636
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abonyi, B. I., H. Feng, J. Tang, C. G. Edwards, B. P. Chew, D. S. Mattinson, and J. K. Fellman. 2002. Quality retention in strawberry and carrot purees dried with Refractance WindowTM system. Journal of Food Science 67 (3):1051–6. doi: 10.1111/j.1365-2621.2002.tb09452.x.
  • Aboud, S. A., A. B. Altemimi, A. R. Al-HiIphy, L. Yi-Chen, and F. Cacciola. 2019. A comprehensive review on infrared heating applications in food processing. Molecules 24 (22):4125. doi: 10.3390/molecules24224125.
  • Abul-Fadl, M. M., and T. H. Ghanem. 2011. Effect of refractance-window (RW) drying method on quality criteria of produced tomato powder as compared to the convection drying method. World Applied Sciences Journal 15 (7):953–65.
  • Acar, C., I. Dincer, and A. Mujumdar. 2022. A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Drying Technology 40 (6):1029–50. doi: 10.1080/07373937.2020.1848858.
  • Akinola, A. A. 2018. Effective moisture diffusivity and activation energy estimation of cucumber fruit slices using a Refractance WindowTM dryer. The Journal of the Association of Professional Engineers of Trinidad and Tobago 46 (2):11–6.
  • Akinola, A. A., D. B. Ayo, and S. N. Ezeorah. 2018a. Temperature dependence of the effective moisture diffusivity of yam (Dioscorea rotundata) slices dried using a Refractance WindowTM Dryer.
  • Akinola, A. A., O. Azeta, and S. N. Ezeorah. 2018b. Evaluation of the dehydration characteristics of ginger (Zingiber officinale) root slices using refractance window drying technology.
  • Akinola, A. A., and S. N. Ezeorah. 2020. Some thermodynamic properties of White Yam (Dioscorea rotundata) slices dehydrated in a refractance WindowTM dryer. FUOYE Journal of Engineering and Technology 5 (1):83–8. doi: 10.46792/fuoyejet.v5i1.425.
  • Al‐Hilphy, A. R., H. I. Ali, S. A. Al‐IEssa, J. M. Lorenzo, F. J. Barba, and M. Gavahian. 2020. Optimization of process variables on physicochemical properties of milk during an innovative refractance window concentration. Journal of Food Processing and Preservation 44 (10):e14782. doi: 10.1111/jfpp.14782.
  • Al-Hilphy, A. R., H. I. Ali, S. A. Al-IEssa, M. Gavahian, and A. Mousavi-Khaneghah. 2022. Assessing compositional and quality parameters of unconcentrated and refractive window concentrated milk based on color components. Dairy 3 (2):400–12. doi: 10.3390/dairy3020030.
  • Alvarez, P., and P. Legues. 1986. A semi-theoretical model for the drying of thumpson seedless grapes. Drying Technology 4 (1):1–17. doi: 10.1080/07373938608916308.
  • Amer, B. M. A. 2011. Thin layer drying kinetics of mango puree in refractance window drying system. MISR Journal of Agricultural Engineering 28 (4):1021–39. doi: 10.21608/mjae.2011.102617.
  • Aragón-Rojas, S., M. X. Quintanilla-Carvajal, H. Hernández-Sánchez, A. J. Hernández-Álvarez, and F. L. Moreno. 2019. Encapsulation of Lactobacillus fermentum K73 by refractance window drying. Scientific Reports 9 (1):1–15. doi: 10.1038/s41598-019-42016-0.
  • Araszkiewicz, M., A. Koziol, A. Lupinska, and M. Lupinski. 2007. IR technique for studies of microwave assisted drying. Drying Technology 25 (4):569–74. doi: 10.1080/07373930701226989.
  • Baeghbali, V., M. Niakosari, and M. Kiani. 2010. Design, manufacture and investigating functionality of a new batch Refractance Window system. In Proceedings of 5th International Conference on Innovations in Food and Bioprocess Technology, December (Vol. 7, No. 9).
  • Baeghbali, V., M. Ngadi, and M. Niakousari. 2020. Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science & Emerging Technologies 63:102313. doi: 10.1016/j.ifset.2020.102313.
  • Baeghbali, V., M. Niakousari, and A. Farahnaky. 2016. Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT – Food Science and Technology 66:34–40. doi: 10.1016/j.lwt.2015.10.017.
