1,748
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Recent trends in aroma release and perception during food oral processing: A review

, , , , , & ORCID Icon show all

References

  • Adams, N. G., and D. Smith. 1976. The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions. International Journal of Mass Spectrometry and Ion Physics 21 (3–4):349–59. doi: 10.1016/0020-7381(76)80133-7.
  • Ahmed, L., Y. Zhang, E. Block, M. Buehl, M. J. Corr, R. A. Cormanich, et al. 2018. Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (R)-muscone and diverse other musk-smelling compounds. Proceedings of the National Academy of Sciences of the United States of America 115 (17):3950–8. doi: 10.1073/pnas.1713026115.
  • Albert, A., P. Varela, A. Salvador, G. Hough, and S. Fiszman. 2011. Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Quality and Preference 22 (5):463–73. doi: 10.1016/j.foodqual.2011.02.010.
  • Alemzadeh, K., S. B. Jones, M. Davies, and N. West. 2021. Development of a chewing robot with built-in humanoid jaws to simulate mastication to quantify robotic agents release from chewing gums compared to human participants. IEEE Transactions on Bio-Medical Engineering 68 (2):492–504. doi: 10.1109/TBME.2020.3005863.
  • Anderson, A. K., K. Christoff, I. Stappen, D. Panitz, D. G. Ghahremani, G. Glover, J. D. E. Gabrieli, and N. Sobel. 2003. Sobel: Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience 6 (2):196–202. doi: 10.1038/nn1001.
  • Antúnez, L., L. Vidal, L. Saldamando, A. Giménez, and G. Ares. 2017. Comparison of consumer-based methodologies for sensory characterization: Case study with four sample sets of powdered drinks. Food Quality and Preference 56:149–63. doi: 10.1016/j.foodqual.2016.09.013.
  • Ares, G., L. Antúnez, L. de Saldamando, and A. Giménez. 2018. Polarized sensory positioning. In Descriptive analysis in sensory evaluation, edited by S. Kemp, J. Hort, and T. Hollowood, 561–77. Hoboken, NJ, USA: John Wiley & Sons, Ltd.
  • Ares, G., S. R. Jaeger, L. Antúnez, L. Vidal, A. Giménez, B. Coste, A. Picallo, and J. C. Castura. 2015. Comparison of TCATA and TDS for dynamic sensory characterization of food products. Food Research International (Ottawa, ON) 78:148–58. doi: 10.1016/j.foodres.2015.10.023.
  • Bayarri, S., A. J. Taylor, and J. Hort. 2006. The role of fat in flavor perception: Effect of partition and viscosity in model emulsions. Journal of Agricultural and Food Chemistry 54 (23):8862–8. doi: 10.1021/jf061537k.
  • Benjamin, O., P. Silcock, M. Leus, and D. W. Everett. 2012. Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers. Food Hydrocolloids 27 (1):109–18. doi: 10.1016/j.foodhyd.2011.08.008.
  • Berger, M., M. Pillei, A. Mehrle, W. Recheis, F. Kral, M. Kraxner, Z. Bardosi, and W. Freysinger. 2021. Nasal cavity airflow: Comparing laser doppler anemometry and computational fluid dynamic simulations. Respiratory Physiology & Neurobiology 283:103533. doi: 10.1016/j.resp.2020.103533.
  • Blankenship, M. L., M. Grigorova, D. B. Katz, and J. X. Maier. 2019. Retronasal odor perception requires taste cortex, but orthonasal does not. Current Biology: CB 29 (1):62–9.e3. doi: 10.1016/j.cub.2018.11.011.
  • Bozza, T., J. P. Mcgann, P. Mombaerts, and M. Wachowiak. 2004. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42 (1):9–21. doi: 10.1016/S0896-6273(04)00144-8.
  • Brann, D. H., T. Tsukahara, C. Weinreb, M. Lipovsek, K. Van den Berge, B. Gong, R. Chance, I. C. Macaulay, H.-J. Chou, R. B. Fletcher, et al. 2020. Non-neuronal expression of SARS-COV-2 entry genes in the olfaory system suggests mechanisms underlying covid-19-associated anosmia. Science Advances 6 (31):eabc5801. doi: 10.1126/sciadv.abc5801.
  • Briand, L., C. Eloit, C. Nespoulous, V. Bézirard, J.-C. Huet, C. Henry, F. Blon, D. Trotier, and J.-C. Pernollet. 2002. Evidence of an odorant-binding protein in the human olfactory mucus: Location, structural characterization, and odorant-binding properties. Biochemistry, 41 (23):7241–52. doi: 10.1021/bi015916c.
  • Bonneau, A., R. Boulanger, M. Lebrun, I. Maraval, J. Valette, É. Guichard, and Z. Gunata. 2018. Impact of fruit texture on the release and perception of aroma compounds during in vivo consumption using fresh and processed mango fruits. Food Chemistry 239:806–15. doi: 10.1016/j.foodchem.2017.07.017.
  • Brüning, J., T. Hildebrandt, W. Heppt, N. Schmidt, H. Lamecker, A. Szengel, N. Amiridze, H. Ramm, M. Bindernagel, S. Zachow, et al. 2020. Characterization of the airflow within an average geometry of the healthy human nasal cavity. Scientific Reports 10 (1):3755. doi: 10.1038/s41598-020-60755-3.
  • Buettner, A. 2002. Influence of human salivary enzymes on odorant concentration changes occurring in vivo. 1. Esters and thiols. Journal of Agricultural and Food Chemistry 50 (11):3283–9. doi: 10.1021/jf011586r.
  • Buettner, A., and F. Welle. 2004. Intra-oral detection of potent odorants using a modified stir-bar sorptive extraction system in combination with HRGC-O, known as the buccal odour screening system (BOSS). Flavour and Fragrance Journal 19 (6):505–14. doi: 10.1002/ffj.1473.
  • Canon, F., F. Neiers, and E. Guichard. 2018. Saliva and flavor perception: Perspectives. Journal of Agricultural and Food Chemistry 66 (30):7873–9. doi: 10.1021/acs.jafc.8b01998.
  • Castagnola, M., E. Scarano, G. C. Passali, I. Messana, T. Cabras, F. Iavarone, G. Di Cintio, A. Fiorita, E. De Corso, and G. Paludetti. 2017. Salivary biomarkers and proteomics: Future diagnostic and clinical utilities. Acta Otorhinolaryngologica Italica: Organo Ufficiale Della Societa Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale 37 (2):94–101. doi: 10.14639/0392-100X-1598.
  • Castro, T. G., C. Silva, T. Matamá, and A. Cavaco-Paulo. 2021. The structural properties of odorants modulate their association to human odorant binding protein. Biomolecules 11 (2):145. doi: 10.3390/biom11020145.
  • Chen, J. 2009. Food oral processing - A review. Food Hydrocolloids 23 (1):1–25. doi: 10.1016/j.foodhyd.2007.11.013.
  • Ćorković, I., A. Pichler, J. Šimunović, and M. Kopjar. 2021. Hydrogels: Characteristics and application as delivery systems of phenolic and aroma compounds. Foods 10 (6):1252. doi: 10.3390/foods10061252.
  • Dehlholm, C. 2015. Free multiple sorting as a sensory profiling technique. In Rapid sensory profiling techniques, edited by J. Delarue, J. B. Lawlor, and M. Rogeaux, 187–96. Cambridge, UK: Woodhead Publishing. doi: 10.1533/9781782422587.2.187.
  • Dinu, V., A. Gadon, K. Hurst, M. Lim, C. Ayed, R. B. Gillis, G. G. Adams, S. E. Harding, and I. D. Fisk. 2019. An enzymatically controlled mucoadhesive system for enhancing flavour during food oral processing. NPJ Science of Food 3 (1):11. doi: 10.1038/s41538-019-0043-y.
  • Doyennette, M., C. De Loubens, I. Deleris, I. Souchon, and I. C. Trelea. 2011. Mechanisms explaining the role of viscosity and post-deglutitive pharyngeal residue on in vivo aroma release: A combined experimental and modeling study. Food Chemistry 128 (2):380–90. doi: 10.1016/j.foodchem.2011.03.039.
  • Dunkel, A., M. Steinhaus, M. Kotthoff, B. Nowak, D. Krautwurst, P. Schieberle, and T. Hofmann. 2014. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angewandte Chemie (International ed. in English) 53 (28):7124–43. doi: 10.1002/anie.201309508.
  • Edward, J. T. 1970. Molecular volumes and the Stokes-Einstein equation. Journal of Chemical Education 47 (4):261. doi: 10.1021/ed047p261.
  • Eldeghaidy, S., L. Marciani, J. C. Pfeiffer, J. Hort, K. Head, A. J. Taylor, R. C. Spiller, P. A. Gowland, and S. Francis. 2011. Use of an immediate swallow protocol to assess taste and aroma integration in fMRI studies. Chemosensory Perception 4 (4):163–74. doi: 10.1007/s12078-011-9094-4.
  • Esteban-Fernãndez, A., N. Rocha-Alcubilla, C. Munoz-Gonzalez, M. V. Moreno-Arribas, and M. A. Pozo-Bayon. 2016. Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure. Food Chemistry 205:280–8. doi: 10.1016/j.foodchem.2016.03.030.
  • Feyzi, S., M. Varidi, M. R. Housaindokht, Z. Es’ haghi, R. Romano, P. Piombino, and A. Genovese. 2020. A study on aroma release and perception of saffron ice cream using in-vitro and in-vivo approaches. Innovative Food Science & Emerging Technologies 65:102455. doi: 10.1016/j.ifset.2020.102455v.
  • Freiherr, J. 2016. Cortical olfactory processing. In Hand book of odor, edited by A. Buettner, 759–64. Freising, Germany: Springer.
  • Findlay, C. J. 2017. Dual-attribute time-intensity. In Time-dependent measures of perception in sensory evaluation, edited by H. Joanne, E. K. Sarah, and H. Tracey, 267–82. Hoboken, NJ, USA: John Wiley & Sons.
  • Genovese, A., N. Caporaso, A. Civitella, and R. Sacchi. 2014. Effect of human saliva and sip volume of coffee brews on the release of key volatile compounds by a retronasal aroma simulator. Food Research International 61:100–11. doi: 10.1016/j.foodres.2014.02.034.
  • Genovese, A., N. Caporaso, V. Villani, A. Paduano, and R. Sacchi. 2015. Olive oil phenolic compounds affect the release of aroma compounds. Food Chemistry 181 (15):284–94. doi: 10.1016/j.foodchem.2015.02.097.
  • Genovese, A., N. Caporaso, V. Bari, N. Yang, and I. Fisk. 2019. Effect of olive oil phenolic compounds on the aroma release and persistence from O/W emulsion analysed in vivo by APCI-MS. Food Research International (Ottawa, ON) 126:108686. doi: 10.1016/j.foodres.2019.108686.
  • Gisladottir, R. S., E. V. Ivarsdottir, A. Helgason, L. Jonsson, N. K. Hannesdottir, G. Rutsdottir, G. A. Arnadottir, A. Skuladottir, B. A. Jonsson, G. L. Norddahl, et al. 2020. Sequence variants in TAAR5 and other loci Affect human odor perception and naming. Current Biology 30 (23):4643–53.e3. doi: 10.1016/j.cub.2020.09.012.
  • Guo, Q. 2021. Understanding the oral processing of solid foods: Insights from food structure. Comprehensive Reviews in Food Science and Food Safety 20 (3):2941–67. doi: 10.1111/1541-4337.12745.
  • Haag, F., S. Hoffmann, and D. Krautwurst. 2021. Key food furanones furaneol and sotolone specifically activate distinct odorant receptors. Journal of Agricultural and Food Chemistry 69 (37):10999–1005. doi: 10.1021/acs.jafc.1c03314.
  • Hageman, J. H. J., A. G. Nieuwenhuizen, S. M. Ruth, J. A. Hageman, and J. Keijer. 2019. Application of volatile organic compound analysis in a nutritional intervention study, differential responses during five hours following consumption of a high‐and a low‐fat dairy drink. Molecular Nutrition & Food Research 63 (20):1900189. doi: 10.1002/mnfr.201900189.
  • Hansel, A., A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, and W. Lindinger. 1995. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level. International Journal of Mass Spectrometry and Ion Processes 149–150:609–19. doi: 10.1016/0168-1176(95)04294-U.
  • Heilig, A., A. Sonne, P. Schieberle, and J. Hinrichs. 2016. Determination of aroma compound partition coefficients in aqueous, polysaccharide, and dairy matrices using the phase ratio variation method: A review and modeling approach. Journal of Agricultural and Food Chemistry 64 (22):4450–70. doi: 10.1021/acs.jafc.6b01482.
  • Heilmann, S., and T. Hummel. 2004. A new method for comparing orthonasal and retronasal olfaction. Behavioral Neuroscience 118 (2):412–9. doi: 10.1142/S0218271808012188[PMC].[15113268].
  • How, M. S., J. R. Jones, M. P. Morgenstern, E. Gray-Stuart, J. E. Bronlund, A. Saint-Eve, I. C. Trelea, and I. Souchon. 2021. Modelling the role of oral processing on in vivo aroma release of white rice: Conceptual model and experimental validation. LWT 141:110918. doi: 10.1016/j.lwt.2021.110918.
  • Iravani, B., A. Arshamian, K. Ohla, D. A. Wilson, and J. N. Lundstrom. 2019. Non-invasive recording from the human olfactory bulb. Nature Communications 11 (1):506–19. doi: 10.1038/s41467-020-14520-9.
  • Itobe, T., O. Nishimura, and K. Kumazawa. 2015. Influence of milk on aroma release and aroma perception during consumption of coffee beverages. Food Science and Technology Research 21 (4):607–14. doi: 10.3136/fstr.21.607.
  • Jacobson, A., E. Green, L. Haase, J. Szajer, and C. Murphy. 2019. Differential effects of BMI on brain response to odor in olfactory, reward and memory regions: Evidence from fMRI. Nutrients 11 (4):926. doi: 10.3390/nu11040926.
  • Jaeger, S. R., M. K. Beresford, D. C. Hunter, F. Alcaire, J. C. Castura, and G. Ares. 2017. Does a familiarization step influence results from a TCATA task? Food Quality and Preference 55:91–7. doi: 10.1016/j.foodqual.2016.09.001.
  • Javaid, M. A., A. S. Ahmed, R. Durand, and S. D. Tran. 2016. Saliva as a diagnostic tool for oral and systemic diseases. Journal of Oral Biology and Craniofacial Research 6 (1):67–76. doi: 10.1016/j.jobcr.2015.08.006.
  • Jordan, A., S. Haidacher, G. Hanel, E. Hartungen, L. Märk, H. Seehauser, R. Schottkowsky, P. Sulzer, and T. D. Märk. 2009. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International Journal of Mass Spectrometry 286 (2–3):122–8. doi: 10.1016/j.ijms.2009.07.005.
  • Keller, A., H. Zhuang, Q. Chi, L. B. Vosshall, and H. Matsunami. 2007. Genetic variation in a human odorant receptor alters odour perception. Nature 449 (7161):468–72. doi: 10.1038/nature06162.
  • Khramova, D. S., and S. V. Popov. 2022. A secret of salivary secretions: Multimodal effect of saliva in sensory perception of food. European Journal of Oral Sciences 130 (2):e12846. doi: 10.1111/eos.12846.
  • Kowalewski, J., and A. Ray. 2020. Predicting human olfactory perception from activities of odorant receptors. iScience 23 (8):101361. doi: 10.1016/j.isci.2020.101361.
  • Konitzer, K., T. Pflaum, P. Oliveira, E. Arendt, P. Koehler, and T. Hofmann. 2013. Kinetics of sodium release from wheat bread crumb as affected by sodium distribution. Journal of Agricultural and Food Chemistry 61 (45):10659–69. doi: 10.1021/jf404458v.
  • Krause, A. J., L. S. Henson, and G. A. Reineccius. 2011. Use of a chewing device to perform a mass balance on chewing gum components. Flavour and Fragrance Journal 26 (1):47–54. doi: 10.1002/ffj.2015.
  • Lafarge, C., M. H. Bard, A. Breuvart, J. L. Doublier, and N. Cayot. 2008. Influence of the structure of cornstarch dispersions on kinetics of aroma release. Journal of Food Science 73 (2):S104–S109. doi: 10.1111/j.1750-3841.2007.00645.x.
  • Lagg, A., J. Taucher, A. Hansel, and W. Lindinger. 1994. Applications of proton transfer reactions to gas analysis. International Journal of Mass Spectrometry and Ion Processes 134 (1):55–66. doi: 10.1016/0168-1176(94)03965-8.
  • Langford, V. S., D. Padayachee, M. J. McEwan, and S. A. Barringer. 2019. Comprehensive odorant analysis for on‐line applications using selected ion flow tube mass spectrometry (SIFT‐MS). Flavour and Fragrance Journal 34 (6):393–410. doi: 10.1002/ffj.3516.
  • Lesme, H., C. Alleaume, S. Bouhallab, M.-H. Famelart, C. Marzin, L. Lopez-Torres, C. Prost, and C. Rannou. 2020a. Aroma-retention capacities of functional whey protein aggregates: Study of a strawberry aroma in solutions and in fat-free yogurts. Food Research International (Ottawa, ON) 136:109491. doi: 10.1016/j.foodres.2020.109491.
  • Lesme, H., C. Rannou, M. H. Famelart, S. Bouhallab, and C. Prost. 2020b. Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science & Technology 98:140–9. doi: 10.1016/j.tifs.2020.02.006.
  • Linforth, R. S. T., and A. J. Taylor. 1999. Apparatus and methods for the; analysis of trace constituents of gases. U.S. Patent; EP0819937A2.
  • Liu, J., and Y. Duan. 2012. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncology 48 (7):569–77. doi: 10.1016/j.oraloncology.2012.01.021.
  • Liu, J., W. L. Bredie, E. Sherman, J. F. Harbertson, and H. Heymann. 2018. Comparison of rapid descriptive sensory methodologies: Free-choice profiling, flash profile and modified flash profile. Food Research International (Ottawa, ON) 106:892–900. doi: 10.1016/j.foodres.2018.01.062.
  • Luckett, C. R., and H. S. Seo. 2017. The effects of both chewing rate and chewing duration on temporal flavor perception. Chemosensory Perception 10 (1–2):13–22. doi: 10.1007/s12078-017-9224-8.
  • Ma, W., D. Zhang, M. Hu, P. J. Wilde, J. Wu, L. Zhao, T. Ma, X. Wang, and J. Chen. 2021. Comparison of oral physiological and salivary rheological properties of Chinese Mongolian and Han young adults. Archives of Oral Biology 123:105033. doi: 10.1016/J.ARCHORALBIO.2020.105033.
  • Mao, L., Y. H. Roos, C. G. Biliaderis, and S. Miao. 2017. Food emulsions as delivery systems for flavor compounds: A review. Critical Reviews in Food Science and Nutrition 57 (15):3173–87. doi: 10.1080/10408398.2015.1098586.
  • María, P. J., M. G. Carolina, and P. B. M. Ángeles. 2020. Understanding human salivary esterase activity and its variation under wine consumption conditions. RSC Advances 10 (41):24352–61. doi: 10.1039/D0RA04624H.
  • de March, C. A., W. B. Titlow, T. Sengoku, P. Breheny, H. Matsunami, and T. S. McClintock. 2020. Modulation of the combinatorial code of odorant receptor response patterns in odorant mixtures. Molecular and Cellular Neurosciences 104:103469. doi: 10.1016/j.mcn.2020.103469.
  • McClintock, T. S., K. Adipietro, W. B. Titlow, P. Breheny, A. Walz, P. Mombaerts, and H. Matsunami. 2014. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors. The Journal of Neuroscience 34 (47):15669–78. doi: 10.1523/JNEUROSCI.3625-14.2014.
  • Muñoz-González, C., G. Feron, and F. Canon. 2018. Main effects of human saliva on flavour perception and the potential contribution to food consumption. The Proceedings of the Nutrition Society 77 (4):423–31. doi: 10.1017/S0029665118000113.
  • Muñoz-González, C., M. Brulé, G. Feron, and F. Canon. 2019. Does interindividual variability of saliva affect the release and metabolization of aroma compounds ex vivo? the particular case of elderly suffering or not from hyposalivation. Journal of Texture Studies 50 (1):36–44. doi: 10.1111/jtxs.12382.
  • Muñoz-González, C., G. Feron, and F. Canon. 2021. Physiological and oral parameters contribute prediction of retronasal aroma release in an elderly cohort. Food Chemistry 342 (10):128355. doi: 10.1016/j.foodchem.2020.128355.
  • Muñoz-González, C., M. Brule, C. Martin, G. Feron, and F. Canon. 2022. Molecular mechanisms of aroma persistence: From noncovalent interactions between aroma compounds and the oral mucosa to metabolization of aroma compounds by saliva and oral cells. Food Chemistry 373 (Pt B):131467. doi: 10.26434/chemrxiv.14595606.
  • Ni, R., M. H. Michalski, E. Brown, N. Doan, J. Zinter, N. T. Ouellette, and G. M. Shepherd. 2015. Optimal directional volatile transport in retronasal olfaction. Proceedings of the National Academy of Sciences of the United States of America 112 (47):14700–4. doi: 10.1073/pnas.1511495112.
  • Normand, V., S. Avison, and A. Parker. 2004. Modeling the kinetics of flavour release during drinking. Chemical Senses 29 (3):235–45. doi: 10.1093/chemse/bjh028.
  • Okawa, J., K. Hori, T. Yoshimoto, S. E. Salazar, and T. Ono. 2021. Higher masticatory performance and higher number of chewing strokes increase retronasal aroma. Frontiers in Nutrition 8:623507. doi: 10.3389/fnut.2021.623507[PMC].[33738295].
  • Pagès-Hélary, S., I. Andriot, E. Guichard, and F. Canon. 2014. Retention effect of human saliva on aroma release and respective contribution of salivary mucin and a-amylase. Food Research International (Ottawa, ON) 64:424–31. doi: 10.1016/j.foodres.2014.07.013.
