360
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Actis-Goretta, L., J. I. Ottaviani, C. L. Keen, and C. G. Fraga. 2003. Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Letters 555 (3):597–600. doi: 10.1016/s0014-5793(03)01355-3.
  • Ahmed, A. F., J. H. Al-Qahtani, H. M. Al-Yousef, M. S. Al-Said, A. E. Ashour, M. Al-Sohaibani, and S. Rafatullah. 2015. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity. Journal of Medicinal Food 18 (3):280–9. doi: 10.1089/jmf.2014.3157.
  • Ajeigbe, O. F., G. Oboh, A. O. Ademosun, and A. A. Oyagbemi. 2022. Ficus asperifolia Miq-enriched biscuit diet protects against L-NAME induced hyperlipidemia and hypertension in rats. Food Frontiers 3 (1):150–60. doi: 10.1002/fft2.101.
  • Aldini, G., M. Carini, A. Piccoli, G. Rossoni, and R. M. Facino. 2003. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: New evidences for cardio-protection. Life Sciences 73 (22):2883–98. doi: 10.1016/S0024-3205(03)00697-0.
  • Aleixandre, A., and M. Miguel. 2016. Dietary fiber and blood pressure control. Food & Function 7 (4):1864–71. doi: 10.1039/C5FO00950B.
  • Álvarez, E., B. K. Rodiño-Janeiro, M. Jerez, R. Ucieda-Somoza, M. J. Núñez, and J. R. González-Juanatey. 2012. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. Journal of Cellular Biochemistry 113 (4):1386–96. doi: 10.1002/jcb.24011.
  • Amin, R., C. Thalluri, A. Docea, J. Sharifi-Rad, and D. Calina. 2022. Therapeutic potential of cranberry for kidney health and diseases. eFood 3:e33. doi: 10.1002/efd2.33.
  • Androulakis, E., D. Tousoulis, N. Papageorgiou, G. Latsios, G. Siasos, C. Tsioufis, A. Giolis, and C. Stefanadis. 2011. Inflammation in hypertension: Current therapeutic approaches. Current Pharmaceutical Design 17 (37):4121–4131. doi: 10.2174/138161211798764753.
  • Anesi, A., P. Mena, A. Bub, M. Ulaszewska, D. Del Rio, S. E. Kulling, and F. Mattivi. 2019. Quantification of urinary phenyl-γ-valerolactones and related valeric acids in human urine on consumption of apples. Metabolites 9 (11):254. doi: 10.3390/metabo9110254.
  • Appeldoorn, M. M., J. Vincken, A. Aura, P. C. H. Hollman, and H. Gruppen. 2009. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. Journal of Agricultural and Food Chemistry 57 (3):1084–92. doi: 10.1021/jf803059z.
  • Appeldoorn, M. M., J. Vincken, H. Gruppen, and P. C. H. Hollman. 2009. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. The Journal of Nutrition 139 (8):1469–73. doi: 10.3945/jn.109.106765.
  • Asher, G. N., A. J. Viera, M. A. Weaver, R. Dominik, M. Caughey, and A. L. Hinderliter. 2012. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: A randomized, controlled cross-over trial. BMC Complementary and Alternative Medicine 12:26. doi: 10.1186/1472-6882-12-26.
  • Baba, S., N. Osakabe, M. Natsume, and J. Terao. 2002. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radical Biology and Medicine 33 (1):142–8. doi: 10.1016/S0891-5849(02)00871-7.
  • Banach, M., A. M. Patti, R. V. Giglio, A. F. G. Cicero, A. G. Atanasov, G. Bajraktari, E. Bruckert, O. Descamps, D. M. Djuric, M. Ezhov, et al. 2018. The role of nutraceuticals in statin intolerant patients. Journal of the American College of Cardiology 72 (1):96–118. doi: 10.1016/j.jacc.2018.04.040.
  • Barona, J., J. C. Aristizabal, C. N. Blesso, J. S. Volek, and M. L. Fernandez. 2012. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. The Journal of Nutrition 142 (9):1626–32. doi: 10.3945/jn.112.162743.
  • Baselga-Escudero, L., C. Bladé, A. Ribas-Latre, E. Casanova, M. J. Salvadó, L. Arola, and A. Arola-Arnal. 2012. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Molecular Nutrition & Food Research 56 (11):1636–46. doi: 10.1002/mnfr.201200237.
  • Bernstein, K. E., J. F. Giani, X. Z. Shen, and R. A. Gonzalez-Villalobos. 2014. Renal angiotensin-converting enzyme and blood pressure control. Current Opinion in Nephrology and Hypertension 23 (2):106–12. doi: 10.1097/01.mnh.0000441047.13912.56.
  • Bittner, K., S. Rzeppa, and H. Humpf. 2013. Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. Journal of Agricultural and Food Chemistry 61 (38):9148–54. doi: 10.1021/jf4024728.
  • Bitzer, Z. T., Glisan, S. L. Dorenkott, M. R. Goodrich, K. M. Ye, L. O. Keefe, S. F. Lambert, J. D., and Neilson, A. P. 2015. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. The Journal of Nutritional Biochemistry 26 (8):827–31. doi: 10.1016/j.jnutbio.2015.02.007.
