11,525
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Food and human safety: the impact of microplastics

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Afrin, S., M. Rahman, A. Akbor, A. B. Siddique, K. Uddin, and G. Malafaia. 2022. Is there tea complemented with the appealing flavor of microplastics? A pioneering study on plastic pollution in commercially available tea bags in Bangladesh. The Science of the Total Environment 837:155833. doi: 10.1016/j.scitotenv.2022.155833.
  • Afrin, S., M. Rahman, N. Hossain, K. Uddin, and G. Malafaia. 2022. Are there plastic particles in my sugar? A pioneering study on the characterization of microplastics in commercial sugars and risk assessment. Science of The Total Environment 837:155849. doi: 10.1016/j.scitotenv.2022.155849.
  • Al Naggar, Y., M. Brinkmann, C. M. Sayes, S. N. Al-Kahtani, S. A. Dar, H. R. El-Seedi, B. Grünewald, and J. P. Giesy. 2021. Are honey bees at risk from microplastics? Toxics 9 (5):109. doi: 10.3390/toxics9050109.
  • Amiri, H., M. Hoseini, S. Abbasi, M. Malakootian, M. Hashemi, N. Jaafarzadeh, and A. Turner. 2022. Geophagy and microplastic ingestion. Journal of Food Composition and Analysis 106:104290. doi: 10.1016/j.jfca.2021.104290.
  • Anagnosti, L., A. Varvaresou, P. Pavlou, E. Protopapa, and V. Carayanni. 2021. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on european policies. Has the issue been handled effectively? Marine Pollution Bulletin 162:111883. doi: 10.1016/j.marpolbul.2020.111883.
  • Avio, C. G., S. Gorbi, and F. Regoli. 2015. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Marine Environmental Research 111:18–26. doi: 10.1016/j.marenvres.2015.06.014.
  • Bai, C.-L., L.-Y. Liu, Y.-B. Hu, E. Y. Zeng, and Y. Guo. 2022. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. The Science of the Total Environment 806 (Pt 1):150263. doi: 10.1016/j.scitotenv.2021.150263.
  • Banerjee, A., L. O. Billey, A. M. McGarvey, and W. L. Shelver. 2022. Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period. The Science of the Total Environment 836:155621. doi: 10.1016/j.scitotenv.2022.155621.
  • Banerjee, A., L. O. Billey, and W. L. Shelver. 2021. Uptake and toxicity of polystyrene micro/nanoplastics in gastric cells: Effects of particle size and surface functionalization. Plos One 16 (12):e0260803. doi: 10.1371/journal.pone.0260803.
  • Batool, I., A. Qadir, J. M. Levermore, and F. J. Kelly. 2022. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere; a review. The Science of the Total Environment 806 (Pt 4):150745. doi: 10.1016/j.scitotenv.2021.150745.
  • Bhagat, K., A. C. Barrios, K. Rajwade, A. Kumar, J. Oswald, O. Apul, and F. Perreault. 2022. Aging of microplastics increases their adsorption affinity towards organic contaminants. Chemosphere 298:134238. doi: 10.1016/j.chemosphere.2022.134238.
  • Bhagat, J., L. Zang, N. Nishimura, and Y. Shimada. 2020. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. The Science of the Total Environment 728:138707. doi: 10.1016/j.scitotenv.2020.138707.
  • Bonanomi, M., N. Salmistraro, D. Porro, A. Pinsino, A. M. Colangelo, and D. Gaglio. 2022. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere 303 (Pt 1):134947. doi: 10.1016/j.chemosphere.2022.134947.
  • Bosker, T., L. J. Bouwman, N. R. Brun, P. Behrens, and M. G. Vijver. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant lepidium sativum. Chemosphere 226:774–81. doi: 10.1016/j.chemosphere.2019.03.163.
  • Bott, J., Á. Störmer, and R. Franz. 2014. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packaging and Shelf Life 2 (2):73–80. doi: 10.1016/j.fpsl.2014.08.001.
  • Bouwmeester, H., P. C. H. Hollman, and R. J. B. Peters. 2015. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environmental Science & Technology 49 (15):8932–47. doi: 10.1021/acs.est.5b01090.
  • Celebi Sö, Z., L. Cevhertas, K. Nadeau, M. Akdis, and C. A. Akdis. 2020. Environmental factors in epithelial barrier dysfunction. The Journal of Allergy and Clinical Immunology 145 (6):1517–28. doi: 10.1016/j.jaci.2020.04.024.
  • Chen, G., Q. Fu, X. Tan, H. Yang, Y. Luo, M. Shen, and Y. Gu. 2022. Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. Environmental Pollution (Barking, Essex : 1987) 295:118695. doi: 10.1016/j.envpol.2021.118695.
  • Chen, Q., D. Yin, Y. Jia, S. Schiwy, J. Legradi, S. Yang, and H. Hollert. 2017. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. The Science of the Total Environment 609:1312–21. doi: 10.1016/j.scitotenv.2017.07.144.
  • Chinfak, N., P. Sompongchaiyakul, C. Charoenpong, H. Shi, T. Yeemin, and J. Zhang. 2021. Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. Science of The Total Environment 781:146700. doi: 10.1016/j.scitotenv.2021.146700.
  • Çobanoğlu, H., M. Belivermiş, E. Sıkdokur, Ö. Kılıç, and A. Çayır. 2021. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere 272:129805. doi: 10.1016/j.chemosphere.2021.129805.
  • Crawford, C. B, and Quinn, B. 2017. Microplastic Pollutants. Amsterdam, Netherlands: Elsevier.
  • de Souza-Silva., T. G. I. A. Oliveira, G. G. d Silva, F. C. V. Giusti, R. D. Novaes, and H. A. d Almeida Paula. 2022. Impact of microplastics on the intestinal microbiota: A systematic review of preclinical evidence. Life Sciences 294:120366. doi: 10.1016/j.lfs.2022.120366.
  • Daniel, D. B., P. M. Ashraf, S. N. Thomas, and K. T. Thomson. 2021. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere 264:128554. doi: 10.1016/j.chemosphere.2020.128554.
  • de Marco, G., G. Oliveri Conti, A. Giannetto, T. Cappello, M. Galati, C. Iaria, E. Pulvirenti, F. Capparucci, A. Mauceri, M. Ferrante, et al. 2022. Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio. Environmental Research 208:112552. doi: 10.1016/j.envres.2021.112552.