  • Panda, S., J. Chen, and O. Benjamin. 2020. Development of model mouth for food oral processing studies: Present challenges and scopes. Innovative Food Science & Emerging Technologies 66 (1):102524. doi: 10.1016/j.ifset.2020.102524.
  • Patin, A., and B. M. Pause. 2015. Human amygdala activations during nasal chemoreception. Neuropsychologia 78:171–94. doi: 10.1016/j.neuropsychologia.2015.10.009.
  • Gonçalves, F., A. Ribeiro, C. Silva, and A. Cavaco-Paulo. 2021. Biotechnological applications of mammalian odorant-binding proteins. Critical Reviews in Biotechnology 41 (3):441–55. doi: 10.1080/07388551.2020.1853672.
  • Peyron, M.-A., V. Santé-Lhoutellier, D. Dardevet, M. Hennequin, D. Rémond, O. François, and A. Woda. 2019. Addressing various challenges related to food bolus and nutrition with the AM2 mastication simulator. Food Hydrocolloids 97:105229. doi: 10.1016/j.foodhyd.2019.105229.
  • Pedersen, A. M. L., C. E. Sørensen, G. B. Proctor, G. H. Carpenter, and J. Ekström. 2018. Salivary secretion in health and disease. Journal of Oral Rehabilitation 45 (9):730–46. doi: 10.1111/joor.12664.
  • Pedrotti, M., A. Spaccasassi, F. Biasioli, and V. Fogliano. 2019. Ethnicity, gender and physiological parameters: Their effect on in vivo flavour release and perception during chewing gum consumption. Food Research International (Ottawa, ON) 116:57–70. doi: 10.1016/j.foodres.2018.12.019.
  • Ployon, S., M. Morzel, and F. Canon. 2017. The role of saliva in aroma release and perception. Food Chemistry 226 (1):212–20. doi: 10.1016/j.foodchem.2017.01.055.
  • Ployon, S., M. Brule, I. Andriot, M. Morzel, and F. Canon. 2020. Understanding retention and metabolization of aroma compounds using an in vitro model of oral mucosa. Food Chemistry 318:126468. doi: 10.1016/j.foodchem.2020.126468.
  • Polster, J., and P. Schieberle. 2015. Structure–odor correlations in homologous series of alkanethiols and attempts to predict odor thresholds by 3D-QSAR studies. Journal of Agricultural and Food Chemistry 63 (5):1419–32. doi: 10.1021/jf506135c.
  • Porada, D. K., C. Regenbogen, J. Seubert, J. Freiherr, and J. N. Lundström. 2019. Multisensory enhancement of odor object processing in primary olfactory cortex. Neuroscience 418:254–65. doi: 10.1016/j.neuroscience.2019.08.040.
  • Pineau, N., P. Schlich, S. Cordelle, C. Mathonnière, S. Issanchou, A. Imbert, M. Rogeaux, P. Etiévant, and E. Köster. 2009. Temporal dominance of sensations: Construction of the TDS curves and comparison with time–intensity. Food Quality and Preference 20 (6):450–5. doi: 10.1016/j.foodqual.2009.04.005.
  • Piombino, P., L. Moio, and A. Genovese. 2019. Orthonasal vs. retronasal: Studying how volatiles’ hydrophobicity and matrix composition modulate the release of wine odorants in simulated conditions. Food Research International (Ottawa, ON) 116:548–58. doi: 10.1016/j.foodres.2018.08.072.
  • Piombino, P., A. Genovese, S. Esposito, L. Moio, P. P. Cutolo, A. Chambery, V. Severino, E. Moneta, D. P. Smith, S. M. Owens, et al. 2014. Saliva from obese individuals suppresses the release of aroma compounds from wine. PLoS One 9 (1):e85611. doi: 10.1371/journal.pone.0085611.
  • Pu, D., H. Zhang, Y. Zhang, B. Sun, F. Ren, H. Chen, and J. He. 2019a. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography-ion mobility spectrometry and temporal dominance of sensations analysis. Food Research International (Ottawa, ON) 123:612–22. doi: 10.1016/j.foodres.2019.05.016.
  • Pu, D., H. Zhang, Y. Zhang, B. Sun, F. Ren, H. Chen, and J. Xie. 2019b. Characterization of the oral breakdown, sensory properties, and volatile release during mastication of white bread. Food Chemistry 298 (15):125003. doi: 10.1016/j.foodchem.2019.125003.
  • Pu, D., W. Duan, Y. Huang, Y. Zhang, B. Sun, F. Ren, H. Zhang, H. Chen, J. He, and Y. Tang. 2020. Characterization of the key odorants contributing to retronasal olfaction during bread consumption. Food Chemistry 318:126520. doi: 10.1016/j.foodchem.2020.126520.
  • Pu, D., Y. Zhang, B. Sun, F. Ren, H. Zhang, H. Chen, and Y. Tang. 2021a. Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation. LWT 138:110641. doi: 10.1016/j.lwt.2020.110641.
  • Pu, D., W. Duan, Y. Huang, L. Zhang, Y. Zhang, B. Sun, F. Ren, H. Zhang, and Y. Tang. 2021b. Characterization of the dynamic texture perception and the impact factors on the bolus texture changes during oral processing. Food Chemistry 339:128078. doi: 10.1016/j.foodchem.2020.128078.
  • Raithore, S., and D. G. Peterson. 2016. Delivery of taste and aroma components in sugar-free chewing gum, mass balance analysis. Chemosensory Perception 9 (4):182–92. doi: 10.1007/s12078-016-9218-y.
  • Raithore, S., and D. G. Peterson. 2018. Effects of polyol type and particle size on flavor release in chewing gum. Food Chemistry 253:293–9. doi: 10.1016/j.foodchem.2018.01.123.
  • Salles, C., P. Mielle, L. Q. Jean-Luc, R. Renaud, and J. J. Liodenot. 2006. A novel prototype to closely mimic mastication for in vitro dynamic measurements of flavour release. Developments in Food Science 43:581–4. doi: 10.1016/S0167-4.501(06)80137-8.
  • Salles, C., A. Tarrega, P. Mielle, J. Maratray, P. Gorria, J. Liaboeuf, and J.-J. Liodenot. 2007. Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. Journal of Food Engineering 82 (2):189–98. doi: 10.1016/j.jfoodeng.2007.02.008.
  • Sanganahalli, B. G., K. L. Baker, G. J. Thompson, P. Herman, G. M. Shepherd, J. V. Verhagen, and F. Hyder. 2020. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. NeuroImage 212:116664. 10.1016/j.neuroimage.2020.116664.
  • Schiefner, A., R. Freier, A. Eichinger, and A. Skerra. 2015. Crystal structure of the human odorant binding protein, OBPIIa. Proteins: Structure, Function, and Bioinformatics 83 (6):1180–4. 10.1002/prot.24797.
  • Schwartz, M., F. Canon, G. Feron, F. Neiers, and A. Gamero. 2021. Impact of oral microbiota on flavor perception: From food processing to in-mouth metabolization. Foods 10 (9):2006. doi: 10.3390/foods10092006.
  • Shirasu, M., K. Yoshikawa, Y. Takai, A. Nakashima, H. Takeuchi, H. Sakano, and K. Touhara. 2014. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors. Neuron 81 (1):165–78. 10.1016/j.neuron.2013.10.021.
  • Singh, V., N. R. Murphy, V. Balasubramanian, and J. D. Mainland. 2019. Competitive binding predicts nonlinear responses of olfactory receptors to complex mixtures. Proceedings of the National Academy of Sciences 116 (19):9598–603. doi: 10.1073/pnas.1813230116.
  • Skamniotis, C. G., M. Elliott, and M. N. Charalambides. 2019. Computer simulations of food oral processing to engineer teeth cleaning. Nature Communications 10 (1):3571. doi: 10.1038/s41467-019-11288-5.
  • Small, D. M., J. C. Gerber, Y. E. Mak, and T. Hummel. 2005. Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 47 (4):593–605. 10.1016/j.neuron.2005.07.022.
  • Smith, D., and P. Spanel. 1996. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid Communications in Mass Spectrometry 10 (10):1183–98. doi: 10.1002/rcm.3434.
  • Smith, D., T. Wang, A. Pysanenko, and P. Spanel. 2008. A selected ion flow tube mass spectrometry study of ammonia in mouth-and nose-exhaled breath and in the oral cavity. Rapid Communications in Mass Spectrometry : RCM 22 (6):783–9.
  • Sowndhararajan, K., H. Cho, B. Yu, and S. Kim. 2015. Effect of olfactory stimulation of isomeric aroma compounds, (+)-limonene and terpinolene on human electroencephalographic activity. European Journal of Integrative Medicine 7 (6):561–6. doi: 10.1016/j.eujim.2015.08.006.
  • Spence, C. 2021. What is the relationship between the presence of volatile organic compounds in food and drink products and multisensory flavour perception? Foods 10 (7):1570. doi: 10.3390/foods10071570.