  • Bunbupha, S., P. Pakdeechote, U. Kukongviriyapan, P. Prachaney, and V. Kukongviriyapan. 2014. Asiatic acid reduces blood pressure by enhancing nitric oxide bioavailability with modulation of eNOS and p47phox expression in l-NAME-induced hypertensive rats. Phytotherapy Research : PTR 28 (10):1506–12. doi: 10.1002/ptr.5156.
  • Burnier, M., and B. M. Egan. 2019. Adherence in hypertension. Circulation Research 124 (7):1124–40. doi: 10.1161/CIRCRESAHA.118.313220.
  • Byun, E., T. Ishikawa, A. Suyama, M. Kono, S. Nakashima, T. Kanda, T. Miyamoto, and T. Matsui. 2012. A procyanidin trimer, C1, promotes NO production in rat aortic endothelial cells via both hyperpolarization and PI3K/Akt pathways. European Journal of Pharmacology 692 (1-3):52–60. doi: 10.1016/j.ejphar.2012.07.011.
  • Cai, Q., B. Li, H. Gao, J. Zhang, J. Wang, F. Yu, M. Yin, and Z. Zhang. 2011. Grape seed procyanidin B2 inhibits human aortic smooth muscle cell proliferation and migration induced by advanced glycation end products. Bioscience, Biotechnology, and Biochemistry 75 (9):1692–7. doi: 10.1271/bbb.110194.
  • Caton, P. W., M. R. Pothecary, D. M. Lees, N. Q. Khan, E. G. Wood, T. Shoji, T. Kanda, G. Rull, and R. Corder. 2010. Regulation of vascular endothelial function by procyanidin-rich foods and beverages. Journal of Agricultural and Food Chemistry 58 (7):4008–13. doi: 10.1021/jf9031876.
  • Chen, F., H. Wang, J. Zhao, J. Yan, H. Meng, H. Zhan, L. Chen, and L. Yuan. 2019. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation: In vivo and in vitro studies. The Journal of Nutritional Biochemistry 67:72–7. doi: 10.1016/j.jnutbio.2019.01.013.
  • Chen, Y., J. Wang, L. Zou, H. Cao, X. Ni, and J. Xiao. 2022. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Critical Reviews in Food Science and Nutrition Online. doi: 10.1080/10408398.2022.2030296.
  • Cicero, A. F. G., F. Fogacci, G. Tocci, F. Ventura, V. Presta, E. Grandi, E. Rizzoli, S. D’Addato, C. Borghi, A. F. G. Cicero, et al. 2020. Awareness of major cardiovascular risk factors and its relationship with markers of vascular aging: Data from the Brisighella Heart Study. Nutrition, Metabolism and Cardiovascular Diseases 30 (6):907–14. doi: 10.1016/j.numecd.2020.03.005.
  • Cires, M. J., P. Navarrete, E. Pastene, C. Carrasco-Pozo, R. Valenzuela, D. A. Medina, M. Andriamihaja, M. Beaumont, F. Blachier, and M. Gotteland. 2019. Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food & Function 10 (7):4022–35. doi: 10.1039/C9FO00700H.
  • Cires, M. J., X. Wong, C. Carrasco-Pozo, and M. Gotteland. 2017. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Frontiers in Nutrition 3:57. doi: 10.3389/fnut.2016.00057.
  • Corder, R., R. C. Warburton, N. Q. Khan, R. E. Brown, E. G. Wood, and D. M. Lees. 2004. The procyanidin-induced pseudo laminar shear stress response: A new concept for the reversal of endothelial dysfunction. Clinical Science (London, England : 1979) 107 (5):513–7. doi: 10.1042/CS20040189.
  • Da Silva, M., G. K. Jaggers, S. V. Verstraeten, A. G. Erlejman, C. G. Fraga, and P. I. Oteiza. 2012. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radical Biology & Medicine 52 (1):151–9. doi: 10.1016/j.freeradbiomed.2011.10.436.
  • De Pergola, G., and A. D’Alessandro. 2018. Influence of mediterranean diet on blood pressure. Nutrients 10 (11):1700. doi: 10.3390/nu10111700.
  • Ding, H., X. Li, J. Li, Z. Li, Y. Niu, W. Ren, J. Tan, and S. Yin. 2018. Role of NADPH oxidase pathway in renal protection induced by procyanidin B2: In L-NAME induced rat hypertension model. Journal of Functional Foods 47:405–15. doi: 10.1016/j.jff.2018.04.005.
  • Dinh, Q. N., G. R. Drummond, C. G. Sobey, and S. Chrissobolis. 2014. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Research International 2014:406960. doi: 10.1155/2014/406960.
  • Downing, L. E., B. S. Ferguson, K. Rodriguez, and M. Ricketts. 2017. A grape seed procyanidin extract inhibits HDAC activity leading to increased Pparα phosphorylation and target-gene expression. Molecular Nutrition & Food Research 61 (2):1600347. doi: 10.1002/mnfr.201600347.
  • Draijer, R., Y. de Graaf, M. Slettenaar, E. de Groot, and C. I. Wright. 2015. Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects. Nutrients 7 (5):3138–53. doi: 10.3390/nu7053138.
  • Engler, M. B., M. M. Engler, C. Y. Chen, M. J. Malloy, A. Browne, E. Y. Chiu, H. K. Kwak, P. Milbury, S. M. Paul, J. Blumberg, et al. 2004. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. Journal of the American College of Nutrition 23 (3):197–204. doi: 10.1080/07315724.2004.10719361.