  • Deng, J., M. S. Ibrahim, L. Y. Tan, X. Y. Yeo, Y. A. Lee, S. J. Park, T. Wüstefeld, J. W. Park, S. Jung, and N. J. Cho. 2022. Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. Journal of Hazardous Materials 435:128980. doi: 10.1016/j.jhazmat.2022.128980.
  • Deshoulles, Q., M. le Gall, C. Dreanno, M. Arhant, D. Priour, and P. Y. le Gac. 2022. Chemical coupling between oxidation and hydrolysis in polyamide 6 - a key aspect in the understanding of microplastic formation. Polymer Degradation and Stability 197:109851. doi: 10.1016/j.polymdegradstab.2022.109851.
  • Diaz-Basantes, M. F., J. A. Conesa, and A. Fullana. 2020. Microplastics in honey, beer, milk and refreshments in ecuador as emerging contaminants. Sustainability 12 (14):5514. doi: 10.3390/su12145514.
  • Dietz, K. J, and S. Herth. 2011. Plant nanotoxicology. Trends in Plant Science 16 (11):582–9. doi: 10.1016/j.tplants.2011.08.003.
  • Dimitriadi, A., C. Papaefthimiou, E. Genizegkini, I. Sampsonidis, S. Kalogiannis, K. Feidantsis, D. C. Bobori, G. Kastrinaki, G. Koumoundouros, D. A. Lambropoulou, et al. 2021. Adverse effects polystyrene microplastics exert on zebrafish heart – Molecular to individual level. Journal of Hazardous Materials 416:125969. doi: 10.1016/j.jhazmat.2021.125969.
  • Ding, J., J. Li, C. Sun, F. Jiang, C. He, M. Zhang, P. Ju, and N. X. Ding. 2020. An examination of the occurrence and potential risks of microplastics across various shellfish. Science of The Total Environment 739:139887. doi: 10.1016/j.scitotenv.2020.139887.
  • Dong, R., R. Liu, Y. Xu, W. Liu, L. Wang, X. Liang, Q. Huang, and Y. Sun. 2022. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia Campestris L.). Chemosphere 291:133066. doi: 10.1016/j.chemosphere.2021.133066.
  • Du, F., H. Cai, Q. Zhang, Q. Chen, and H. Shi. 2020. Microplastics in take-out food containers. Journal of Hazardous Materials 399:122969. doi: 10.1016/j.jhazmat.2020.122969.
  • Du, J., S. Xu, Q. Zhou, H. Li, L. Fu, J. Tang, Y. Wang, X. Peng, Y. Xu, and X. Du. 2020. A review of microplastics in the aquatic environmental: Distribution, transport, ecotoxicology, and toxicological mechanisms. Environmental Science and Pollution Research International 27 (11):11494–505. doi: 10.1007/s11356-020-08104-9.
  • Ebrahimi, P., S. Abbasi, R. Pashaei, A. Bogusz, and P. Oleszczuk. 2022. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. Chemosphere 289:133146. doi: 10.1016/j.chemosphere.2021.133146.
  • Edo, C., A. R. Fernández-Alba, F. Vejsnaes, J. J. M. van der Steen, F. Fernández-Piñas, and R. Rosal. 2021. Honeybees as active samplers for microplastics. The Science of the Total Environment 767:144481. doi: 10.1016/j.scitotenv.2020.144481.
  • Eriksen, M., L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. Galgani, P. G. Ryan, and J. Reisser. 2014. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 9 (12):e111913. doi: 10.1371/journal.pone.0111913.
  • Fajardo, C., C. Martín, G. Costa, S. Sánchez-Fortún, C. Rodríguez, J. J. de Lucas Burneo, M. Nande, G. Mengs, and M. Martín. 2022. Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: Ecotoxicological and molecular approaches. Chemosphere 288 (Pt 1):132460. doi: 10.1016/j.chemosphere.2021.132460.
  • Farrell, P, and K. Nelson. 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus Maenas (L.). Environmental Pollution (Barking, Essex : 1987) 177:1–3. doi: 10.1016/j.envpol.2013.01.046.
  • Fernández Severini, M. D., N. S. Buzzi, A. D. Forero López, C. V. Colombo, G. L. Chatelain Sartor, G. N. Rimondino, and D. M. Truchet. 2020. Chemical composition and abundance of microplastics in the muscle of commercial shrimp Pleoticus muelleri at an impacted coastal environment (Southwestern Atlantic). Marine Pollution Bulletin 161:111700. doi: 10.1016/j.marpolbul.2020.111700.
  • Gao, P., N. Q. I. M. Noor, and S. M. Shaarani. 2022. Current status of food safety hazards and health risks connected with aquatic food products from Southeast Asian region. Critical Reviews in Food Science and Nutrition 62 (13):3471–89. doi: 10.1080/10408398.2020.1866490.
  • Gaugler, T., L. Klei, S. J. Sanders, C. A. Bodea, A. P. Goldberg, A. B. Lee, M. Mahajan, D. Manaa, Y. Pawitan, J. Reichert, et al. 2014. Most genetic risk for autism resides with common variation. Nature Genetics 46 (8):881–5. doi: 10.1038/ng.3039.
  • Gautam, R., J-h Jo, M. Acharya, A. Maharjan, D-e Lee, P. Bahadur, C-y Kim, K. Kim, H-a Kim, and Y. Heo. 2022. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines. The Science of the Total Environment 838 (Pt 2):156089. doi: 10.1016/j.scitotenv.2022.156089.
  • Geueke, B., K. Groh, and J. Muncke. 2018. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production 193:491–505. doi: 10.1016/j.jclepro.2018.05.005.
  • Gkoutselis, G., S. Rohrbach, J. Harjes, M. Obst, A. Brachmann, M. A. Horn, and G. Rambold. 2021. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Scientific Reports 11 (1):13214. doi: 10.1038/s41598-021-92405-7.
  • Granby, K., S. Rainieri, R. R. Rasmussen, M. J. J. Kotterman, J. J. Sloth, T. L. Cederberg, A. Barranco, A. Marques, and B. K. Larsen. 2018. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environmental Research 164:430–43. doi: 10.1016/j.envres.2018.02.035.
  • Gray, J. S. 2002. Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin 45 (1-12):46–52. doi: 10.1016/S0025-326X(01)00323-X.
  • Guerrera, M. C., M. Aragona, C. Porcino, F. Fazio, R. Laurà, M. Levanti, G. Montalbano, G. Germanà, F. Abbate, and A. Germanà. 2021. Micro and nano plastics distribution in fish as model organisms: Histopathology, blood response and bioaccumulation in different organs. Applied Sciences 11 (13):5768. doi: 10.3390/app11135768.
  • Gündoğdu, S. 2018. Contamination of table salts from Turkey with microplastics. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (5):1006–14. doi: 10.1080/19440049.2018.1447694.
  • Gündogdu, S., N. Rathod, A. Hassoun, E. Jamroz, P. Kulawik, C. Gokbulut, A. Aït-Kaddour, and F. Özogul. 2022. The impact of nano/micro-plastics toxicity on seafood quality and human health: Facts and gaps. Critical Reviews in Food Science and Nutrition :1–19. doi: 10.1080/10408398.2022.2033684.
  • Hahladakis, J. N, and E. Iacovidou. 2018. Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? The Science of the Total Environment 630:1394–400. doi: 10.1016/j.scitotenv.2018.02.330.
  • Hahladakis, J. N., C. A. Velis, R. Weber, E. Iacovidou, and P. Purnell. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials 344:179–99. doi: 10.1016/j.jhazmat.2017.10.014.
  • Haward, M. 2018. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nature Communications 9 (1):667. doi: 10.1038/s41467-018-03104-3.
  • Hee, Y. Y., K. Weston, and S. Suratman. 2022. The effect of storage conditions and washing on microplastic release from food and drink containers. Food Packaging and Shelf Life 32:100826. doi: 10.1016/j.fpsl.2022.100826.
  • Hernandez, L. M., E. G. Xu, H. C. E. Larsson, R. Tahara, V. B. Maisuria, and N. Tufenkji. 2019. Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology 53 (21):12300–10. doi: 10.1021/acs.est.9b02540.
  • Hirt, N, and M. Body-Malapel. 2020. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Particle and Fibre Toxicology 17 (1):57. doi: 10.1186/s12989-020-00387-7.
  • Huang, D., W. Zhou, S. Chen, J. Tao, R. Li, L. Yin, X. Wang, and H. Chen. 2022. Presence of polystyrene microplastics in cd contaminated water promotes cd removal by nano zero-valent iron and ryegrass (Lolium perenne L.). Chemosphere 303 (Pt 1):134729. doi: 10.1016/j.chemosphere.2022.134729.
  • Hüffer, T., A. K. Weniger, and T. Hofmann. 2018. Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution (Barking, Essex : 1987) 236:218–25. doi: 10.1016/j.envpol.2018.01.022.
  • Hwang, J., D. Choi, S. Han, J. Choi, and J. Hong. 2019. An assessment of the toxicity of polypropylene microplastics in human derived cells. The Science of the Total Environment 684:657–69. doi: 10.1016/j.scitotenv.2019.05.071.
  • Hwang, J., D. Choi, S. Han, S. Y. Jung, J. Choi, and J. Hong. 2020. Potential toxicity of polystyrene microplastic particles. Scientific Reports 10 (1):7391. doi: 10.1038/s41598-020-64464-9.
  • Iñiguez, M. E., J. A. Conesa, and A. Fullana. 2017. Microplastics in spanish table salt. Scientific Reports 7 (1):8620. doi: 10.1038/s41598-017-09128-x.
  • Jadhav, E. B., M. S. Sankhla, R. A. Bhat, and D. S. Bhagat. 2021. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management 16:100608. doi: 10.1016/j.enmm.2021.100608.
  • Jang, F. H., C. Wong, J. Choo, E. S. Aun Sia, A. Mujahid, and M. Müller. 2022. Increased transfer of trace metals and Vibrio sp. from biodegradable microplastics to catfish Clarias gariepinus. Environmental Pollution (Barking, Essex : 1987) 298:118850. doi: 10.1016/j.envpol.2022.118850.
  • Jenner, L. C., J. M. Rotchell, R. T. Bennett, M. Cowen, V. Tentzeris, and L. R. Sadofsky. 2022. Detection of microplastics in human lung tissue using ΜFTIR spectroscopy. The Science of the Total Environment 831:154907. doi: 10.1016/j.scitotenv.2022.154907.
  • Jin, Y., J. Xia, Z. Pan, J. Yang, W. Wang, and Z. Fu. 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution (Barking, Essex : 1987) 235:322–9. doi: 10.1016/j.envpol.2017.12.088.
  • Ju, P., Y. Zhang, Y. Zheng, F. Gao, F. Jiang, J. Li, and C. Sun. 2020. Probing the toxic interactions between polyvinyl chloride microplastics and human serum albumin by multispectroscopic techniques. The Science of the Total Environment 734:139219. doi: 10.1016/j.scitotenv.2020.139219.
  • Kapukotuwa, R. W. M. G. K., N. Jayasena, K. C. Weerakoon, C. L. Abayasekara, and R. S. Rajakaruna. 2022. High levels of microplastics in commercial salt and industrial salterns in Sri Lanka. Marine Pollution Bulletin 174:113239. doi: 10.1016/j.marpolbul.2021.113239.
  • Karami, A., A. Golieskardi, Y. Bin Ho, V. Larat, and B. Salamatinia. 2017. Microplastics in eviscerated flesh and excised organs of dried fish. Scientific Reports 7 (1):5473. doi: 10.1038/s41598-017-05828-6.
  • Karami, A., A. Golieskardi, C. K. Choo, V. Larat, T. S. Galloway, and B. Salamatinia. 2017. The presence of microplastics in commercial salts from different countries. Scientific Reports 7 (1):46173. doi: 10.1038/srep46173.
  • Karami, A., A. Golieskardi, C. K. Choo, V. Larat, S. Karbalaei, and B. Salamatinia. 2018. Microplastic and mesoplastic contamination in canned sardines and sprats. The Science of the Total Environment 612:1380–6. doi: 10.1016/j.scitotenv.2017.09.005.
  • Karthik, R., R. S. Robin, R. Purvaja, D. Ganguly, I. Anandavelu, R. Raghuraman, G. Hariharan, A. Ramakrishna, and R. Ramesh. 2018. Microplastics along the beaches of southeast coast of India. Science of The Total Environment 645:1388–99. doi: 10.1016/j.scitotenv.2018.07.242.
  • Kedzierski, M., B. Lechat, O. Sire, G. le Maguer, V. Le Tilly, and S. Bruzaud. 2020. Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packaging and Shelf Life 24:100489. doi: 10.1016/j.fpsl.2020.100489.
