643
Views
4
CrossRef citations to date
0
Altmetric
Reviews

A review of protein-phenolic acid interaction: reaction mechanisms and applications

ORCID Icon, , , & ORCID Icon

References

  • Abd El-Maksoud, A. A., I. H. Abd El-Ghany, H. S. El-Beltagi, S. Anankanbil, C. Banerjee, S. V. Petersen, B. Pérez, and Z. Guo. 2018. Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of β-lactoglobulin-phenolic ­conjugates. Food Chemistry 241:281–9. doi: 10.1016/j.foodchem.2017.08.101.
  • Adilah, Z. M., B. Jamilah, and Z. N. Hanani. 2018. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids 74:207–18. doi: 10.1016/j.foodhyd.2017.08.017.
  • Ahmed, J., N. Al-Ruwaih, M. Mulla, and M. H. Rahman. 2018. Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT 91:191–7. doi: 10.1016/j.lwt.2018.01.054.
  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Araghi, M., Z. Moslehi, A. Mohammadi Nafchi, A. Mostahsan, N. Salamat, and A. Daraei Garmakhany. 2015. Cold water fish gelatin modification by a natural phenolic cross‐linker (ferulic acid and caffeic acid). Food Science & Nutrition 3 (5):370–5.
  • Arcan, I., and A. Yemenicioğlu. 2011. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Research International 44 (2):550–6. doi: 10.1016/j.foodres.2010.11.034.
  • Arts, M., G. Haenen, H.-P. Voss, and A. Bast. 2001. Masking of antioxidant capacity by the interaction of flavonoids with protein. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 39 (8):787–91.
  • Aslam, M., K. Barkat, N. S. Malik, M. S. Alqahtani, I. Anjum, I. Khalid, U. R. Tulain, N. Gohar, H. Zafar, A. C. Paiva-Santos, et al. 2022. pH sensitive pluronic acid/agarose-hydrogels as controlled drug delivery carriers: design, characterization and toxicity evaluation. Pharmaceutics 14 (6):1218. doi: 10.3390/pharmaceutics14061218.
  • Atkins, P., and J. De Paula. 2011. Physical chemistry for the life sciences. USA: Oxford University Press.
  • Aydogdu, A., E. Yildiz, Y. Aydogdu, G. Sumnu, S. Sahin, and Z. Ayhan. 2019. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids. 95:245–55. doi:10.1016/j.foodhyd.2019.04.020.
  • Baccaro, S., O. Bal, A. Cemmi, and I. Di Sarcina. 2018. The effect of gamma irradiation on rice protein aqueous solution. Radiation Physics and Chemistry 146:1–4. doi: 10.1016/j.radphyschem.2018.01.011.
  • Bartolomé, B., I. Estrella, and M. Hernandez. 2000. Interaction of low molecular weight phenolics with proteins (BSA). Journal of Food Science 65 (4):617–21. doi: 10.1111/j.1365-2621.2000.tb16060.x.
  • Behere, M., S. S. Patil, and V. K. Rathod. 2021. Rapid extraction of watermelon seed proteins using microwave and its functional properties. Preparative Biochemistry & Biotechnology 51 (3):252–9. doi: 10.1080/10826068.2020.1808792.
  • Berton-Carabin, C. C., and K. Schroën. 2015. Pickering emulsions for food applications: Background, trends, and challenges. Annual Review of Food Science and Technology 6:263–97.
  • Bock, A., U. Steinhäuser, and S. Drusch. 2021. Partitioning behavior and interfacial activity of phenolic acid derivatives and their impact on β-lactoglobulin at the oil-water interface. Food Biophysics 16 (2):191–202. doi: 10.1007/s11483-020-09663-7.
  • Bridi, R., A. Giordano, M. F. Peñailillo, and G. Montenegro. 2019. Antioxidant effect of extracts from native Chilean plants on the lipoperoxidation and protein oxidation of bovine muscle. Molecules 24 (18):3264. doi: 10.3390/molecules24183264.
  • Buchert, J., D. Ercili Cura, H. Ma, C. Gasparetti, E. Monogioudi, G. Faccio, M. Mattinen, H. Boer, R. Partanen, E. Selinheimo, et al. 2010. Crosslinking food proteins for improved functionality. Annual Review of Food Science and Technology 1:113–38. doi: 10.1146/annurev.food.080708.100841.
  • Buchner, N., A. Krumbein, S. Rohn, and L. W. Kroh. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry 20 (21):3229–35. doi: 10.1002/rcm.2720.
  • Buitimea-Cantúa, N. E., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldivar. 2018. Phenolic–protein interactions: Effects on food properties and health benefits. Journal of Medicinal Food 21 (2):188–98.
  • Cadesky, L., M. Walkling-Ribeiro, K. T. Kriner, M. V. Karwe, and C. I. Moraru. 2017. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. Journal of Dairy Science 100 (9):7055–70.
  • Cao, N., Y. Fu, and J. He. 2007. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids 21 (4):575–84. doi: 10.1016/j.foodhyd.2006.07.001.
  • Cao, Y., and Y. L. Xiong. 2015. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chemistry 180:235–43.
  • Chen, C., K. Shi, X. Qin, H. Zhang, H. Chen, D. G. Hayes, Q. Wu, Z. Hu, and G. Liu. 2021. Effect of interactions between glycosylated protein and tannic acid on the physicochemical stability of Pickering emulsions. LWT 152:112383. doi: 10.1016/j.lwt.2021.112383.
  • Chevalier, Y., and M.-A. Bolzinger. 2013. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439:23–34. doi: 10.1016/j.colsurfa.2013.02.054.
  • Ćorković, I., A. Pichler, J. Šimunović, and M. Kopjar. 2021. Hydrogels: Characteristics and application as delivery systems of phenolic and aroma compounds. Foods 10 (6):1252. doi: 10.3390/foods10061252.
  • Czubinski, J., and K. Dwiecki. 2022. Molecular structure-affinity relationship of selected phenolic compounds for lupin seed γ-conglutin. Food Hydrocolloids 128:107561. doi: 10.1016/j.foodhyd.2022.107561.
  • da Costa, A., A. M. Pereira, P. Sampaio, J. C. Rodríguez-Cabello, A. C. Gomes, M. Casal, and R. Machado. 2021. Protein-based films functionalized with a truncated antimicrobial peptide sequence display broad antimicrobial activity. ACS Biomaterials Science & Engineering 7 (2):451–61.
  • da Rosa, C. G., M. V. de Oliveira Brisola Maciel, S. M. de Carvalho, A. P. Z. de Melo, B. Jummes, T. da Silva, S. M. Martelli, M. A. Villetti, F. C. Bertoldi, and P. L. M. Barreto. 2015. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481:337–44. doi: 10.1016/j.colsurfa.2015.05.019.
  • Dai, T., D. J. McClements, T. Hu, J. Chen, X. He, C. Liu, J. Sheng, and J. Sun. 2022. