, T. Singh, M. Conlon, G. Borges, L. Sanguansri, T. Lockett, S. A. Roberts, A. Crozier, et al. 2015. Chronic administration of a microencapsulated probiotic enhances the bioavailability of Orange juice flavanones in humans. Free Radical Biology & Medicine 84:206–14. doi: 10.1016/j.freeradbiomed.2015.03.010.
  • Pereira-Caro, G., T. Polyviou, I. A. Ludwig, A. M. Nastase, J. M. Moreno-Rojas, A. L. Garcia, D. Malkova, and A. Crozier. 2017. Bioavailability of orange juice (poly) phenols: The impact of short-term cessation of training by male endurance athletes. The American Journal of Clinical Nutrition 106 (3):791–800. doi: 10.3945/ajcn.116.149898.
  • Pereira-Caro, G., M. N. Clifford, T. Polyviou, I. A. Ludwig, H. Alfheeaid, J. M. Moreno-Rojas, A. L. Garcia, D. Malkova, and A. Crozier. 2020. Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men. Free Radical Biology & Medicine 160:784–95. doi: 10.1016/j.freeradbiomed.2020.09.007.
  • Pereira-Caro, G., S. Gaillet, J. Luis Ordóñez, P. Mena, L. Bresciani, K. A. Bindon, D. Del Rio, J.-M. Rouanet, J. M. Moreno-Rojas, and A. Crozier. 2020. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food & Function 11 (5):3986–4001. doi: 10.1039/D0FO00350F.
  • Peters, M. M, and J. Caldwell. 1994. Studies on trans-cinnamaldehyde. 1. The influence of dose size and sex on its disposition in the rat and mouse. Food and Chemical Toxicology 32 (10):869–76. doi: 10.1016/0278-6915(94)90084-1.
  • Petruk, G., F. D. Lorenzo, P. Imbimbo, A. Silipo, A. Bonina, L. Rizza, R. Piccoli, D. M. Monti, and R. Lanzetta. 2017. Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes. Bioorganic & Medicinal Chemistry Letters 27 (24):5485–9. doi: 10.1016/j.bmcl.2017.10.043.
  • Phipps, A. N., J. Stewart, B. Wright, and I. D. Wilson. 1998. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 28 (5):527–37. doi: 10.1080/004982598239443.
  • Phipps, A. N., J. Stewart, and I. D. Wilson. 1997. In vitro metabolism of 3-(3 hydroxyphenyl) propionic acid in rat liver mitochondria. Human and Experimental Toxicology 16 (7):414.
  • Piazzon, A., U. Vrhovsek, D. Masuero, F. Mattivi, F. Mandoj, and M. Nardini. 2012. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. Journal of Agricultural and Food Chemistry 60 (50):12312–23. doi: 10.1021/jf304076z.
  • Pietta, P. G., C. Gardana, and P. L. Mauri. 1997. Identification of Gingko biloba flavonol metabolites after oral administration to humans. Journal of Chromatography B: Biomedical Sciences and Applications 693 (1):249–55. doi: 10.1016/S0378-4347(96)00513-0.
  • Pineau, T., W. R. Hudgins, L. Liu, L. C. Chen, T. Sher, F. J. Gonzalez, and D. Samid. 1996. Activation of a human peroxisome proliferator-activated receptor by the antitumor agent phenylacetate and its analogs. Biochemical Pharmacology 52 (4):659–67. doi: 10.1016/0006-2952(96)00340-1.
  • Poquet, L., M. N. Clifford, and G. Williamson. 2008a. Investigation of the metabolic fate of dihydrocaffeic acid. Biochemical Pharmacology 75 (5):1218–29. doi:0.1016/j.bcp.2007.11.009. doi: 10.1016/j.bcp.2007.11.009.
  • Poquet, L., M. N. Clifford, and G. Williamson. 2008b. Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metabolism and Disposition 36 (1):190–7. doi: 10.1124/dmd.107.017558.
  • Pupo, M. T., P. C. Vieira, J. B. Fernandes, and M. d Silva. 1996. A cycloartane triterpenoid and omega-phenyl alkanoic and alkenoic acids from Trichilia claussenii. Phytochemistry 42 (3):795–8. doi: 10.1016/0031-9422(95)00969-8.
  • Rafiei, H., K. Omidian, and B. Bandy. 2019. Phenolic breakdown products of cyanidin and quercetin contribute to protection against mitochondrial impairment and reactive oxygen species generation in an in vitro model of hepatocyte steatosis. Journal of Agricultural and Food Chemistry 67 (22):6241–7. doi: 10.1021/acs.jafc.9b02367.
  • Rampini, S., J. A. Vollmin, H. R. Bosshard, M. Muller, and H. C. Curtius. 1974. Aromatic-acids in urine of healthy infants, persistent hyperphenylalaninemia, and phenylketonuria, before and after phenylalanine load. Pediatric Research 8 (7):704–9. doi: 10.1203/00006450-197407000-00003.
  • Ranganathan, S, and T. Ramasarma. 1971. Enzymic formation of para-hydroxybenzoate from para-hydroxycinnamate. Biochemical Journal 122 (4):487–93. +. doi: 10.1042/bj1220487.
  • Ranganathan, S, and T. Ramasarma. 1974. The metabolism of phenolic acids in the rat. Biochemical Journal 140 (3):517–22. doi: 10.1042/bj1400517.
  • Rapisarda, P., G. Carollo, B. Fallico, F. Tomaselli, and E. Maccarone. 1998. Hydroxycinnamic acids as markers of Italian blood orange juices. Journal of Agricultural and Food Chemistry 46 (2):464–70. doi: 10.1021/jf9603700.
  • Rekdal, V. M., P. N. Bernadino, M. U. Luescher, S. Kiamehr, C. Le, J. E. Bisanz, P. J. Turnbaugh, E. N. Bess, and E. P. Balskus. 2020. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife 9:e50845. doi: 10.7554/eLife.50845.
  • Rekdal, V. M., E. N. Bess, J. E. Bisanz, P. J. Turnbaugh, and E. P. Balskus. 2019. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364 (6445):1055. doi: 10.1126/science.aau6323.
  • Rinaldo, P., J. J. O’Shea, P. M. Coates, D. E. Hale, C. A. Stanley, and K. Tanaka. 1988. Medium-chain Acyl-CoA Dehydrogenase-deficiency: Diagnosis by stable-isotope dilution measurement of urinary normal-hexanoylglycine and 3-phenylpropionylglycine. The New England Journal of Medicine 319 (20):1308–13. doi: 10.1056/nejm198811173192003.
  • Rinaldo, P., J. J. O’Shea, R. D. Welch, and K. Tanaka. 1990. The enzymatic basis for the dehydrogenation of 3-phenylpropionic acid: In vitro reaction of 3-phenylpropionyl-CoA with various acyl-CoA dehydrogenases. Pediatric Research 27 (5):501–7. doi: 10.1203/00006450-199005000-00017.
  • Rinaldo, P., E. Schmidt-Sommerfeld, A. P. Posca, S. J. Heales, D. A. Woolf, and J. V. Leonard. 1993. Effect of treatment with glycine and L-carnitine in medium-chain acyl-Coenzyme-A dehydrogenase-deficiency. The Journal of Pediatrics 122 (4):580–4. doi: 10.1016/S0022-3476(05)83539-5.
  • Rohwer, J. M., C. Schutte, and R. van der Sluis. 2021. Functional characterisation of three glycine N-acyltransferase variants and the effect on glycine conjugation to benzoyl-CoA. International Journal of Molecular Sciences 22 (6):3129. doi: 10.3390/ijms22063129.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58 (2):1296–304. doi: 10.1021/jf9032975.
  • Ross, A. B., C. Svelander, G. Karlsson, and O. I. Savolainen. 2017. Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa). Food Chemistry 220:344–51. doi: 10.1016/j.foodchem.2016.10.020.
  • Rubió, L., M. P. Romero, R. Solà, M. J. Motilva, M. N. Clifford, and A. Macia. 2021. Variation in the methylation of caffeoylquinic acids and urinary excretion of 3’-methoxycinnamic acid-4’-sulfate after apple consumption by volunteers. Molecular Nutrition & Food Research 65 (19):2100471. doi: 10.1002/mnfr.202100471.
  • Rudik, I., A. Bell, P. J. Tonge, and C. Thorpe. 2000. 4-Hydroxycinnamoyl-CoA: An ionizable probe of the active site of the medium chain acyl-CoA dehydrogenase. Biochemistry 39 (1):92–101. doi: 10.1021/bi9915364.
  • Saini, A. S., R. N. Singla, K. N. Garg, P. C. Singh, and I. D. Singh. 1974. Urinary phenolic acids arising from endogenous metabolism. Indian Journal of Physiology and Pharmacology 18 (2):111–5.
  • Sakuma, T., N. Sugiyama, and Y. Wada. 1992. The urinary acylcarnitine profile in 3 cases of transient hyperammonemia of the newborn. Acta Paediatrica 81 (5):436–8. doi: 10.1111/j.1651-2227.1992.tb12264.x.
  • Samuelsen, O. B., J. Brenna, E. Solheim, and R. R. Scheline. 1986. Metabolism of the cinnamon constituent o-methoxycinnamaldehyde in the rat. Xenobiotica 16 (9):845–52. doi: 10.3109/00498258609038966.
  • Sanchez-Patan, F., M. Monagas, M. V. Moreno-Arribas, and B. Bartolome. 2011. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. Journal of Agricultural and Food Chemistry 59 (6):2241–7. doi: 10.1021/jf104574z.
  • Sang, S, and C. S. Yang. 2008. Structural identification of novel glucoside and glucuronide metabolites of (-)-epigallocatechin-3-gallate in mouse urine using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 22 (22):3693–9. doi: 10.1002/rcm.3786.
  • Sangster, S. A., J. Caldwell, A. J. Hutt, A. Anthony, and R. L. Smith. 1987. The metabolic disposition of methoxy-C-14 -labeled trans-anethole, estragole and p-propylanisole in human volunteers. Xenobiotica 17 (10):1223–32. doi: 10.3109/00498258709167414.
  • Sangster, S. A., J. Caldwell, A. J. Hutt, and R. L. Smith. 1983. The metabolism of para-propylanisole in the rat and mouse and its variation with dose. Food and Chemical Toxicology 21 (3):263–71. doi: 10.1016/0278-6915(83)90059-5.
  • Sangster, S. A., J. Caldwell, and R. L. Smith. 1984. Metabolism of anethole. 2. Influence of dose size on the route of metabolism of trans-anethole in the rat and mouse. Food and Chemical Toxicology 22 (9):707–13. doi: 10.1016/0278-6915(84)90197-2.
  • Sangster, S. A., J. Caldwell, R. L. Smith, and P. B. Farmer. 1984. Metabolism of anethole.1. Pathways of metabolism in the rat and mouse. Food and Chemical Toxicology 22 (9):695–706. doi: 10.1016/0278-6915(84)90196-0.
  • Schantz, M., T. Erk, and E. Richling. 2010. Metabolism of green tea catechins by the human small intestine. Biotechnology Journal 5 (10):1050–9. doi: 10.1002/biot.201000214.
  • Scheline, R. R. 2009. Studies on the role of the intestinal microflora in the metabolism of coumarin in rats. Acta Pharmacologica et Toxicologica 26 (4):325–31. doi: 10.1111/j.1600-0773.1968.tb00452.x.
  • Scheline, R. R. 1970. The metabolism of (+)-catechin to hydroxyphenylvaleric acids by the intestinal microflora. Biochimica et Biophysica Acta 222 (1):228–30. doi: 10.1016/0304-4165(70)90373-9.
  • Scheline, R. R. 1978. Mammalian metabolism of plant xenobiotics. London, UK: Academic Press.
  • Scherbl, D., M. Renouf, C. Marmet, L. Poquet, I. Cristiani, S. Dahbane, S. Emady-Azar, J. Sauser, J. Galan, F. Dionisi, et al. 2017. Breakfast consumption induces retarded release of chlorogenic acid metabolites in humans. European Food Research and Technology 243:791–806. doi: 10.1007/s00217-016-2793-y.
  • Schoefer, L., A. Braune, and M. Blaut. 2004. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme. Applied and Environmental Microbiology 70 (10):6131–7. doi: 10.1128/AEM.70.10.6131-6137.2004.
  • Schoefer, L., R. Mohan, A. Schwiertz, A. Braune, and M. Blaut. 2003. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology 69 (10):5849–54. doi: 10.1128/AEM.69.10.5849-5854.2003.
  • Schönfeld, P, and L. Wojtczak. 2016. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research 57 (6):943–54. doi: 10.1194/jlr.R067629.
  • Schröder, M., H. Abdurahman, T. Ruoff, K. Lehnert, and W. Vetter. 2014. Identification of Aromatic Fatty Acids in Butter Fat. Journal of the American Oil Chemists’ Society 91 (10):1695–702. doi: 10.1007/s11746-014-2516-0.
  • Serna, M., C. Wong-Baeza, J. C. Santiago-Hernandez, I. Baeza, and C. Wong. 2015. Hypocholesterolemic and choleretic effects of three dimethoxycinnamic acids in relation to 2,4,5-trimethoxycinnamic acid in rats fed with a high-cholesterol/cholate diet. Pharmacological Reports: PR 67 (3):553–9. doi: 10.1016/j.pharep.2014.12.009.
  • Serra, A., A. Macia, M.-P. Romero, J. Reguant, N. Ortega, and M.-J. Motilva. 2012. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry 130 (2):383–93. doi: 10.1016/j.foodchem.2011.07.055.
  • Shaw, K. N, and J. Trevarthen. 1958. Exogenous sources of urinary phenol and indole acids. Nature 182 (4638):797–8. doi: 10.1038/182797a0.
  • Shaw, W. 2010. Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutritional Neuroscience 13 (3):135–43. doi: 10.1179/147683010X12611460763968.
  • Shunmoogam, N., P. Naidoo, and R. Chilton. 2018. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vascular Health and Risk Management 14:137–43. doi: 10.2147/VHRM.S165173.
  • Smith, S, and A. Stern. 1983. The effect of aromatic CoA esters on fatty-acid synthetase: Biosynthesis of omega-phenyl fatty-acids. Archives of Biochemistry and Biophysics 222 (1):259–65. doi: 10.1016/0003-9861(83)90523-4.
  • Snapper, I, and A. Saltzman. 1949. Hippuric acid, cinnamoylglucuronic acid and benzoylglucuronic acid in the urine of normal individuals and in patients with hepatic dysfunction after ingestion of sodium cinnamate. Archives of Biochemistry 24 (1):1–8.
  • Solheim, E, and R. R. Scheline. 1973. Metabolism of alkenebenzene derivatives in the rat. I. p-Methoxyallylbenzene (Estragole) and p-methoxypropenylbenzene (Anethole). Xenobiotica 3 (8):493–510. doi: 10.3109/00498257309151538.
  • Solheim, E, and R. R. Scheline. 1976. Metabolism of alkenebenzene derivatives in the rat. II. Eugenol and isoeugenol methyl ethers. Xenobiotica 6 (3):137–50. doi: 10.3109/00498257609151624.
  • Solheim, E, and R. R. Scheline. 1980. Metabolism of alkenebenzene derivatives in the rat. III. Elemicin and isoelemicin. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 10 (5):371–80. doi: 10.3109/00498258009033770.
  • Spanakis, M., S. Kasmas, and I. Niopas. 2009. Simultaneous determination of the flavonoid aglycones diosmetin and hesperetin in human plasma and urine by a validated GC/MS method: in vivo metabolic reduction of diosmetin to hesperetin. Biomedical Chromatography 23 (2):124–31. doi: 10.1002/bmc.1092.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2011. Identification of (poly)phenolic compounds in Concord grape juice and their metabolites in human plasma and urine after juice consumption. Journal of Agricultural and Food Chemistry 59 (17):9512–22. doi: 10.1021/jf2015039.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2012. Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of Concord grape juice by humans. Molecular Nutrition & Food Research 56 (3):497–509. doi: 10.1002/mnfr.201100566.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2013. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food & Function 4 (1):52–62. doi: 10.1039/c2fo30151b.
  • Stalmach, A., H. Steiling, G. Williamson, and A. Crozier. 2010. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Archives of Biochemistry and Biophysics 501 (1):98–105. doi: 10.1016/j.abb.2010.03.005.
  • Stalmach, A., G. Williamson, and A. Crozier. 2014. Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food Funct 5 (8):1727–37. doi: 10.1039/C4FO00316K.
  • Stanislaus, A., K. Guo, and L. Li. 2012. Development of an isotope labeling ultra-high performance liquid chromatography mass spectrometric method for quantification of acylglycines in human urine. Analytica Chimica Acta 750:161–72. doi: 10.1016/j.aca.2012.05.006.
  • Stoupi, S., G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford. 2010. A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota. Molecular Nutrition & Food Research 54 (6):747–59. doi: 10.1002/mnfr.200900123.
  • Sun, F.-M. 2003. The study of the possible metabolic pathway of cis-cinnamic acid in rat liver. Food Science and Agricultural Chemistry 5 (2):47–52.
  • Suzuki, H., J. Yamada, T. Watanabe, and T. Suga. 1992. A specific method for determination of peroxisomal beta-oxidation activity in cultured human skin fibroblasts using a specific substrate, c-9: A possible application for screening of peroxisomal disorders. Clinica Chimica Acta 207 (1-2):19–29. doi: 10.1016/0009-8981(92)90147-I.
  • Takagaki, A, and F. Nanjo. 2010. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. Journal of Agricultural and Food Chemistry 58 (2):1313–21. doi: 10.1021/jf903375s.
  • Takagaki, A, and F. Nanjo. 2015. Biotransformation of (-)-epigallocatechin and (-)-gallocatechin by intestinal bacteria involved in isoflavone metabolism. Biological & Pharmaceutical Bulletin 38 (2):325–30. doi: 10.1248/bpb.b14-00646.
  • Takahashi, T., H. Takahashi, H. Takeda, and M. Shichiri. 1992. Alpha-oxidation of fatty-acids in fasted or diabetic rats. Diabetes Research and Clinical Practice 16 (2):103–8. doi: 10.1016/0168-8227(92)90080-B.
  • Teiber, J. F., D. I. Draganov, and B. N. La Du. 2003. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochemical Pharmacology 66 (6):887–96. doi: 10.1016/s0006-2952(03)00401-5.
  • Temellini, A., S. Mogavero, P. C. Giulianotti, A. Pietrabissa, F. Mosca, and G. M. Pacifici. 1993. Conjugation of benzoic-acid with glycine in human liver and kidney: A study on the interindividual variability. Xenobiotica 23 (12):1427–33. doi: 10.3109/00498259309059451.
  • Thibaut, R., L. Debrauwer, D. Rao, and J. P. Cravedi. 1998a. Characterization of biliary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Xenobiotica 28 (8):745–57. doi: 10.1080/004982598239164.
  • Thibaut, R., L. Debrauwer, D. Rao, and J. P. Cravedi. 1998b. Disposition and metabolism of H-3 -4-n-nonylphenol in rainbow trout. Marine Environmental Research 46 (1-5):521–4. doi: 10.1016/S0141-1136(97)00089-5.
  • Thibaut, R., L. Debrauwer, D. Rao, and J. P. Cravedi. 1999. Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Science of the Total Environment 233 (1-3):193–200. doi: 10.1016/S0048-9697(99)00225-9.
  • Thibaut, R., A. Jumel, L. Debrauwer, E. Rathahao, L. Lagadic, and J. P. Cravedi. 2000. Identification of 4-n-nonylphenol metabolic pathways and residues in aquatic organisms by HPLC and LC-MS analyses. Analusis 28 (9):793–801. doi: 10.1051/analusis:2000280793.
  • Thibaut, R., G. Monod, and J. P. Cravedi. 2002. Residues of C-14-4n-nonylphenol in mosquitofish (Gambusia holbrooki) oocytes and embryos during dietary exposure of mature females to this xenohormone. Marine Environmental Research 54 (3-5):685–9. doi: 10.1016/S0141-1136(02)00194-0.
  • Tokutake, Y., W. Iio, N. Onizawa, Y. Ogata, D. Kohari, A. Toyoda, and S. Chohnan. 2012. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues. Biochemical and Biophysical Research Communications 423 (4):781–4. doi: 10.1016/j.bbrc.2012.06.037.
  • Urpi-Sarda, M., R. Llorach, N. Khan, M. Monagas, M. Rotches-Ribalta, R. Lamuela-Raventos, R. Estruch, F. J. Tinahones, and C. Andres-Lacueva. 2010. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans. Journal of Agricultural and Food Chemistry 58 (8):4706–11. doi: 10.1021/jf904440h.
  • Urpi-Sarda, M., M. Monagas, N. Khan, R. Llorach, R. M. Lamuela-Raventos, O. Jauregui, R. Estruch, M. Izquierdo-Pulido, and C. Andres-Lacueva. 2009. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1216 (43):7258–67. doi: 10.1016/j.chroma.2009.07.058.
  • van der Hooft, J. J., R. C. De Vos, V. Mihaleva, R. J. Bino, L. Ridder, R. N. de, D. M. Jacobs, J. P. Van Duynhoven, and J. Vervoort. 2012. Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake. Analytical Chemistry 84 (16):7263–71. doi: 10.1021/ac3017339.
  • van der Sluis, R, and E. Erasmus. 2016. Xenobiotic/medium chain fatty acid: CoA ligase: A critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opinion on Drug Metabolism & Toxicology 12 (10):1169–79. doi: 10.1080/17425255.2016.1206888.
  • van der Sluis, R., V. Ungerer, C. Nortje, A. A. van Dijk, and E. Erasmus. 2017. New insights into the catalytic mechanism of human glycine N-acyltransferase. Journal of Biochemical and Molecular Toxicology 31 (11):e21963. doi: 10.1002/jbt.21963.
  • van Duynhoven, J., J. J. van der Hooft, F. A. van Dorsten, S. Peters, M. Foltz, V. Gomez-Roldan, J. Vervoort, R. C. De Vos, and D. M. Jacobs. 2014. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. Journal of Proteome Research 13 (5):2668–78. doi: 10.1021/pr5001253.
  • Van Hove, J. L. K., P. Kishnani, J. Muenzer, R. J. Wenstrup, M. L. Summar, M. R. Brummond, A. M. Lachiewicz, D. S. Millington, and S. G. Kahler. 1995. Benzoate therapy and carnitine deficiency in nonketotic hyperglycinemia. American Journal of Medical Genetics 59 (4):444–53. doi: 10.1002/ajmg.1320590410.
  • Vanderhe, C., S. K. Wadman, D. Ketting, and P. K. Debree. 1971. Urinary and faecal excretion of metabolites of tyrosine and phenylalanine in a patient with cystic fibrosis and severely impaired amino acid absorption. Clinica Chimica Acta 31 (1):133–41. doi: 10.1016/0009-8981(71)90370-6.
  • Vazquez-Fresno, R., A. R. R. Rosana, T. Sajed, T. Onookome-Okome, N. A. Wishart, and D. S. Wishart. 2019. Herbs and spices- biomarkers of intake based on human intervention studies: A systematic review. Genes and Nutrition 14:18. doi: 10.1186/s12263-019-0636-8.
  • Vervoort, L., T. Grauwet, Biniam, T. Kebede, I. Van der Plancken, R. Timmermans, M. Hendrickx, and A. Van Loey. 2012. Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice pasteurisation. Food Chemistry 134 (4):2303–12. doi: 10.1016/j.foodchem.2012.03.096.
  • Villa-Rodriguez, J. A., A. Kerimi, L. Abranko, S. Tumova, L. Ford, R. S. Blackburn, C. Rayner, and G. Williamson. 2018. Acute metabolic actions of the major polyphenols in chamomile: An in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia. Scientific Reports 8 (1):5471. doi: 10.1038/s41598-018-23736-1.
  • Vollmer, M., D. Schröter, S. Esders, S. Neugart, F. M. Farquharson, S. H. Duncan, M. Schreiner, P. Louis, R. Maul, and S. Rohn. 2017. Chlorogenic acid versus amaranth’s caffeoylisocitric acid: Gut microbial degradation of caffeic acid derivatives. Food Research International (Ottawa, Ont.) 100 (Pt 3):375–84. doi: 10.1016/j.foodres.2017.06.013.
  • Vollmin, J. A., H. R. Bosshard, M. Muller, S. Rampini, and H. C. Curtius. 1971. Determination of urinary aromatic acids by gas chromatography. Results from healthy infants and from patients with phenylketonuria. Zeitschrift für Klinische Chemie und Klinische Biochemie 9 (5):402–4.
  • Wadman, S. K., Heiden, C. van der, D. Ketting, J. P. Kamerling, and J. F. Vliegenthart. 1973. b-p-Hydroxyphenylhydracrylic acid as a urinary constituent in a patient with gastrointestinal disease. Clinica Chimica Acta 47 (2):307–14. doi: 10.1016/0009-8981(73)90328-8.
  • Wajngot, A., V. Chandramouli, W. C. Schumann, H. Brunengraber, S. Efendic, and B. R. Landau. 2000. A probing dose of phenylacetate does not affect glucose production and gluconeogenesis in humans. Metabolism 49 (9):1211–4. doi: 10.1053/meta.2000.8601.
  • Wanders, R. J. A, and H. R. Waterham. 2006. Biochemistry of mammalian peroxisomes revisited. Annual Review of Biochemistry 75 (1):295–332. doi: 10.1146/annurev.biochem.74.082803.133329.
  • Wanders, R. J. A., H. R. Waterham, and S. Ferdinandusse. 2016. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Frontiers in Cell and Developmental Biology 3:83. doi: 10.3389/fcell.2015.00083.
  • Wang, P., R. H. Wang, Y. D. Zhu, and S. M. Sang. 2017. Interindividual Variability in Metabolism of 6 -Shogaol by Gut Microbiota. Journal of Agricultural and Food Chemistry 65 (44):9618–25. doi: 10.1021/acs.jafc.7b02850.
  • Wang, Y., M. Zhao, Y. Ou, B. Zeng, X. Lou, M. Wang, and C. Zhao. 2016. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1020:120–8. doi: 10.1016/j.jchromb.2016.03.027.
  • Wenlock, M. C., P. Barton, and T. Luker. 2011. Lipophilicity of acidic compounds: Impact of ion pair partitioning on drug design. Bioorganic & Medicinal Chemistry Letters 21 (12):3550–6. doi: 10.1016/j.bmcl.2011.04.133.
  • Wewer, V., H. Peisker, K. Gutbrod, M. Al-Bahra, D. Menche, N. G. Amambo, F. F. Fombad, A. J. Njouendou, K. Pfarr, S. Wanji, et al. 2021. Urine metabolites for the identification of Onchocerca volvulus infections in patients from Cameroon. Parasites & Vectors 14 (1):397. doi: 10.1186/s13071-021-04893-1.
  • Wierzbicka, R., G. Zamaratskaia, A. Kamal-Eldin, and R. Landberg. 2017. Novel urinary alkylresorcinol metabolites as biomarkers of whole grain intake in free-living Swedish adults. Molecular Nutrition & Food Research 61 (7):1700015. doi: 10.1002/mnfr.201700015.
  • Wiese, S., T. Esatbeyoglu, P. Winterhalter, H. P. Kruse, S. Winkler, A. Bub, and S. E. Kulling. 2015. Comparative biokinetics and metabolism of pure monomeric, dimeric and polymeric flavan-3-ols: A randomized cross-over study in humans. Molecular Nutrition & Food Research 59 (4):610–21. doi: 10.1002/mnfr.201400422.
  • Wijarnpreecha, K., C. Thongprayoon, and P. Ungprasert. 2017. Coffee consumption and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. European Journal of Gastroenterology & Hepatology 29 (2):E8–E12. doi: 10.1097/meg.0000000000000776.
  • Williamson, G, and M. N. Clifford. 2010. Colonic metabolites of berry polyphenols: The missing link to biological activity? British Journal of Nutrition 104 (S3):S48–S66. doi: 10.1017/S0007114510003946.
  • Williamson, G, and M. N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology 139:24–39. doi: 10.1016/j.bcp.2017.03.012.
  • Wong, C. C., W. Meinl, H. R. Glatt, D. Barron, A. Stalmach, H. Steiling, A. Crozier, and G. Williamson. 2010. In vitro and in vivo conjugation of dietary hydroxycinnamic acids by UDP-glucuronosyltransferases and sulfotransferases in humans. The Journal of Nutritional Biochemistry 21 (11):1060–8. doi: 10.1016/j.jnutbio.2009.09.001.
  • Xiong, X. Y., D. Liu, Y. C. Wang, T. Zeng, and Y. Peng. 2016. Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders. BioMed Research International 2016:1–8. doi: 10.1155/2016/945412.
  • Xu, M., H. Guo, J. Han, S.-F. Sun, A.-H. Liu, B.-R. Wang, X.-C. Ma, P. Liu, X. Qiao, Z.-C. Zhang, et al. 2007. Structural characterization of metabolites of salvianolic acid B from Salvia miltiorrhiza in normal and antibiotic-treated rats by liquid chromatography–mass spectrometry. Journal of Chromatography B 858 (1–2):184–98. doi: 10.1016/j.jchromb.2007.08.032.
  • Yamada, J., S. Ogawa, S. Horie, T. Watanabe, and T. Suga. 1987. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: Comparison between peroxisomal and mitochondrial beta-oxidiation of omega-phenyl fatty-acids in rat-liver. Biochimica Et Biophysica Acta 921 (2):292–301.
  • Yamamoto, A., S. Nonen, T. Fukuda, H. Yamazaki, and J. Azuma. 2009. Genetic Polymorphisms of Glycine N-acyltransferase in Japanese Individuals. Drug Metabolism and Pharmacokinetics 24 (1):114–7. doi: 10.2133/dmpk.24.114.
  • Yang, B., Z. Y. Meng, L. P. Yan, J. X. Dong, L. B. Zou, Z. M. Tang, and G. F. Dou. 2006. Pharmacokinetics and metabolism of 1,5-dicaffeoylquinic acid in rats following a single intravenous administration. Journal of Pharmaceutical and Biomedical Analysis 40 (2):417–22. doi: 10.1016/j.jpba.2005.06.037.
  • Yang, X.-W., N. Wang, W. Xu, W. Li, and S. Wu. 2013. Biotransformation of 4,5-O-dicaffeoylquinic acid methyl ester by human intestinal flora and evaluation on their inhibition of NO production and antioxidant activity of the products. Food and Chemical Toxicology 55:297–303. doi: 10.1016/j.fct.2012.12.039.
  • Yoon, S. A., S. I. Kang, H. S. Shin, S. W. Kang, J. H. Kim, H. C. Ko, and S. J. Kim. 2013. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochemical and Biophysical Research Communications 432 (4):553–7. doi: 10.1016/j.bbrc.2013.02.067.
  • Zagalak, M. J., H. C. Curtius, W. Leimbacher, and U. Redweik. 1977. Quantitation of deuterated and non-deuterated phenylalanine and tyrosine in human-plasma using selective ion monitoring method with combined gas chromatography mass spectrometry: Application to in vivo measurement of phenylalanine-4-monooxygenase activity. Journal of Chromatography 142:523–31. doi: 10.1016/S0021-9673(01)92065-5.
  • Zalko, D., R. Costagliola, C. Dorio, E. Rathahao, and J. P. Cravedi. 2003. In vivo metabolic fate of the xeno-estrogen 4-n-nonylphenol in Wistar rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 31 (2):168–78. doi: 10.1124/dmd.31.2.168.