  • Kim, D., S. An, L. Kim, Y. M. Byeon, J. Lee, M.-J. Choi, and Y.-J. An. 2022. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. Journal of Hazardous Materials 436:129194. doi: 10.1016/j.jhazmat.2022.129194.
  • Kinigopoulou, V., I. Pashalidis, D. Kalderis, and I. Anastopoulos. 2022. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. Journal of Molecular Liquids 350:118580. doi: 10.1016/j.molliq.2022.118580.
  • Koelmans, A. A., N. H. M. Nor, E. Hermsen, M. Kooi, S. M. Mintenig, and J. de France. 2019. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research 155:410–22. doi: 10.1016/j.watres.2019.02.054.
  • Koelmans, A. A., P. E. Redondo-Hasselerharm, N. H. M. Nor, V. N. de Ruijter, S. M. Mintenig, and M. Kooi. 2022. Risk assessment of microplastic particles. Nature Reviews Materials 7 (2):138–52. doi: 10.1038/s41578-021-00411-y.
  • Kosuth, M., S. A. Mason, and E. V. Wattenberg. 2018. Anthropogenic contamination of tap water, beer, and sea salt. PloS One 13 (4):e0194970. doi: 10.1371/journal.pone.0194970.
  • Kumar, R., C. Manna, S. Padha, A. Verma, P. Sharma, A. Dhar, A. Ghosh, and P. Bhattacharya. 2022. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere 298:134267. doi: 10.1016/j.chemosphere.2022.134267.
  • Kutralam-Muniasamy, G., F. Pérez-Guevara, I. Elizalde-Martínez, and V. C. Shruti. 2020. Branded milks – Are they immune from microplastics contamination? Science of The Total Environment 714:136823. doi: 10.1016/j.scitotenv.2020.136823.
  • Kwon, W., D. Kim, H. Y. Kim, S. W. Jeong, S. G. Lee, H. C. Kim, Y. J. Lee, M. K. Kwon, J. S. Hwang, J. E. Han, et al. 2022. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. The Science of the Total Environment 807 (Pt 2):150817. doi: 10.1016/j.scitotenv.2021.150817.
  • Kwon, J. H., J. W. Kim, T. D. Pham, A. Tarafdar, S. Hong, S. H. Chun, S. H. Lee, D. Y. Kang, J. Y. Kim, S. bin Kim, et al. 2020. Microplastics in food: A review on analytical methods and challenges. International Journal of Environmental Research and Public Health 17 (18):6710–23. doi: 10.3390/ijerph17186710.
  • Lachenmeier, D., J. Kocareva, D. Noack, and T. Kuballa. 2015. Microplastic identification in German beer-an artefact of laboratory contamination? Deutsche Lebensmittel-Rundschau 111 (10):437–40. doi: 10.5281/zenodo.1250715.
  • Lee, H.-S., D. Amarakoon, C.-I. Wei, K. Y. Choi, D. Smolensky, and S.-H. Lee. 2021. Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 154:112356. doi: 10.1016/j.fct.2021.112356.
  • Lee, C.-H, and J. K.-H. Fang. 2022. The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. Journal of Environmental Sciences 121:58–64. doi: 10.1016/j.jes.2021.08.044.
  • Lee, K.-W., W. J. Shim, O. Y. Kwon, and J.-H. Kang. 2013. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology 47 (19):11278–83. doi: 10.1021/es401932b.
  • Leslie, H. A., M. J. M. van Velzen, S. H. Brandsma, A. D. Vethaak, J. J. Garcia-Vallejo, and M. H. Lamoree. 2022. Discovery and quantification of plastic particle pollution in human blood. Environment International 163:107199. doi: 10.1016/j.envint.2022.107199.
  • Li, W., X. Chen, M. Li, Z. Cai, H. Gong, and M. Yan. 2022. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. Journal of Hazardous Materials 423 (Pt B):127094. doi: 10.1016/j.jhazmat.2021.127094.
  • Liebezeit, G, and E. Liebezeit. 2013. Non-pollen particulates in honey and sugar. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (12):2136–40. doi: 10.1080/19440049.2013.843025.
  • Liebezeit, G, and E. Liebezeit. 2014. Synthetic particles as contaminants in German beers. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (9):1574–8. doi: 10.1080/19440049.2014.945099.
  • Liebezeit, G, and E. Liebezeit. 2015. Origin of synthetic particles in honeys. Polish Journal of Food and Nutrition Sciences 65 (2):143–7. doi: 10.1515/pjfns-2015-0025.
  • Li, D., Y. Shi, L. Yang, L. Xiao, D. K. Kehoe, Y. K. Gun’ko, J. J. Boland, and J. J. Wang. 2020. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food 1 (11):746–54. doi: 10.1038/s43016-020-00171-y.
  • Lithner, D., Å. Larsson, and G. Dave. 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. The Science of the Total Environment 409 (18):3309–24. doi: 10.1016/j.scitotenv.2011.04.038.
  • Liu, Y., R. Guo, S. Zhang, Y. Sun, and F. Wang. 2022. Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. Journal of Hazardous Materials 421:126700. doi: 10.1016/j.jhazmat.2021.126700.
  • Liu, T., B. Hou, Z. Wang, and Y. Yang. 2022. Polystyrene microplastics induce mitochondrial damage in mouse GC-2 cells. Ecotoxicology and Environmental Safety 237:113520. doi: 10.1016/j.ecoenv.2022.113520.
  • Liu, G., J. Wang, M. Wang, R. Ying, X. Li, Z. Hu, and Y. Zhang. 2022. Disposable plastic materials release microplastics and harmful substances in hot water. The Science of the Total Environment 818:151685. doi: 10.1016/j.scitotenv.2021.151685.
  • Liu, L., M. Xu, Y. Ye, and B. Zhang. 2022. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. The Science of the Total Environment 806 (Pt 3):151312. doi: 10.1016/j.scitotenv.2021.151312.
  • Liu, Z., Q. Zhuan, L. Zhang, L. Meng, X. Fu, and Y. Hou. 2022. Polystyrene microplastics induced female reproductive toxicity in mice. Journal of Hazardous Materials 424 (Pt C):127629. doi: 10.1016/j.jhazmat.2021.127629.
  • Li, H., F. Wang, J. Li, S. Deng, and S. Zhang. 2021. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 264 (Pt 2):128556. doi: 10.1016/j.chemosphere.2020.128556.