  • Esatbeyoglu, T., V. Wray, and P. Winterhalter. 2015. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography. Food Chemistry 179:278–89. doi: 10.1016/j.foodchem.2015.01.130.
  • Esposito, D., J. Overall, M. H. Grace, S. Komarnytsky, and M. A. Lila. 2019. Alaskan berry extracts promote dermal wound repair through modulation of bioenergetics and integrin signaling. Frontiers in Pharmacology 10:1058. doi: 10.3389/fphar.2019.01058.
  • Fan, Y., Q. He, C. Gan, Z. Wen, and J. Yi. 2022. Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. Food Chemistry 384:132509. doi: 10.1016/j.foodchem.2022.132509.
  • Fariba, S., D. Nooshin, and J. Ali. 2016. Lifestyle modifications to prevent and control hypertension. Iranian Journal of Kidney Diseases 10 (5):237–63.
  • Favari, C., P. Mena, C. Curti, G. Istas, C. Heiss, D. Del Rio, and A. Rodriguez-Mateos. 2020. Kinetic profile and urinary excretion of phenyl-γ-valerolactones upon consumption of cranberry: A dose–response relationship. Food & Function 11 (5):3975–85. doi: 10.1039/D0FO00806
  • Feliciano, R. P., M. P. Shea, D. Shanmuganayagam, C. G. Krueger, A. B. Howell, and J. D. Reed. 2012. Comparison of isolated cranberry (Vaccinium macrocarpon Ait.) proanthocyanidins to catechin and procyanidins A2 and B2 for use as standards in the 4-(dimethylamino)cinnamaldehyde assay. Journal of Agricultural and Food Chemistry 60 (18):4578–85. doi: 10.1021/jf3007213.
  • Fernández-Iglesias, A., D. Pajuelo, H. Quesada, S. Díaz, C. Bladé, L. Arola, M. J. Salvadó, and M. Mulero. 2014. Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese Zucker rats. Molecular Nutrition & Food Research 58 (4):727–37. doi: 10.1002/mnfr.201300455.
  • Fisher, N. D., M. Hughes, M. Gerhard-Herman, and N. K. Hollenberg. 2003. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. Journal of Hypertension 21 (12):2281–6. doi: 10.1097/00004872-200312000-00016.
  • Galiana-Simal, A., E. Olivares-Álvaro, M. Klett-Mingo, M. B. Ruiz-Roso, S. Ballesteros, N. de Las Heras, P. J. Fuller, V. Lahera, and B. Martín-Fernández. 2016. Proanthocyanidins block aldosterone-dependent up-regulation of cardiac gamma ENaC and Nedd4-2 inactivation via SGK1. The Journal of Nutritional Biochemistry 37:13–9. doi: 10.1016/j.jnutbio.2016.07.012.
  • Gangopadhyay, N., D. K. Rai, N. P. Brunton, E. Gallagher, and M. B. Hossain. 2016. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain. Food Chemistry 210:212–20. doi: 10.1016/j.foodchem.2016.04.098.
  • Garbacki, N., M. Kinet, B. Nusgens, D. Desmecht, and J. Damas. 2005. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. Journal of Inflammation (London, England) 2:9. doi: 10.1186/1476-9255-2-9.
  • Gonthier, M., J. L. Donovan, O. Texier, C. Felgines, C. Remesy, and A. Scalbert. 2003. Metabolism of dietary procyanidins in rats. Free Radical Biology & Medicine 35 (8):837–44. doi: 10.1016/S0891-5849(03)00394-0.
  • Gu, L., M. A. Kelm, J. F. Hammerstone, G. Beecher, J. Holden, D. Haytowitz, and R. L. Prior. 2003. Screening of Foods Containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. Journal of Agricultural and Food Chemistry 51 (25):7513–21. doi: 10.1021/jf034815d.
  • Gu, L., M. A. Kelm, J. F. Hammerstone, G. Beecher, J. Holden, D. Haytowitz, S. Gebhardt, and R. L. Prior. 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. The Journal of Nutrition 134 (3):613–7. doi: 10.1093/jn/134.3.613.
  • Hibi, Y., and E. Yanase. 2019. Oxidation of procyanidins with various degrees of condensation: Influence on the color-deepening phenomenon. Journal of Agricultural and Food Chemistry 67 (17):4940–6. doi: 10.1021/acs.jafc.9b02085.
  • Hollands, W. J., H. Tapp, M. Defernez, N. Perez Moral, M. S. Winterbone, M. Philo, A. J. Lucey, M. E. Kiely, and P. A. Kroon. 2018. Lack of acute or chronic effects of epicatechin-rich and procyanidin-rich apple extracts on blood pressure and cardiometabolic biomarkers in adults with moderately elevated blood pressure: A randomized, placebo-controlled crossover trial. The American Journal of Clinical Nutrition 108 (5):1006–14. doi: 10.1093/ajcn/nqy139.
  • Huang, L., C. Pan, L. Wang, L. Ding, K. Guo, H. Wang, A. Xu, and S. Gao. 2015. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats. The Journal of Nutritional Biochemistry 26 (8):841–9. doi: 10.1016/j.jnutbio.2015.03.007.
  • Huang, P., C. Chi, and T. Liu. 2010. Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 48 (1):306–13. doi: 10.1016/j.fct.2009.10.014.
  • Jafarnejad, S., Salek, M. Clark, and C. C. T. 2020. Cocoa consumption and blood pressure in middle-aged and elderly subjects: A meta-analysis. Current Hypertension Reports 22 (1):1. doi: 10.1007/s11906-019-1005-0.
  • Kalfin, R., A. Righi, A. Del Rosso, D. Bagchi, S. Generini, S. Guiducci, M. Matucci Cerinic, and D. K. Das. 2002. Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1, and E-selectin) in systemic sclerosis. Free Radical Research 36 (8):819–25. doi: 10.1080/1071576021000005249.
  • Kaufeld, A. M., H. H. Pertz, and H. Kolodziej. 2013. 2,3-cis-Procyanidins elicit endothelium-dependent relaxation in porcine coronary arteries via activation of the PI3/Akt kinase signaling pathway. Journal of Agricultural and Food Chemistry 61 (40):9609–16. doi: 10.1021/jf402460
  • Kim, K. J., E. Hwang, M. Kim, J. Park, and D. Kim. 2020. Antihypertensive effects of polyphenolic extract from Korean red pine (Pinus densiflora Sieb. et Zucc.) bark in spontaneously hypertensive rats. Antioxidants 9 (4):333. doi: 10.3390/antiox9040333.
  • Kostov, K. 2021. The causal relationship between endothelin-1 and hypertension: Focusing on endothelial dysfunction, arterial stiffness, vascular remodeling, and blood pressure regulation. Life 11 (9):986. doi: 10.3390/life11090986.
  • Lajous, M., E. Rossignol, G. Fagherazzi, F. Perquier, A. Scalbert, F. Clavel-Chapelon, and M. Boutron-Ruault. 2016. Flavonoid intake and incident hypertension in women. The American Journal of Clinical Nutrition 103 (4):1091–8. doi: 10.3945/ajcn.115.109249.
  • Li, S., J. Xiao, L. Chen, C. Hu, P. Chen, B. Xie, and Z. Sun. 2012. Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chemistry 135 (1):31–8. doi: 10.1016/j.foodchem.2012.04.039.
  • Li, S., M. Xu, Q. Niu, S. Xu, Y. Ding, Y. Yan, S. Guo, and F. Li. 2015. Efficacy of procyanidins against in vivo cellular oxidative damage: A systematic review and meta-analysis. Plos One 10 (10):e0139455. e139455. doi: 10.1371/journal.pone.0139455.
  • Li, S., Y. Liu, G. Liu, J. He, X. Qin, H. Yang, Z. Hu, and O. Lamikanra. 2017. Effect of the A-type linkage on the pharmacokinetics and intestinal metabolism of litchi pericarp oligomeric procyanidins. Journal of Agricultural and Food Chemistry 65 (9):1893–9. doi: 10.1021/acs.jafc.7b00017.
  • Li, S., Y. Sui, J. Xiao, Q. Wu, B. Hu, B. Xie, and Z. Sun. 2013. Absorption and urinary excretion of A-type procyanidin oligomers from Litchi chinensis pericarp in rats by selected ion monitoring liquid chromatography–mass spectrometry. Food Chemistry 138 (2–3):1536–42. doi: 10.1016/j.foodchem.2012.09.120.
  • Li, T., Q. Li, W. Wu, Y. Li, D. Hou, H. Xu, B. Zheng, S. Zeng, Y. Shan, X. Lu, et al. 2019. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2–ARE pathway. Acta Biochimica et Biophysica Sinica 51 (1):31–40. doi: 10.1093/abbs/gmy148.
  • Liang, Y., H. Gao, J. Wang, Q. Wang, S. Zhao, J. Zhang, and J. Qiu. 2017. Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia. Molecular Medicine Reports 15 (5):2643–52. doi: 10.3892/mmr.2017.6292.
  • Liang, Y., J. Wang, H. Gao, Q. Wang, J. Zhang, and J. Qiu. 2016. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Molecular Medicine Reports 14 (4):3711–8. doi: 10.3892/mmr.2016.5699.
  • Lijnen, P., I. Papparella, V. Petrov, A. Semplicini, and R. Fagard. 2006. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. Journal of Hypertension 24 (4):757–66. doi: 10.1097/01.hjh.0000217860.04994.54.
  • Liu, D., J. Deng, S. Joshi, P. Liu, C. Zhang, Y. Yu, R. Zhang, D. Fan, H. Yang, and D. H. D’Souza. 2018. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiology 76:346–53. doi: 10.1016/j.fm.2018.06.009.
  • Liu, X., J. Qiu, S. Zhao, B. You, X. Ji, Y. Wang, X. Cui, Q. Wang, and H. Gao. 2012. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function. Molecular Medicine Reports 6 (5):949–54. doi: 10.3892/mmr.2012.1026.
  • Liu, Z., and L. Yang. 2018. Antisolvent precipitation for the preparation of high polymeric procyanidin nanoparticles under ultrasonication and evaluation of their antioxidant activity in vitro. Ultrasonics Sonochemistry 43:208–18. doi: 10.1016/j.ultsonch.2018.01.019.
  • Lotito, S. B., L. Actis-Goretta, M. L. Renart, M. Caligiuri, D. Rein, H. H. Schmitz, F. M. Steinberg, C. L. Keen, and C. G. Fraga. 2000. Influence of oligomer chain length on the antioxidant activity of procyanidins. Biochemical and Biophysical Research Communications 276 (3):945–51. doi: 10.1006/bbrc.2000.3571.
  • Lu, M., L. Xu, B. Li, W. Zhang, C. Zhang, H. Feng, X. Cui, and H. Gao. 2010. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-κB pathway. Journal of Nutritional Science and Vitaminology 56 (2):87–97. doi: 10.3177/jnsv.56.87.
  • Lu, M., M. Yang, P. Li, H. Fang, H. Huang, Y. Chan, and D. Bau. 2018. Effect of oligomeric proanthocyanidin on the antioxidant status and lung function of patients with chronic obstructive pulmonary disease. In Vivo (Athens, Greece) 32 (4):753–8. doi: 10.21873/invivo.11304.
  • Luo, L., Y. Cui, J. Cheng, B. Fang, Z. Wei, and B. Sun. 2018. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chemistry 256:203–11. doi: 10.1016/j.foodchem.2018.02.097.
  • Luo, X., M. Chen, Y. Duan, W. Duan, H. Zhang, Y. He, C. Yin, G. Sun, and X. Sun. 2016. Chemoprotective action of lotus seedpod procyanidins on oxidative stress in mice induced by extremely low-frequency electromagnetic field exposure. Biomedicine & Pharmacotherapy 82:640–8. doi: 10.1016/j.biopha.2016.06.005.
  • Ma, L., H. Gao, B. Li, Y. Ma, B. You, and F. Zhang. 2007. Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor γ. Journal of Cardiovascular Pharmacology 49 (5):293–8. doi: 10.1097/FJC.0b013e31803c5616.
  • Ma, L., Z. Sun, Y. Zeng, M. Luo, and J. Yang. 2018. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. International Journal of Molecular Sciences 19 (9):2785. doi: 10.3390/ijms19092785.
  • Mannozzi, C., U. Tylewicz, F. Chinnici, L. Siroli, P. Rocculi, M. Dalla Rosa, and S. Romani. 2018. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chemistry 251:18–24. doi: 10.1016/j.foodchem.2018.01.015.
  • Mas-Capdevila, A., L. Iglesias-Carres, A. Arola-Arnal, M. Suárez, F. I. Bravo, and B. Muguerza. 2020. Changes in arterial blood pressure caused by long-term administration of grape seed proanthocyanidins in rats with established hypertension. Food & Function 11 (10):8735–42. doi: 10.1039/D0FO00981
  • Mateos-Martín, M. L., J. Pérez-Jiménez, E. Fuguet, and J. L. Torres. 2012. Non-extractable proanthocyanidins from grapes are a source of bioavailable (epi)catechin and derived metabolites in rats. The British Journal of Nutrition 108 (2):290–7. doi: 10.1017/S0007114511005678.
  • Monagas, M., Gómez-Cordovés, C. Bartolomé, B. Laureano, O. Ricardo Da Silva, and J. M. 2003. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet sauvignon. Journal of Agricultural and Food Chemistry 51 (22):6475–81. doi: 10.1021/jf030325
  • Nemes, A., E. Szőllősi, L. Stündl, A. Biró, J. R. Homoki, M. M. Szarvas, P. Balogh, Z. Cziáky, and J. Remenyik. 2018. Determination of flavonoid and proanthocyanidin profile of Hungarian sour cherry. Molecules 23 (12):3278. doi: 10.3390/molecules23123278.
  • Nishizuka, T., Y. Fujita, Y. Sato, A. Nakano, A. Kakino, S. Ohshima, T. Kanda, R. Yoshimoto, and T. Sawamura. 2011. Procyanidins are potent inhibitors of LOX-1: A new player in the French Paradox. Proceedings of the Japan Academy Series B, Physical and Biological Sciences 87 (3):104–13. doi: 10.2183/pjab.87.104.
  • Nurkiewicz, T. R., G. Wu, P. Li, and M. A. Boegehold. 2010. Decreased arteriolar tetrahydrobiopterin is linked to superoxide generation from nitric oxide synthase in mice fed high salt. Microcirculation (New York, NY: 1994) 17 (2):147–57. doi: 10.1111/j.1549-8719.2009.00014.x.
  • Odai, T., M. Terauchi, K. Kato, A. Hirose, and N. Miyasaka. 2019. Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: A randomized, double-blind, placebo-controlled study. Nutrients 11 (12):2844. doi: 10.3390/nu11122844.
  • Oteiza, P. I., C. G. Fraga, D. A. Mills, and D. H. Taft. 2018. Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine 61:41–9. doi: 10.1016/j.mam.2018.01.001.
  • Ottaviani, J. I., L. Actis-Goretta, J. J. Villordo, and C. G. Fraga. 2006. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition. Biochimie 88 (3-4):359–65. doi: 10.1016/j.biochi.2005.10.001.
  • Parmenter, B. H., K. D. Croft, L. Cribb, M. B. Cooke, C. P. Bondonno, A. Lea, G. M. McPhee, M. Komanduri, K. Nolidin, K. Savage, et al. 2022. Higher habitual dietary flavonoid intake associates with lower central blood pressure and arterial stiffness in healthy older adults. British Journal of Nutrition 128 (2):279–89. doi: 10.1017/S000711452100324X.
  • Pereira-Caro, G., S. Gaillet, J. L. Ordóñez, P. Mena, L. Bresciani, K. A. Bindon, D. Del Rio, J. Rouanet, J. M. Moreno-Rojas, and A. Crozier. 2020. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food & Function 11 (5):3986–4001. doi: 10.1039/D0FO00350F.
  • Pons, Z., L. Guerrero, M. Margalef, L. Arola, A. Arola-Arnal, and B. Muguerza. 2014. Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. Journal of Physiology and Biochemistry 70 (2):629–37. doi: 10.1007/s13105-014-0329-0.
  • Quiñones, M., B. Muguerza, M. Miguel, and A. Aleixandre. 2011. Evidence that nitric oxide mediates the blood pressure lowering effect of a polyphenol-rich cocoa powder in spontaneously hypertensive rats. Pharmacological Research 64 (5):478–81. doi: 10.1016/j.phrs.2011.06.005.
  • Quiñones, M., L. Guerrero, M. Suarez, Z. Pons, A. Aleixandre, L. Arola, and B. Muguerza. 2013. Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Research International 51 (2):587–95. doi: 10.1016/j.foodres.2013.01.023.
  • Quiñones, M., L. Guerrero, S. Fernández-Vallinas, Z. Pons, L. Arola, A. Aleixandre, and B. Muguerza. 2014. Involvement of nitric oxide and prostacyclin in the antihypertensive effect of low-molecular-weight procyanidin rich grape seed extract in male spontaneously hypertensive rats. Journal of Functional Foods 6:419–27. doi: 10.1016/j.jff.2013.11.008.
  • Ramirez, J. E., R. Zambrano, B. Sepúlveda, and M. J. Simirgiotis. 2014. Antioxidant properties and hyphenated HPLC-PDA-MS profiling of Chilean Pica mango fruits (Mangifera indica L. Cv. piqueño). Molecules (Basel, Switzerland) 19 (1):438–58. doi: 10.3390/molecules19010438.
  • Ras, R. T., P. L. Zock, Y. E. M. P. Zebregs, N. R. Johnston, D. J. Webb, and R. Draijer. 2013. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. The British Journal of Nutrition 110 (12):2234–41. doi: 10.1017/S000711451300161X.
  • Ren, J., J. An, M. Chen, H. Yang, and Y. Ma. 2021. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research 165:105329. doi: 10.1016/j.phrs.2020.105329.
  • Rodrigo, R., W. Passalacqua, J. Araya, M. Orellana, and G. Rivera. 2003. Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension. Journal of Cardiovascular Pharmacology 42 (4):453–61. doi: 10.1097/00005344-200310000-00001.
  • Rodriguez-Mateos, A., T. Weber, S. S. Skene, J. I. Ottaviani, A. Crozier, M. Kelm, H. Schroeter, and C. Heiss. 2018. Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: Randomized, controlled, double-masked intervention trial. The American Journal of Clinical Nutrition 108 (6):1229–37. doi: 10.1093/ajcn/nqy229.
  • Sahebkar, A., M. Pirro, M. Banach, D. P. Mikhailidis, S. L. Atkin, and A. F. G. Cicero. 2018. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition 58 (15):2549–56. doi: 10.1080/10408398.2017.1332572.
  • Scalbert, A., C. Morand, C. Manach, and C. Rémésy. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy 56 (6):276–82. doi: 10.1016/S0753-3322(02)00205-6.
  • Schön, C., P. Allegrini, K. Engelhart-Jentzsch, A. Riva, and G. Petrangolini. 2021. Grape seed extract positively modulates blood pressure and perceived stress: A randomized, double-blind, placebo-controlled study in healthy volunteers. Nutrients 13 (2):654. doi: 10.3390/nu13020.
  • Serra, A., A. Macià, M. Romero, J. Valls, C. Bladé, L. Arola, and M. Motilva. 2010. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. The British Journal of Nutrition 103 (7):944–52. doi: 10.1017/S0007114509992741.
  • Shoji, T., S. Masumoto, N. Moriichi, H. Akiyama, T. Kanda, Y. Ohtake, and Y. Goda. 2006. Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry 54 (3):884–92. doi: 10.1021/jf052260b.
  • Shrivastava, A. K., S. Thapa, L. Shrestha, R. K. Mehta, A. Gupta, and N. Koirala. 2021. Phytochemical screening and the effect of trichosanthes dioica in high-fat diet induced atherosclerosis in wistar rats. Food Frontiers 2 (4):527–36. doi: 10.1002/fft2.91.
  • Sivaprakasapillai, B., I. Edirisinghe, J. Randolph, F. Steinberg, and T. Kappagoda. 2009. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism: clinical and Experimental 58 (12):1743–6. doi:10.1016/j.metabol.2009.05.030.
  • Smith, S. C., A. Collins, R. Ferrari, D. R. Holmes, S. Logstrup, D. V. McGhie, J. Ralston, R. L. Sacco, H. Stam, K. Taubert, et al. 2012. Our time: A call to save preventable death from cardiovascular disease (heart disease and stroke). Circulation 126 (23):2769–75. doi: 10.1161/CIR.0b013e318267e99f.
  • Song, D., J. Liu, F. Wang, X. Li, M. Liu, Z. Zhang, S. Cao, and X. Jiang. 2021. Procyanidin B2 inhibits lipopolysaccharide-induced apoptosis by suppressing the Bcl-2/Bax and NF-κB signalling pathways in human umbilical vein endothelial cells. Molecular Medicine Reports 23 (4):267. doi: 10.3892/mmr.2021.11906.
  • Steffen, Y., C. Gruber, T. Schewe, and H. Sies. 2008. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Archives of Biochemistry and Biophysics 469 (2):209–19. doi: 10.1016/j.abb.2007.10.012.
  • Stoupi, S., G. Williamson, F. Viton, D. Barron, L. J. King, J. E. Brown, and M. N. Clifford. 2010. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 38 (2):287–91. doi: 10.1124/dmd.109.030304.
  • Tao, W., Y. Zhang, X. Shen, Y. Cao, J. Shi, X. Ye, and S. Chen. 2019. Rethinking the mechanism of the health benefits of proanthocyanidins: Absorption, metabolism, and interaction with gut microbiota. Comprehensive Reviews in Food Science and Food Safety 18 (4):971–85. doi: 10.1111/1541-4337.12444.
  • Taubert, D., R. Roesen, and E. Schömig. 2007. Effect of cocoa and tea intake on blood pressure: A meta-analysis. Archives of Internal Medicine 167 (7):626–34. doi: 10.1001/archinte.167.7.626.
  • Taubert, D., R. Roesen, C. Lehmann, N. Jung, and E. Schömig. 2007. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: A randomized controlled trial. Jama 298 (1):49–60. doi: 10.1001/jama.298.1.49.
  • Terauchi, M., N. Horiguchi, A. Kajiyama, M. Akiyoshi, Y. Owa, K. Kato, and T. Kubota. 2014. Effects of grape seed proanthocyanidin extract on menopausal symptoms, body composition, and cardiovascular parameters in middle-aged women: A randomized, double-blind, placebo-controlled pilot study. Menopause (New York, N.Y.) 21 (9):990–6. doi: 10.1097/GME.0000000000000200.
  • Terra, X., P. Palozza, J. Fernandez-Larrea, A. Ardevol, C. Blade, G. Pujadas, J. Salvado, L. Arola, and M. T. Blay. 2011. Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes. Free Radical Research 45 (5):611–9. doi: 10.3109/10715762.2011.564165.
  • Terra, X., V. Pallarés, A. Ardèvol, C. Bladé, J. Fernández-Larrea, G. Pujadas, J. Salvadó, L. Arola, and M. Blay. 2011. Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats. The Journal of Nutritional Biochemistry 22 (4):380–7. doi: 10.1016/j.jnutbio.2010.03.006.
  • Touyz, R. M., R. Alves-Lopes, F. J. Rios, L. L. Camargo, A. Anagnostopoulou, A. Arner, and A. C. Montezano. 2018. Vascular smooth muscle contraction in hypertension. Cardiovascular Research 114 (4):529–39. doi: 10.1093/cvr/cvy023.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46. doi: 10.3390/nu2121231.
  • Tsujita, T., T. Shintani, and H. Sato. 2013. α-Amylase inhibitory activity from nut seed skin polyphenols. 1. Purification and characterization of almond seed skin polyphenols. Journal of Agricultural and Food Chemistry 61 (19):4570–6. doi: 10.1021/jf400691q.
  • Urquiaga, I., S. D’Acuña, D. Pérez, S. Dicenta, G. Echeverría, A. Rigotti, and F. Leighton. 2015. Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biological Research 48:49. doi: 10.1186/s40659-015-0040-9.
  • Valls, R., E. Llauradó, S. Fernández-Castillejo, F. Puiggrós, R. Solà, L. Arola, and A. Pedret. 2016. Effects of low molecular weight procyanidin rich extract from french maritime pine bark on cardiovascular disease risk factors in stage-1 hypertensive subjects: Randomized, double-blind, crossover, placebo-controlled intervention trial. Phytomedicine 23 (12):1451–61. doi: 10.1016/j.phymed.2016.08.007.
  • Vidt, D. G. 2006. Inflammation in renal disease. The American Journal of Cardiology 97 (2):20–7. doi: 10.1016/j.amjcard.2005.11.012.
  • Wang, L., L. Zhu, H. Jiang, Q. Tang, L. Yan, D. Wang, C. Liu, Z. Bian, and H. Li. 2010. Grape seed proanthocyanidins attenuate vascular smooth muscle cell proliferation via blocking phosphatidylinositol 3-kinase-dependent signaling pathways. Journal of Cellular Physiology 223 (3):713–26. doi: 10.1002/jcp.22080.
  • Wang, L., Y. Yamashita, S. Komeda, A. Saito, and H. Ashida. 2018. Absorption, metabolism, distribution and faecal excretion of B-type procyanidin oligomers in mice after a single oral administration of black soybean seed coat extract. Food & Function 9 (10):5362–70. doi: 10.1039/C8FO00852C.
  • Ward, N. C., J. M. Hodgson, K. D. Croft, V. Burke, L. J. Beilin, and I. B. Puddey. 2005. The combination of vitamin C and grape-seed polyphenols increases blood pressure: A randomized, double-blind, placebo-controlled trial. Journal of Hypertension 23:427–34. doi: 10.1097/00004872-200502000-00026.
  • Yang, H., L. Xiao, Y. Yuan, X. Luo, M. Jiang, J. Ni, and N. Wang. 2014. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochemical Pharmacology 92 (4):599–606. doi: 10.1016/j.bcp.2014.10.001.
  • Yang, H., X. Tuo, L. Wang, R. Tundis, M. P. Portillo, J. Simal-Gandara, Y. Yu, L. Zou, J. Xiao, and J. Deng. 2021. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends in Food Science & Technology 111:114–27. doi: 10.1016/j.tifs.2021.02.063.
  • Yang, K., Z. Hashemi, W. Han, A. Jin, H. Yang, J. Ozga, L. Li, and C. B. Chan. 2015. Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats. The Journal of Nutritional Biochemistry 26 (8):850–9. doi: 10.1016/j.jnutbio.2015.03.002.
  • Yasuda, A., M. Natsume, K. Sasaki, S. Baba, Y. Nakamura, M. Kanegae, and S. Nagaoka. 2008. Cacao procyanidins reduce plasma cholesterol and increase fecal steroid excretion in rats fed a high-cholesterol diet. BioFactors (Oxford, England) 33 (3):211–23. doi: 10.1002/biof.5520330307.
  • Yoshioka, J., E. R. Schreiter, and R. T. Lee. 2006. Role of thioredoxin in cell growth through interactions with signaling molecules. Antioxidants & Redox Signaling 8 (11–12):2143–51. doi: 10.1089/ars.2006.8.2143.
  • Zhang, C., J. Deng, D. Liu, X. Tuo, L. Xiao, B. Lai, Q. Yao, J. Liu, H. Yang, and N. Wang. 2018. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. British Journal of Pharmacology 175 (22):4218–28. doi: 10.1111/bph.14482.
  • Zhang, H., S. Liu, L. Li, S. Liu, S. Liu, J. Mi, and G. Tian. 2016. The impact of grape seed extract treatment on blood pressure changes: A meta-analysis of 16 randomized controlled trials. Medicine 95 (33):e4247. doi: 10.1097/MD.0000000000004247.
  • Zhang, J., R. Liang, L. Wang, R. Yan, R. Hou, S. Gao, and B. Yang. 2013. Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. Journal of Ethnopharmacology 148 (2):563–9. doi: 10.1016/j.jep.2013.04.053.
  • Zhang, L., J. Shao, Y. Zhou, H. Chen, H. Qi, Y. Wang, L. Chen, Y. Zhu, M. Zhang, L. Chen, et al. 2018. Inhibition of PDGF-BB-induced ­proliferation and migration in VSMCs by proanthocyanidin A2: Involvement of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. Biomedicine & Pharmacotherapy 98:847–55. doi: 10.1016/j.biopha.2018.01.010.
  • Zhang, L., Y. Wang, D. Li, C.-T. Ho, J. Li, and X. Wan. 2016. The absorption, distribution, metabolism and excretion of procyanidins. Food & Function 7 (3):1273–81. doi: 10.1039/C5FO01244A.
  • Zhang, Y., Y. Dong, X. Li, and F. Wang. 2019. Proanthocyanidin encapsulated in ferritin enhances its cellular absorption and antioxidant activity. Journal of Agricultural and Food Chemistry 67 (41):11498–507. 2019. doi: 10.1021/acs.jafc.9b03903.
  • Zhao, L., F. Wang, Q. Lu, R. Liu, J. Tian, and Y. Huang. 2018. Study on interaction between human salivary α-amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis. International Journal of Biological Macromolecules 118 (Pt A):1136–41. doi: 10.1016/j.ijbiomac.2018.06.189.
  • Zhou, B., R. M. Carrillo-Larco, G. Danaei, L. M. Riley, C. J. Paciorek, G. A. Stevens, E. W. Gregg, J. E. Bennett, B. Solomon, R. K. Singleton, et al. et al. 2021. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet 398 (10304):957–80. doi: 10.1016/S0140-6736(21)01330-1.
  • Zhou, D., J. Li, R. Xiong, A. Saimaiti, S. Huang, S. Wu, Z. Yang, A. Shang, C. Zhao, R. Gan, et al. 2022. Bioactive compounds, health benefits and food applications of grape. Foods 11 (18):2755. doi: 10.3390/foods11182755.
  • Zhou, D., M. Luo, A. Shang, Q. Mao, B. Li, R. Gan, H. Li, and G. Zhang. 2021. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxidative Medicine and Cellular Longevity 2021:6627355. doi: 10.1155/2021/6627355.
  • Zhou, H., P. You, H. Liu, J. Fan, C. Tong, A. Yang, Y. Jiang, and B. Liu. 2022. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. Journal of Controlled Release 341:828–43. doi: 10.1016/j.jconrel.2021.12.021.
  • Zhu, F.-Q., J. Hu, F.-H. Lv, P. Cheng, and S. Gao. 2018. Effects of oligomeric grape seed proanthocyanidins on L-NAME-induced hypertension in pregnant mice: Role of oxidative stress and endothelial dysfunction. Phytotherapy Research 32 (9):1836–47. doi: 10.1002/ptr.6119.
  • Zumdick, S., A. Deters, and A. Hensel. 2012. In vitro intestinal transport of oligomeric procyanidins (DP 2 to 4) across monolayers of Caco-2 cells. Fitoterapia 83 (7):1210–7. doi: 10.1016/j.fitote.2012.06.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.