  • Zamora-Ros, R., D. Achaintre, J. A. Rothwell, S. Rinaldi, N. Assi, P. Ferrari, M. Leitzmann, M. C. Boutron-Ruault, G. Fagherazzi, A. Auffret, et al. 2016. Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Scientific Reports 6 (1):26905. doi: 10.1038/srep26905.
  • Zeng, X., W. W. Su, Y. Y. Zheng, Y. D. He, Y. He, H. Y. Rao, W. Peng, and H. L. Yao. 2019. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Frontiers in Pharmacology 10:34. doi: 10.3389/fphar.2019.00034.
  • Zeng, X., H. Yao, Y. Zheng, T. Chen, W. Peng, H. Wu, and W. Su. 2020. Metabolite profiling of naringin in rat urine and feces using stable isotope-labeling-based liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 68 (1):409–17. doi: 10.1021/acs.jafc.9b06494.
  • Zhang, D., L. Y. Xie, G. Jia, S. B. Cai, B. P. Ji, Y. X. Liu, W. Wu, F. Zhou, A. L. Wang, L. Chu, et al. 2011. Comparative study on antioxidant capacity of flavonoids and their inhibitory effects on oleic acid-induced hepatic steatosis in vitro. European Journal of Medicinal Chemistry 46 (9):4548–58. doi: 10.1016/j.ejmech.2011.07.031.
  • Zhang, H. X., Q. Y. Lang, J. Li, Z. M. Zhong, F. Xie, G. M. Ye, B. Wan, and L. Yu. 2007. Molecular cloning and characterization of a novel human glycine-N-acyltransferase gene GLYATL1, which activates transcriptional activity of HSE pathway. International Journal of Molecular Sciences 8 (5):433–44. doi: 10.3390/i8050433.
  • Zhang, L.-Q., X.-W. Yang, Y.-B. Zhang, Y.-Y. Zhai, W. Xu, B. Zhao, D.-L. Liu, and H.-J. Yu. 2012. Biotransformation of phlorizin by human intestinal flora and inhibition of biotransformation products on tyrosinase activity. Food Chemistry. 132 (2):936–42. doi: 10.1016/j.foodchem.2011.11.071.
  • Zhang, L., A. K. Joshi, and S. Smith. 2003. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: Malonyltransferase and acyl carrier protein. The Journal of Biological Chemistry 278 (41):40067–74. doi: 10.1074/jbc.M306121200.
  • Zhang, S. Y., X. F. Ma, C. G. Zheng, Y. Wang, X. L. Cao, and W. X. Tian. 2009. Novel and potent inhibitors of fatty acid synthase derived from catechins and their inhibition on MCF-7 cells. Journal of Enzyme Inhibition and Medicinal Chemistry 24 (3):623–31. doi: 10.1080/14756360802319678.
  • Zhao, K. J., Y. Chen, S. J. Hong, Y. T. Yang, J. Xu, H. Y. Yang, L. Zhu, M. Liu, Q. S. Xie, X. G. Tang, et al. 2019. Characteristics of beta-oxidative and reductive metabolism on the acyl side chain of cinnamic acid and its analogues in rats. Acta Pharmacologica Sinica 40 (8):1106–18. doi: 10.1038/s41401-019-0218-8.
  • Zheng, J. K., H. Y. Xiong, Q. Li, L. Y. He, H. Weng, W. H. Ling, and D. L. Wang. 2019. Protocatechuic acid from chicory is bioavailable and undergoes partial glucuronidation and sulfation in healthy humans. Food Science & Nutrition 7 (9):3071–80. doi: 10.1002/fsn3.1168.
  • Zhu, C. H., X. Y. Zhou, C. R. Long, Y. X. Du, J. X. Li, J. Q. Yue, and S. Y. Pan. 2020. Variations of flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of citrus fruits. Chemistry & Biodiversity 17 (6):e00690. doi: 10.1002/cbdv.201900690.
  • Zhu, Y. D., K. L. Shurlknight, X. X. Chen, and S. M. Sang. 2014. Identification and pharmacokinetics of novel alkylresorcinol metabolites in human urine, new candidate biomarkers for whole-grain wheat and rye intake. The Journal of Nutrition 144 (2):114–22. doi: 10.3945/jn.113.184663.
  • Ziegler, K., A. Kerimi, L. Poquet, and G. Williamson. 2016. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4). Archives of Biochemistry and Biophysics 599:3–12. doi: 10.1016/j.abb.2016.01.018.
  • Zimmerman, L., H. Jörnvall, J. Bergström, P. Fürst, and J. Sjövall. 1981. Characterization of a double conjugate in uremic body-fluids: Glucuronidated ortho-hydroxybenzoylglycine. FEBS Letters 129 (2):237–40. doi: 10.1016/0014-5793(81)80173-1.