  • Li, J., D. Yang, L. Li, K. Jabeen, and H. Shi. 2015. Microplastics in commercial bivalves from China. Environmental Pollution (Barking, Essex : 1987) 207:190–5. doi: 10.1016/j.envpol.2015.09.018.
  • Li, X., T. Zhang, W. Lv, H. Wang, H. Chen, Q. Xu, H. Cai, and J. Dai. 2022. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicology and Environmental Safety 232:113238. doi: 10.1016/j.ecoenv.2022.113238.
  • López, M. D., M. T. Toro, G. Riveros, M. Illanes, F. Noriega, M. Schoebitz, C. García-Viguera, and D. A. Moreno. 2022. Brassica sprouts exposed to microplastics: Effects on phytochemical constituents. The Science of the Total Environment 823:153796. doi: 10.1016/j.scitotenv.2022.153796.
  • Lozano, Y. M., T. Lehnert, L. T. Linck, A. Lehmann, and M. C. Rillig. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science 12:1–14. doi: 10.3389/fpls.2021.616645.
  • Lu, L., T. Luo, Y. Zhao, C. Cai, Z. Fu, and Y. Jin. 2019. Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. The Science of the Total Environment 667:94–100. doi: 10.1016/j.scitotenv.2019.02.380.
  • Luo, Y., C. Chuah, A. Amin, A. Khoshyan, C. T. Gibson, Y. Tang, R. Naidu, and C. Fang. 2022. Assessment of microplastics and nanoplastics released from a chopping board using raman imaging in combination with three algorithms. Journal of Hazardous Materials 431:128636. doi: 10.1016/j.jhazmat.2022.128636.
  • Luqman, A., H. Nugrahapraja, R. A. Wahyuono, I. Islami, M. H. Haekal, Y. Fardiansyah, B. Q. Putri, F. I. Amalludin, E. A. Rofiqa, F. Götz, et al. 2021. Microplastic contamination in human stools, foods, and drinking water associated with indonesian coastal population. Environments 8 (12):138. doi: 10.3390/environments8120138.
  • Lusher, A., P. Hollman, and J. Mendoza-Hill. 2017. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety. Vol. 615 of FAO fisheries and aquaculture technicalpaper. 1 st ed. Rome: Food and Agriculture Organization of the United Nations.
  • Lu, L., Z. Wan, T. Luo, Z. Fu, and Y. Jin. 2018. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. The Science of the Total Environment 631-632:449–58. doi: 10.1016/j.scitotenv.2018.03.051.
  • Lu, Y., Y. Zhang, Y. Deng, W. Jiang, Y. Zhao, J. Geng, L. Ding, and H. Ren. 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology 50 (7):4054–60. doi: 10.1021/acs.est.6b00183.
  • Madhumitha, C. T., N. Karmegam, M. Biruntha, A. Arun, A. A. al Kheraif, W. Kim, and P. Kumar. 2022. Extraction, identification, and environmental risk assessment of microplastics in commercial toothpaste. Chemosphere 296:133976. doi: 10.1016/j.chemosphere.2022.133976.
  • Manimozhi, N., V. Rani, C. Sudhan, D. Manimekalai, R. Shalini, and K. M. Abarna. 2022. Spatiotemporal occurrence, distribution, and characterization of microplastics in salt pans of the coastal region of the gulf of mannar, southeast coast of India. Regional Studies in Marine Science 53:102350. doi: 10.1016/j.rsma.2022.102350.
  • Marazuela, M. D., M. Klaiber, E. Moreno-Gordaliza, A. Barata, and M. M. Gómez-Gómez. 2022. Safety assessment of commercial antimicrobial food packaging: Triclosan and microplastics, a closer look. Food Packaging and Shelf Life 31:100780. doi: 10.1016/j.fpsl.2021.100780.
  • Mehrabi, R., A. H. Bahkali, K. A. Abd-Elsalam, M. Moslem, S. Ben M’barek, A. M. Gohari, M. K. Jashni, I. Stergiopoulos, G. H. J. Kema, and P. J. G. M. de Wit. 2011. Horizontal gene and chromosome transfer in plant pathogenic fungi a¡ecting host range. FEMS Microbiology Reviews 35 (3):542–54. doi: 10.1111/j.1574-6976.2010.00263.x.
  • Meng, X., J. Zhang, W. Wang, G. Gonzalez-Gil, J. S. Vrouwenvelder, and Z. Li. 2022. Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere 288 (Pt 3):132631. doi: 10.1016/j.chemosphere.2021.132631.
  • Mohsen, M., C. Lin, S. Liu, and H. Yang. 2022. Existence of microplastics in the edible part of the sea cucumber Apostichopus japonicus. Chemosphere 287 (Pt 1):132062. doi: 10.1016/j.chemosphere.2021.132062.
  • Mu, Y., J. Sun, Z. Li, W. Zhang, Z. Liu, C. Li, C. Peng, G. Cui, H. Shao, and Z. Du. 2022. Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice. Chemosphere 291 (Pt 2):132944. doi: 10.1016/j.chemosphere.2021.132944.
  • Muthu, S. S. 2021. Chemical management in textiles and fashion. 1st ed. Cambridge: Woodhead Publishing.
  • Nienke Vrisekoop van UMC Utrecht onderzoekt gevaren van microplastics. 2019. Accessed July 5, 2022. https://utrecht.nieuws.nl/onderwijswetenschap/72826/nienke-vrisekoop-van-umc-utrecht-onderzoekt-gevaren-van-microplastics.
  • Novotna, K., L. Cermakova, L. Pivokonska, T. Cajthaml, and M. Pivokonsky. 2019. Microplastics in drinking water treatment – Current knowledge and research needs. The Science of the Total Environment 667:730–40. doi: 10.1016/j.scitotenv.2019.02.431.
  • Nowak, A, and I. Nowak. 2021. Review of harmful chemical pollutants of environmental origin in honey and bee products. Critical Reviews in Food Science and Nutrition :1–23. doi: 10.1080/10408398.2021.2012752.
  • O’Connor, J. D., H. T. Lally, A. A. Koelmans, A. M. Mahon, I. O’Connor, R. Nash, J. J. O’Sullivan, M. Bruen, L. Heerey, and S. Murphy. 2022. Modelling the transfer and accumulation of microplastics in a riverine freshwater food web. Environmental Advances 8:100192. doi: 10.1016/j.envadv.2022.100192.