  • Tan, Y., and K. J. Siebert. 2004. Quantitative structure-activity relationship modeling of alcohol, ester, aldehyde, and ketone flavor thresholds in beer from molecular features. Journal of Agricultural and Food Chemistry 52 (10):3057–64. doi: 10.1021/jf035149j.
  • Trelea, I. C., S. Atlan, I. Déléris, A. Saint-Eve, M. Marin, and I. Souchon. 2008. Mechanistic mathematical model for in vivo aroma release during eating of semiliquid foods. Chemical Senses 33 (2):181–92. 10.1093/chemse/bjm077.
  • Tarrega, A., C. Yven, E. Semon, and C. Salles. 2011. In-mouth aroma compound release during cheese consumption: Relationship with food bolus formation. International Dairy Journal 21 (5):358–64. doi: 10.1016/j.idairyj.2010.12.010.
  • Tarrega, A., C. Yven, E. Semon, P. Mielle, and C. Salles. 2019. Effect of oral physiology parameters on in-mouth aroma compound release using lipoprotein matrices: An in vitro approach. Foods 8 (3):106. doi: 10.3390/foods8030106.
  • Trimmer, C., L. L. Snyder, and J. D. Mainland. 2014. High-throughput analysis of mammalian olfactory receptors: Measurement of receptor activation via luciferase activity. Journal of Visualized Experiments 88 (88):e5164. doi: 10.3791/51640.
  • Trimmer, C., and J. D. Mainland. 2017. The olfactory system. In Conn’s translational neuroscience, edited by P. Michael Conn, 363–77. Texas, USA: Academic Press.
  • van Eck, A., and M. Stieger. 2020. Oral processing behavior, sensory perception and intake of composite foods. Trends in Food Science & Technology 106:219–31. doi: 10.1016/j.tifs.2020.10.008.
  • van Ruth, S. M., C. King, and P. Giannouli. 2002. Influence of lipid fraction, emulsifier fraction, and mean particle diameter of oil-in-water emulsions on the release of 20 aroma compounds. Journal of Agricultural and Food Chemistry 50 (8):2365–71. doi: 10.1021/jf011072s.
  • Weterings, M., I. Bodnár, R. M. Boom, and M. Beyrer. 2020. A classification scheme for interfacial mass transfer and the kinetics of aroma release. Trends in Food Science & Technology 105:433–48. doi: 10.1016/j.tifs.2019.04.012.
  • Xu, Y., J. Zhao, X. Liu, C. Zhang, Z. Zhao, X. Li, and B. Sun. 2022a. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chemistry 369:130920. 10.1016/j.foodchem.2021.130920.
  • Xu, Y., J. Zhao, H. Huang, X. Guo, X. Li, W. Zou, W. Li, C. Zhang, and M. Huang. 2022b. Biodegradation of phthalate esters by Pantoea dispersa BJQ0007 isolated from Baijiu. Journal of Food Composition and Analysis 105:104201. doi: 10.1016/j.jfca.2021.104201.
  • Yang, Z. Y., Y. G. Fan, M. Xu, J. N. Ren, Y. L. Liu, L. L. Zhang, J. J. Li, Y. Zhang, M. Dong, and G. Fan. 2017. Effects of xanthan and sugar on the release of aroma compounds in model solution. Flavour and Fragrance Journal 32 (2):112–8. doi: 10.1002/ffj.3360.
  • Yamada, Y., K. Bhaukaurally, T. J. Madarász, A. Pouget, I. Rodriguez, and A. Carleton. 2017. Context- and output layer-dependent long-term ensemble plasticity in a sensory circuit. Neuron 93 (5):1198–212.e5. 10.1016/j.neuron.2017.02.006.
  • Yao, F., Y. Ye, and W. Zhou. 2020. Nasal airflow engages central olfactory processing and shapes olfactory percepts. Proceedings of the Royal Society B: Biological Sciences 287 (1937):20201772. 10.1098/rspb.2020.1772.
  • Yen, C. I., S. H. Mao, C. H. Chen, C. T. Chen, and M. Y. Lee. 2015. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults. Annals of Plastic Surgery 74 (Supplement 2):S168–S172. doi: 10.1097/SAP.0000000000000468.
  • Zhang, J., D. C. Kang, W. G. Zhang, and J. M. Lorenzo. 2021. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends in Food Science & Technology 111:405–25. doi: 10.1016/j.tifs.2021.02.060.
  • Zhou, L., J. Zhang, L. J. Xing, and W. G. Zhang. 2021. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science & Technology 110:493–512. doi: 10.1016/j.tifs.2021.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.