  • Baeghbali, V., M. Niakousari, M. O. Ngadi, and M. Hadi Eskandari. 2019. Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Drying Technology 37 (14):1793–805. doi: 10.1080/07373937.2018.1539745.
  • Bolland, K. M. 2000. A new low-temperature/short-time drying process. Cereal Foods World 45 (7):293–6.
  • Bolland, K. M. 2017. Refractance Window food drying system delivers quality product efficiently. Accessed August 2021 https://www.foodonline.com/doc/refractance-window-food-drying-system-deliver-0001
  • Calderón-Chiu, C., C. E. Martínez-Sánchez, J. Rodríguez-Miranda, J. M. Juárez-Barrientos, R. Carmona-García, and E. Herman-Lara. 2020. Evaluation of the combined effect of osmotic and Refractance Window drying on the drying kinetics, physical, and phytochemical properties of beet. Drying Technology 38 (12):1663–75. doi: 10.1080/07373937.2019.1655439.
  • Caparino, O. A., C. I. Nindo, J. Tang, S. S. Sablani, B. P. Chew, B. D. Mathison, J. K. Fellman, and J. R. Powers. 2017. Physical and chemical stability of Refractance Window®–dried mango (Philippine ‘Carabao’ var.) powder during storage. Drying Technology 35 (1):25–37. doi: 10.1080/07373937.2016.1157601.
  • Caparino, O. A., J. Tang, C. I. Nindo, S. S. Sablani, J. R. Powers, and J. K. Fellman. 2012. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering 111 (1):135–48. doi: 10.1016/j.jfoodeng.2012.01.010.
  • Castoldi, M., M. F. Zotarelli, A. Durigon, B. A. M. Carciofi, and J. B. Laurindo. 2015. Production of tomato powder by refractance window drying. Drying Technology 33 (12):1463–73. doi: 10.1080/07373937.2014.989327.
  • Celli, G. B., R. Khattab, A. Ghanem, and M. S. L. Brooks. 2016. Refractance Window™ drying of haskap berry–preliminary results on anthocyanin retention and physicochemical properties. Food Chemistry 194:218–21.
  • Chou, S. K, and K. J. Chua. 2001. New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology 12 (10):359–69. doi: 10.1016/S0924-2244(01)00102-9.
  • Chua, K. J, and S. K. Chou. 2014. Recent advances in hybrid drying technologies. In Emerging technologies for food processing, 447–59, 2nd ed. Elsevier Ltd. doi: 10.1016/b978-0-12-411479-1.00024-3.
  • Clarke, P. 2004. Refractance window TM- “Down under”. In Drying–Procedings of the 14th International Drying Symposium (IDS 2004). Sao Paulo, Brazil, August, pp. 22–25.
  • Crank, J. 1979. The mathematics of diffusion. Glasgow Cape: Oxford University Press, Ely House, London W.I.
  • da Costa, R., D. S. da Cruz Rodrigues, A. M. Laurindo, J. B, and da Silva, L. H. M. 2019. Development of dehydrated products from peach palm–tucupi blends with edible film characteristics using refractive window. Journal of Food Science and Technology 56 (2):560–70.
  • Das, I., S. K. Das, and S. Bal. 2009. Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. Journal of Food Engineering 95 (1):166–71. doi: 10.1016/j.jfoodeng.2009.04.028.
  • Dincer, I., and S. Dost. 1995. An analytical model for moisture diffusion in solid objects during drying. Drying Technology 13 (1–2):425–35. doi: 10.1080/07373939508916962.
  • Dincer, I., and S. Dost. 1996. A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects. International Journal of Energy Research 20 (6):531–9. doi: 10.1002/(SICI)1099-114X(199606)20:6<531::AID-ER171>3.0.CO;2-6.
  • Dissa, A. O., H. Desmorieux, J. Bathiebo, and J. Koulidiati. 2008. Convective drying characteristics of Amelie mango (Mangifera Indica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering 88 (4):429–37. doi: 10.1016/j.jfoodeng.2008.03.008.
  • Franco, S., A. Jaques, M. Pinto, M. Fardella, P. Valencia, H. Núñez, C. Ramírez, and R. Simpson. 2019. Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance window™: Effect on diffusion behavior, texture, and color changes. Innovative Food Science & Emerging Technologies 52:8–16. doi: 10.1016/j.ifset.2018.12.001.
  • Ghanem, T. H. 2010. Modeling of Refractance Window film dryer for liquids. MISR Journal of Agricultural Engineering 27 (2):676–87. doi: 10.21608/mjae.2010.105936.
  • Hernández, Y., C. Ramírez, J. Moreno, H. Núñez, O. Vega, S. Almonacid, M. Pinto, L. Fuentes, and R. Simpson. 2020. Effect of Refractance Window on dehydration of osmotically pretreated apple slices: Color and texture evaluation. Journal of Food Process Engineering 43 (2):e13304. doi: 10.1111/jfpe.13304.
  • Hernández-Santos, B., C. E. Martínez-Sánchez, J. G. Torruco-Uco, J. Rodríguez-Miranda, I. I. Ruiz-López, E. S. Vajando-Anaya, R. Carmona-García, and E. Herman-Lara. 2016. Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology 34 (12):1414–22. doi: 10.1080/07373937.2015.1118705.
  • Jafari, S. M., D. Azizi, H. Mirzaei, and D. Dehnad. 2016. Comparing quality characteristics of oven‐dried and Refractance Window‐dried kiwifruits. Journal of Food Processing and Preservation 40 (3):362–72. doi: 10.1111/jfpp.12613.
  • Jalgaonkar, K., M. K. Mahawar, R. K. Vishwakarma, U. S. Shivhare, and V. E. Nambi. 2020. Optimization of process condition for preparation of sapota bar using Refractance window drying method. Drying Technology 38 (3):269–78. doi: 10.1080/07373937.2018.1482314.
  • Kahveci, K., and A. Cihan. 2007. Transport phenomena during drying of food materials. Focus on Food Engineering Research and Developments 1:13–163.
  • Khraisheh, M. A. M., T. J. R. Cooper, and T. R. A. Magee. 1997. Transport mechanisms of moisture during air drying processes. Food and Bioproducts Processing 75 (1):34–40. doi: 10.1205/096030897531342.
  • King, C. J. 1968. Rates of moisture sorption and desorption in porous dried foodstuffs. Food Technology 22 (4):509.
  • Klafter, J., and I. M. Sokolov. 2005. Anomalous diffusion spreads its wings. Physics World 18 (8):29–32. doi: 10.1088/2058-7058/18/8/33.
  • Kudra, T., and A. S. Mujumdar. 2009. Advanced drying technologies, 438, 2nd ed. Boca Raton: CRC Press. doi: 10.1201/9781420073898.
  • Larder, C. E., V. Baeghbali, C. Pilon, M. M. Iskandar, D. J. Donnelly, S. Pacheco, S. Godbout, M. O. Ngadi, and S. Kubow. 2019. Effect of non-conventional drying methods on in vitro starch digestibility assessment of cooked potato genotypes. Foods 8 (9):382. doi: 10.3390/foods8090382.
  • Lin, Y. P., J. H. Tsen, and V. A. E. King. 2005. Effects of far-infrared radiation on the freeze-drying of sweet potato. Journal of Food Engineering 68 (2):249–55. doi: 10.1016/j.jfoodeng.2004.05.037.
  • Liu, Y., W. Zhu, L. Luo, X. Li, and H. Yu. 2014. A mathematical model for vacuum far-infrared drying of potato slices. Drying Technology 32 (2):180–9. doi: 10.1080/07373937.2013.811687.
  • Magoon, R. E. 1986. Method and apparatus for drying fruit pulp and the like. US Vegetable Waste Patent 4 (631):837.
  • Mahanti, N. K., S. K. Chakraborty, A. Sudhakar, D. K. Verma, S. Shankar, M. Thakur, S. Singh, S. Tripathy, A. K. Gupta, and P. P. Srivastav. 2021. Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods 3:100024. doi: 10.1016/j.fufo.2021.100024.
  • Makhlouka, Y., F. Sanaâ, and M. Gharbia. 2022. Ordinary and extraordinary complex refractive indices extraction of a Mylar film by transmission spectrophotometry. Polymers 14 (9):1805. doi: 10.3390/polym14091805.
  • Mcshinksy, A. 2022. Fresh from farm to tablet: MegaFood’s dryer technology. Accessed 2022, September 19, MegaFood https://megafood.com/blogs/all/big-t-blog-dryer-html
  • Metzler, R., and J. Klafter. 2000. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339 (1):1–77. doi: 10.1016/S0370-1573(00)00070-3.
  • Moradi, M., S. Azizi, M. Niakousari, S. Kamgar, and A. M. Khaneghah. 2020. Drying of green bell pepper slices using an IR-assisted Spouted Bed Dryer: An assessment of drying kinetics and energy consumption. Innovative Food Science & Emerging Technologies 60:102280. doi: 10.1016/j.ifset.2019.102280.
  • Moreno, J., R. Simpson, M. Sayas, I. Segura, O. Aldana, and S. Almonacid. 2011. Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham’s Triumph). Journal of Food Engineering 104 (4):621–7. doi: 10.1016/j.jfoodeng.2011.01.029.
  • Moreno, J., R. Simpson, N. Pizarro, C. Pavez, F. Dorvil, G. Petzold, and G. Bugueño. 2013. Influence of ohmic heating/osmotic dehydration treatments on polyphenol oxidase inactivation, physical properties and microbial stability of apples (cv. Granny Smith). Innovative Food Science & Emerging Technologies 20:198–207. doi: 10.1016/j.ifset.2013.06.006.
  • Moses, J. A., T. Norton, K. Alagusundaram, and B. K. Tiwari. 2014. Novel drying techniques for the food industry. Food Engineering Reviews 6 (3):43–55. doi: 10.1007/s12393-014-9078-7.
  • Moyano, P. C., and A. Z. Berna. 2002. Modeling water loss during frying of potato strips: Effect of solute impregnation. Drying Technology 20 (7):1303–18. doi: 10.1081/DRT-120005854.
  • Mrkić, V., M. Ukrainczyk, and B. Tripalo. 2007. Applicability of moisture transfer Bi–Di correlation for convective drying of broccoli. Journal of Food Engineering 79 (2):640–6. doi: 10.1016/j.jfoodeng.2006.01.078.
  • Mujumdar, A. S., and L. X. Huang. 2007. Global R&D needs in drying. Drying Technology 25 (4):647–58. doi: 10.1080/07373930701285886.
  • Muyonga, J. 2018. Adapting refractance window drying technology to produce high quality fruit and vegetable bioproducts. January 1. BioInnovate Africa https://bioinnovate-africa.org/adapting-refractance-window-drying-technology-to-produce-high-quality-fruit-and-vegetable-bioproducts/
  • Nansereko, S., J. Muyonga, and Y. B. Byaruhanga. 2022. Optimization of drying conditions for Jackfruit pulp using Refractance Window Drying technology. Food Science & Nutrition 10 (5):1333–43. doi: 10.1002/fsn3.2694.
  • Nathakaranakule, A., P. Jaiboon, and S. Soponronnarit. 2010. Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering 100 (4):662–8. doi: 10.1016/j.jfoodeng.2010.05.016.
  • Nindo, C. I, and J. Tang. 2007. Refractance window dehydration technology: A novel contact drying method. Drying Technology 25 (1):37–48. doi: 10.1080/07373930601152673.
  • Nindo, C. I., H. Feng, G. Q. Shen, J. Tang, and D. H. Kang. 2003. Energy utilization and microbial reduction in a new film drying system. Journal of Food Processing and Preservation 27 (2):117–36. doi: 10.1111/j.1745-4549.2003.tb00506.x.
  • Nindo, C. I., J. Tang, J. R. Powers, and K. Bolland. 2004. Energy consumption during Refractance Window® evaporation of selected berry juices. International Journal of Energy Research 28 (12):1089–100. doi: 10.1002/er.1017.
  • Ochoa-Martínez, C. I., P. T. Quintero, A. A. Ayala, and M. J. Ortiz. 2012. Drying characteristics of mango slices using the Refractance Window™ technique. Journal of Food Engineering 109 (1):69–75. doi: 10.1016/j.jfoodeng.2011.09.032.
  • Ocoro-Zamora, M. U, and A. A. Ayala-Aponte. 2013. Influence of thickness on the drying of papaya puree (Carica papaya L.) through Refractance WindowTM technology. Dyna 80 (182):147–54.
  • Ortiz-Jerez, M. J, and C. I. Ochoa-Martínez. 2015. Heat transfer mechanisms in conductive hydro-drying of pumpkin (Cucurbita maxima) Pieces. Drying Technology 33 (8):965–72. doi: 10.1080/07373937.2015.1009538.
  • Ortiz-Jerez, M. J., T. Gulati, A. K. Datta, and C. Isabel Ochoa-Martinez. 2015. Quantitative understanding of Refractance Window (TM) drying. Food and Bioproducts Processing 95:237–53. doi: 10.1016/j.fbp.2015.05.010.
  • Padhi, S., and M. Dwivedi. 2022. Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods 5:100101. doi: 10.1016/j.fufo.2021.100101.
  • Pavan, M. A., S. J. Schmidt, and H. Feng. 2012. Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT – Food Science and Technology 48 (1):75–81. doi: 10.1016/j.lwt.2012.02.024.
  • Preethi, R., D. Shweta, J. A. Moses, and C. Anandharamakrishnan. 2020. Conductive hydro drying as an alternative method for egg white powder production. Drying Technology 39 (3):324–36. doi: 10.1080/07373937.2020.1788073.
  • Puente-Díaz, L., O. Spolmann, D. Nocetti, L. Zura-Bravo, and R. Lemus-Mondaca. 2020. Effects of infrared-assisted refractance Window™ drying on the drying kinetics, microstructure, and color of Physalis Fruit Purée. Foods 9 (3):343. doi: 10.3390/foods9030343.
  • Raghavan, G. V., T. J. Rennie, P. S. Sunjka, V. Orsat, W. Phaphuangwittayakul, and P. Terdtoon. 2005. Overview of new techniques for drying biological materials with emphasis on energy aspects. Brazilian Journal of Chemical Engineering 22 (2):195–201. doi: 10.1590/S0104-66322005000200005.
  • Raghavi, L. M., J. A. Moses, and C. Anandharamakrishnan. 2018. Refractance window drying of foods: A review. Journal of Food Engineering 222:267–75. doi: 10.1016/j.jfoodeng.2017.11.032.
  • Rajoriya, D., M. L. Bhavya, and H. U. Hebbar. 2021. Impact of process parameters on drying behaviour, mass transfer and quality profile of refractance window dried banana puree. LWT 145:111330. doi: 10.1016/j.lwt.2021.111330.
  • Rajoriya, D., S. R. Shewale, and H. U. Hebbar. 2019. Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology 12 (10):1646–58. doi: 10.1007/s11947-019-02334-7.
  • Rajoriya, D., S. R. Shewale, M. L. Bhavya, and H. U. Hebbar. 2020. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies 66:102530. doi: 10.1016/j.ifset.2020.102530.
  • Ramírez, C., E. Troncoso, J. Muñoz, and J. M. Aguilera. 2011. Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering 106 (3):253–61. doi: 10.1016/j.jfoodeng.2011.05.020.
  • Ramírez, C., V. Astorga, H. Nuñez, A. Jaques, and R. Simpson. 2017. Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: The effects of relative humidity and temperature. Journal of Food Process Engineering 40 (5):e12549. doi: 10.1111/jfpe.12549.
  • Rastogi, N. K., K. Raghavarao, and K. Niranjan. 2014. Recent developments in osmotic dehydration. In Emerging technologies for food processing, 181–212, 2nd ed. Academic Press. doi: 10.1016/B978-0-12-411479-1.00011-5.
  • Rezvani, Z., H. Mortezapour, M. Ameri, H. R. Akhavan, and S. Arslan. 2022. Drying of Spirulina with a continuous infrared-assisted refractance window™ dryer equipped with a photovoltaic-thermal solar collector. Heat and Mass Transfer 58 (10):1739–55. doi: 10.1007/s00231-022-03210-5.
  • Riadh, M. H., S. A. B. Ahmad, M. H. Marhaban, and A. C. Soh. 2015. Infrared heating in food drying: An overview. Drying Technology 33 (3):322–35. doi: 10.1080/07373937.2014.951124.
  • Rostami, H., D. Dehnad, S. M. Jafari, and H. R. Tavakoli. 2018. Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology 36 (9):1076–85. doi: 10.1080/07373937.2017.1377224.
  • Sabarez, H. 2019. Refractance WindowTM Drying: A mechanistic understanding of the drying process using modelling approach. In Reference module in food science. Radarweg, Amsterdam: Elsevier. doi: 10.1016/b978-0-08-100596-5.21439-x.
  • Sabarez, H. T. 2015. Modelling of drying processes for food materials. In Modeling food processing operations, 95–127. Cambridge, UK: Woodhead Publishing, Elsevier.
  • Sánchez, A. M. C., E. Y. M. Lancheros, M. X. Q. Carvajal, and F. L. M. Moreno. 2020. Sorption isotherms and drying kinetics modelling of convective and refractance window drying of feijoa slices (Acca sellowiana Berg). International Journal of Postharvest Technology and Innovation 7 (2):118–36. doi: 10.1504/IJPTI.2020.109634.
  • Sandu, C. 1986. Infrared radiative drying in food engineering: A process analysis. Biotechnology Progress 2 (3):109–19. doi: 10.1002/btpr.5420020305.
  • Santos, S. D. J. L., L. H. M. D. Silva, and A. M. D. C. Rodrigues. 2022. Prediction of mass transfer parameters and thermodynamic properties using the refractance Window TM technique for drying of Yam (Dioscorea Trifida) paste. Food Science and Technology 42:e67021. doi: 10.1590/fst.67021.
  • Saravacos, G. D, and Z. B. Maroulis. 2001. Transport properties of foods. New York, NY: Marcel Dekker, Inc.
  • Shende, D., and A. K. Datta. 2019. Refractance window drying of fruits and vegetables: A review. Journal of the Science of Food and Agriculture 99 (4):1449–56.
  • Shende, D., and A. K. Datta. 2020. Optimization study for refractance window drying process of Langra variety mango. Journal of Food Science and Technology 57 (2):683–92.
  • Shende, D., A. Shrivastav, and A. K. Datta. 2019. Effect of mango puree thickness on refractance window drying for making mango leather. International Journal of Research in Engineering and Technology 7 (5):41–54.
  • Siegel, R. 2001. Thermal radiation heat transfer. Boca Raton, FL: CRC Press.
  • Simpson, R., A. Jaques, H. Nuñez, C. Ramirez, and A. Almonacid. 2013. Fractional calculus as a mathematical tool to improve the modeling of mass transfer phenomena in food processing. Food Engineering Reviews 5 (1):45–55. doi: 10.1007/s12393-012-9059-7.
  • Ssenyimba, S., J. Kigozi, P. Tumutegyereize, J. H. Muyonga, and R. Mutumba. 2021. Design and evaluation of a refractance window lab-scale dryer. Journal of Engineering, Design and Technology. doi: http://dx.doi.org/10.1108/JEDT-12-2020-0523.
  • Stout, F. 2017. Goat milk products – Grass fed protein, Whey, Formula, Soap. Accessed 2022, September 17, Mt. Capra Products Inc. https://mtcapra.com/wp-content/uploads/2017/05/rw-dried-comparison.pdf
  • van‘t Land, M., and K. Raes. 2019. Refractance window drying of fish silage–An initial investigation into the effects of physicochemical properties on drying efficiency and nutritional quality. LWT 102:71–4. doi: 10.1016/j.lwt.2018.12.001.
  • Zalpouri, R., M. Singh, P. Kaur, and S. Singh. 2022. Refractance window drying–a revisit on energy consumption and quality of dried bio-origin products. Food Engineering Reviews 14: 257–70. doi: 10.1007/s12393-022-09313-3.
  • Zalpouri, R., P. Kaur, A. Kaur, and G. K. Sidhu. 2020. Comparative analysis of optimized physiochemical parameters of dried potato flakes obtained by refractive and convective drying techniques. Journal of Food Processing and Preservation 45 (1):1–15. doi: 10.1111/jfpp.15077.
  • Zarein, M., S. H. Samadi, and B. Ghobadian. 2015. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences 14 (1):41–7. doi: 10.1016/j.jssas.2013.06.002.
  • Zhao, Y., W. Wang, B. Zheng, S. Miao, and Y. Tian. 2017. Mathematical modeling and influence of ultrasonic pretreatment on microwave vacuum drying kinetics of lotus (Nelumbo nucifera Gaertn.) seeds. Drying Technology 35 (5):553–63. doi: 10.1080/07373937.2016.1193512.
  • Zotarelli, M. F., A. Durigon, V. M. da Silva, M. D. Hubinger, and J. B. Laurindo. 2022. Rehydration of mango powders produced by cast-tape drying, freeze drying, and spray drying. Drying Technology 40 (1):175–87. doi: 10.1080/07373937.2020.1777562.
  • Zotarelli, M. F., B. A. M. Carciofi, and J. B. Laurindo. 2015. Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International 69:410–7. doi: 10.1016/j.foodres.2015.01.013.
  • Zotarelli, M. F., V. M. da Silva, A. Durigon, M. D. Hubinger, and J. B. Laurindo. 2017. Production of mango powder by spray drying and cast-tape drying. Powder Technology 305:447–54. doi: 10.1016/j.powtec.2016.10.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.