  • Olewnik-Kruszkowska, E., A. Burkowska-But, I. Tarach, M. Walczak, and E. Jakubowska. 2020. Biodegradation of polylactide-based composites with an addition of a compatibilizing agent in different environments. International Biodeterioration & Biodegradation 147:104840. doi: 10.1016/j.ibiod.2019.104840.
  • Olewnik-Kruszkowska, E., J. Nowaczyk, and K. Kadac. 2016. Effect of ozone exposure on thermal and structural properties of polylactide based composites. Polymer Testing 56:299–307. doi: 10.1016/j.polymertesting.2016.10.030.
  • Olewnik-Kruszkowska, E., J. Nowaczyk, and K. Kadac. 2017. Effect of compatibilizig agent on the properties of polylactide and polylactide based composite during ozone exposure. Polymer Testing 60:283–92. doi: 10.1016/j.polymertesting.2017.04.009.
  • Oliveri Conti, G., M. Ferrante, M. Banni, C. Favara, I. Nicolosi, A. Cristaldi, M. Fiore, and P. Zuccarello. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187:109677. doi: 10.1016/j.envres.2020.109677.
  • Oßmann, B. E., G. Sarau, H. Holtmannspötter, M. Pischetsrieder, S. H. Christiansen, and W. Dicke. 2018. Small-sized microplastics and pigmented particles in bottled mineral water. Water Research 141:307–16. doi: 10.1016/j.watres.2018.05.027.
  • Pan, Z., Q. Liu, J. Xu, W. Li, and H. Lin. 2022. Microplastic contamination in seafood from dongshan bay in southeastern china and its health risk implication for human consumption. Environmental Pollution (Barking, Essex : 1987) 303:119163. doi: 10.1016/j.envpol.2022.119163.
  • Periyasamy, A. P, and A. Tehrani-Bagha. 2022. A review on microplastic emission from textile materials and its reduction techniques. Polymer Degradation and Stability 199:109901. doi: 10.1016/j.polymdegradstab.2022.109901.
  • Peters, C. A., E. Hendrickson, E. C. Minor, K. Schreiner, J. Halbur, and S. P. Bratton. 2018. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the texas gulf coast. Marine Pollution Bulletin 137:91–5. doi: 10.1016/j.marpolbul.2018.09.049.
  • Pham, D. N., L. Clark, and M. Li. 2021. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. Journal of Hazardous Materials Letters 2:100014. doi: 10.1016/j.hazl.2021.100014.
  • Plastics and rubber products global market report 2022. 2022. Accessed July 5, 2022. https://www.globenewswire.com/news-release/2022/04/06/2417259/0/en/Plastics-And-Rubber-Products-Global-Market-Report-2022.html.
  • Prata, J. C. 2018. Airborne microplastics: Consequences to human health? Environmental Pollution (Barking, Essex: 1987) 234:115–26. doi: 10.1016/j.envpol.2017.11.043.
  • Prata, J. C., A. Paço, V. Reis, J. P. da Costa, A. J. S. Fernandes, F. M. da Costa, A. C. Duarte, and T. Rocha-Santos. 2020. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chemistry 331:127323. doi: 10.1016/j.foodchem.2020.127323.
  • Presence of microplastics and nanoplastics in food, with particular focus on seafood. 2016. Accessed July 7, 2022. https://doi.org/10.2903/j.efsa.2016.4501.
  • Qiao, R., Y. Deng, S. Zhang, M. B. Wolosker, Q. Zhu, H. Ren, and Y. Zhang. 2019a. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 236:124334. doi: 10.1016/J.CHEMOSPHERE.2019.07.065.
  • Qiao, R., C. Sheng, Y. Lu, Y. Zhang, H. Ren, and B. Lemos. 2019b. microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. The Science of the Total Environment 662:246–53. doi: 10.1016/j.scitotenv.2019.01.245.
  • Qin, J., S. Zeng, X. Wang, and C. Lin. 2022. Generation of micro(nano)plastics and migration of plastic additives from poly(vinyl chloride) in water under radiation-free ambient conditions. Chemosphere 299:134399. doi: 10.1016/j.chemosphere.2022.134399.
  • Rainieri, S, and A. Barranco. 2019. Microplastics, a food safety issue? Trends in Food Science & Technology 84:55–7. doi: 10.1016/j.tifs.2018.12.009.
  • Rainieri, S., N. Conlledo, B. K. Larsen, K. Granby, and A. Barranco. 2018. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environmental Research 162:135–43. doi: 10.1016/j.envres.2017.12.019.
  • Rana, R., S. Joon, A. K. Jain, and N. Kumar Mohanty. 2020. A study on the effect of phthalate esters and their metabolites on idiopathic infertile males. Andrologia 52 (9):13720. doi: 10.1111/and.13720.
  • Ranjan, V. P., A. Joseph, and S. Goel. 2021. Microplastics and other harmful substances released from disposable paper cups into hot water. Journal of Hazardous Materials 404 (Pt B):124118. doi: 10.1016/j.jhazmat.2020.124118.
  • Ren, X., L. Wang, J. Tang, H. Sun, and J. P. Giesy. 2022. Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes. Environmental Pollution (Barking, Essex : 1987) 294:118516. doi: 10.1016/j.envpol.2021.118516.
  • Rillig, M. C., A. Lehmann, A. Abel de Souza Machado, and G. Yang. 2019. Microplastic effects on plants. The New Phytologist 223 (3):1066–70. doi: 10.1111/nph.15794.
  • Rochman, C. M., E. Hoh, T. Kurobe, and S. J. Teh. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports 3 (1):3263. doi: 10.1038/srep03263.
  • Rochman, C. M., J. M. Parnis, M. A. Browne, S. Serrato, E. J. Reiner, M. Robson, T. Young, M. L. Diamond, and S. J. Teh. 2017. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus). PloS One 12 (11):e0187664. doi: 10.1371/journal.pone.0187664.
  • Ruthsatz, K., M. Domscheit, K. Engelkes, and M. Vences. 2022. Microplastics ingestion induces plasticity in digestive morphology in larvae of Xenopus laevis. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 269:111210. doi: 10.1016/j.cbpa.2022.111210.
  • Sánchez, A., P. Rodríguez-Viso, A. Domene, H. Orozco, D. Vélez, and V. Devesa. 2022. Dietary microplastics: Occurrence, exposure and health implications. Environmental Research 212 (Pt A):113150. doi: 10.1016/j.envres.2022.113150.
  • Santana, M. F. M., F. T. Moreira, and A. Turra. 2017. Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs. Marine Pollution Bulletin 121 (1-2):154–9. doi: 10.1016/j.marpolbul.2017.05.061.
  • Schwabl, P., S. Köppel, P. Königshofer, T. Bucsics, M. Trauner, T. Reiberger, and B. Liebmann. 2019. Detection of various microplastics in human stool. Annals of Internal Medicine 171 (7):453–7. doi: 10.7326/M19-0618.
  • Schymanski, D., C. Goldbeck, H. U. Humpf, and P. Fürst. 2018. Analysis of microplastics in water by micro-raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research 129:154–62. doi: 10.1016/j.watres.2017.11.011.
  • Senathirajah, K., A. Simon, B. Geetika, M. Carbery, S. Wilson, and T. Palanisami. 2021. Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. Journal of Hazardous Materials 404 (Pt B):124004. doi: 10.1016/j.jhazmat.2020.124004.
  • Shi, H. 2021. Editorial overview: Microplastics in food and human exposure to microplastics. Current Opinion in Food Science 42:iii–v. doi: 10.1016/j.cofs.2021.11.009.
  • Shi, Y., P. Liu, X. Wu, H. Shi, H. Huang, H. Wang, and S. Gao. 2021. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. Water Research 195:116980. doi: 10.1016/j.watres.2021.116980.
  • Shlush, E, and M. Davidovich-Pinhas. 2022. Bioplastics for food packaging. Trends in Food Science & Technology 125:66–80. doi: 10.1016/j.tifs.2022.04.026.
  • Shruti, V. C., F. Pérez-Guevara, I. Elizalde-Martínez, and G. Kutralam-Muniasamy. 2020. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks – Future research and environmental considerations. The Science of the Total Environment 726:138580. doi: 10.1016/j.scitotenv.2020.138580.
  • Shruti, V. C., F. Pérez-Guevara, I. Elizalde-Martínez, and G. Kutralam-Muniasamy. 2021. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environmental Pollution (Barking, Essex : 1987) 268 (Pt A):115811. doi: 10.1016/j.envpol.2020.115811.
  • Shruti, V. C., F. Pérez-Guevara, and G. Kutralam-Muniasamy. 2020. Metro station free drinking water fountain: A potential ‘microplastics hotspot’ for human consumption. Environmental Pollution (Barking, Essex : 1987) 261:114227. doi: 10.1016/j.envpol.2020.114227.
  • Sridhar, A., D. Kannan, A. Kapoor, and S. Prabhakar. 2022. Extraction and detection methods of microplastics in food and marine systems: A critical review. Chemosphere 286 (Pt 1):131653. doi: 10.1016/j.chemosphere.2021.131653.
  • Stock, V., L. Böhmert, G. Coban, G. Tyra, M. L. Vollbrecht, L. Voss, M. B. Paul, A. Braeuning, and H. Sieg. 2022. Microplastics and nanoplastics: Size, surface and dispersant – What causes the effect? Toxicology in Vitro : an International Journal Published in Association with BIBRA 80:105314. doi: 10.1016/j.tiv.2022.105314.
  • Sun, H., N. Chen, X. Yang, Y. Xia, and D. Wu. 2021. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicology and Environmental Safety 220:112340. doi: 10.1016/j.ecoenv.2021.112340.
  • Sun, R., K. Xu, L. Yu, Y. Pu, F. Xiong, Y. He, Q. Huang, M. Tang, M. Chen, L. Yin, et al. 2021. Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice. Ecotoxicology and Environmental Safety 218:112296. doi: 10.1016/j.ecoenv.2021.112296.
  • Tagorti, G, and B. Kaya. 2022. Genotoxic effect of microplastics and COVID-19: The hidden threat. Chemosphere 286 (Pt 3):131898. doi: 10.1016/j.chemosphere.2021.131898.
  • Talbot, R, and H. Chang. 2022. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environmental Pollution (Barking, Essex : 1987) 292 (Pt B):118393. doi: 10.1016/j.envpol.2021.118393.
  • Tang, J., X. Ni, Z. Zhou, L. Wang, and S. Lin. 2018. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environmental Pollution (Barking, Essex : 1987) 243 (Pt A):66–74. doi: 10.1016/j.envpol.2018.08.045.
  • Tarasco, M., P. J. Gavaia, A. Bensimon-Brito, F. P. Cordelières, T. Santos, G. Martins, D. T. de Castro, N. Silva, E. Cabrita, M. J. Bebianno, et al. 2022. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. Chemosphere 303 (Pt 3):135198. doi: 10.1016/j.chemosphere.2022.135198.
  • Teuten, E. L., J. M. Saquing, D. R. U. Knappe, M. A. Barlaz, S. Jonsson, A. Björn, S. J. Rowland, R. C. Thompson, T. S. Galloway, R. Yamashita, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364 (1526):2027–45. doi: 10.1098/rstb.2008.0284.
  • Tian, L., C. Jinjin, R. Ji, Y. Ma, and X. Yu. 2022. Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health 25:100311. doi: 10.1016/j.coesh.2021.100311.
  • Tomazic-Jezic, V. J., K. Merritt, and T. H. Umbreit. 2001. Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. Journal of Biomedical Materials Research 55 (4):523–9. doi: 10.1002/1097-4636(20010615)55:4<523::aid-jbm1045>3.0.co;2-g.
  • Tong, H., Q. Jiang, X. Hu, and X. Zhong. 2020. Occurrence and identification of microplastics in tap water from China. Chemosphere 252:126493. doi: 10.1016/j.chemosphere.2020.126493.
  • Toussaint, B., B. Raffael, A. Angers-Loustau, D. Gilliland, V. Kestens, M. Petrillo, I. M. Rio-Echevarria, and G. van den Eede. 2019. Review of micro-and nanoplastic contamination in the food Chain. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (5):639–73. doi: 10.1080/19440049.2019.1583381.
  • Vega-Herrera, A., M. Llorca, X. Borrell-Diaz, P. E. Redondo-Hasselerharm, E. Abad, C. M. Villanueva, and M. Farré. 2022. Polymers of micro(nano) plastic in household tap water of the barcelona metropolitan area. Water Research 220:118645. doi: 10.1016/j.watres.2022.118645.
  • Volkheimer, G. 1975. Hematogenous dissemination of ingested polyvinyl chloride particles. Annals of the New York Academy of Sciences 246 (1):164–71. doi: 10.1111/j.1749-6632.1975.tb51092.x.
  • Wang, F., J. Gao, W. Zhai, D. Liu, Z. Zhou, and P. Wang. 2020. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. Journal of Hazardous Materials 394:122517. doi: 10.1016/j.jhazmat.2020.122517.
  • Wang, Y.-L., Y.-H. Lee, Y.-H. Hsu, I. J. Chiu, C. C.-Y. Huang, C.-C. Huang, Z.-C. Chia, C.-P. Lee, Y.-F. Lin, and H.-W. Chiu. 2021. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environmental Health Perspectives 129 (5):57003. doi: 10.1289/EHP7612.
  • Wang, T., C. Yu, Q. Chu, F. Wang, T. Lan, and J. Wang. 2020. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere 244:125491. doi: 10.1016/j.chemosphere.2019.125491.
  • Wang, W., J. Zhang, Z. Qiu, Z. Cui, N. Li, X. Li, Y. Wang, H. Zhang, and C. Zhao. 2022. Effects of polyethylene microplastics on cell membranes: A combined study of experiments and molecular dynamics simulations. Journal of Hazardous Materials 429:128323. doi: 10.1016/j.jhazmat.2022.128323.
  • Wang, C., J. Zhao, and B. Xing. 2021. Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials 407:124357. doi: 10.1016/j.jhazmat.2020.124357.
  • Wiesheu, A. C., P. M. Anger, T. Baumann, R. Niessner, and N. P. Ivleva. 2016. Raman microspectroscopic analysis of fibers in beverages. Analytical Methods 8 (28):5722–5. doi: 10.1039/C6AY01184E.
  • Wu, C., K. Tanaka, Y. Tani, X. Bi, J. Liu, and Q. Yu. 2022. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. The Science of the Total Environment 821:153265. doi: 10.1016/j.scitotenv.2022.153265.
  • Wu, B., X. Wu, S. Liu, Z. Wang, and L. Chen. 2019. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221:333–41. doi: 10.1016/j.chemosphere.2019.01.056.
  • Xi, B., B. Wang, M. Chen, X. Lee, X. Zhang, S. Wang, Z. Yu, and P. Wu. 2022. Environmental behaviors and degradation methods of microplastics in different environmental media. Chemosphere 299:134354. doi: 10.1016/j.chemosphere.2022.134354.
  • Xu, L., J. Liu, X. Yun Daphne Ma, Z. Li, C. He, and X. Lu. 2022. Facile anchoring mussel adhesive mimic tentacles on biodegradable polymer cargo carriers via self-assembly for microplastic-free cosmetics. Journal of Colloid and Interface Science 612:13–22. doi: 10.1016/j.jcis.2021.12.141.
  • Xu, K., Y. Zhang, Y. Huang, and J. Wang. 2021. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). The Science of the Total Environment 757:143730. doi: 10.1016/j.scitotenv.2020.143730.
  • Yang, X., Y. B. Man, M. H. Wong, R. B. Owen, and K. L. Chow. 2022. Environmental health impacts of microplastics exposure on structural organization levels in the human body. The Science of the Total Environment 825:154025. doi: 10.1016/j.scitotenv.2022.154025.
  • Yang, D., H. Shi, L. Li, J. Li, K. Jabeen, and P. Kolandhasamy. 2015. Microplastic pollution in table salts from China. Environmental Science & Technology 49 (22):13622–7. doi: 10.1021/acs.est.5b03163.
  • Yang, D., J. Zhu, X. Zhou, D. Pan, S. Nan, R. Yin, Q. Lei, N. Ma, H. Zhu, J. Chen, et al. 2022. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ros-mediated cell apoptosis. Environment International 166:107362. doi: 10.1016/j.envint.2022.107362.
  • Yin, K., Y. Wang, H. Zhao, D. Wang, M. Guo, M. Mu, Y. Liu, X. Nie, B. Li, J. Li, et al. 2021. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Science of The Total Environment 774:145758. doi: 10.1016/j.scitotenv.2021.145758.
  • Yuan, Z., R. Nag, and E. Cummins. 2022. Human health concerns regarding microplastics in the aquatic environment - from marine to food systems. Science of The Total Environment 823:153730. doi: 10.1016/j.scitotenv.2022.153730.
  • Zaheer, J., H. Kim, I. O. Ko, E.-K. Jo, E.-J. Choi, H.-J. Lee, I. Shim, H.-J. Woo, J. Choi, G.-H. Kim, et al. 2022. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environment International 161:107121. doi: 10.1016/J.ENVINT.2022.107121.
  • Zhang, E., M. Kim, L. Rueda, C. Rochman, E. van Wormer, J. Moore, and K. Shapiro. 2022. Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health. Scientific Reports 12 (1):6532. doi: 10.1038/s41598-022-10485-5.
  • Zhang, W., Y. Tang, Y. Han, W. Zhou, W. Shi, S. Teng, P. Ren, G. Xiao, S. Li, and G. Liu. 2022. Microplastics boost the accumulation of tetrabromobisphenol a in a commercial clam and elevate corresponding food safety risks. Chemosphere 292:133499. doi: 10.1016/j.chemosphere.2021.133499.
  • Zhang, Y., S. Wang, V. Olga, Y. Xue, S. Lv, X. Diao, Y. Zhang, Q. Han, and H. Zhou. 2022. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere 291 (Pt 1):132714. doi: 10.1016/j.chemosphere.2021.132714.
  • Zhang, J., L. Wang, L. Trasande, and K. Kannan. 2021. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environmental Science & Technology Letters 8 (11):989–94. doi: 10.1021/acs.estlett.1c00559.
  • Zhang, Z., S. Zhao, L. Chen, C. Duan, X. Zhang, and L. Fang. 2022. A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. Environmental Pollution (Barking, Essex : 1987) 306:119374. doi: 10.1016/j.envpol.2022.119374.
  • Zhao, Y., R. Qiao, S. Zhang, and G. Wang. 2021. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). Journal of Hazardous Materials 403:123663. doi: 10.1016/j.jhazmat.2020.123663.
  • Zhou, X., G. Wang, X. An, J. Wu, K. Fan, L. Xu, C. Li, and Y. Xue. 2022. Polystyrene microplastic particles: In vivo and in vitro ocular surface toxicity assessment. Environmental Pollution (Barking, Essex: 1987) 303:119126. doi: 10.1016/j.envpol.2022.119126.
  • Zurier, H. S, and J. M. Goddard. 2021. Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science 37:37–44. doi: 10.1016/j.cofs.2020.09.001.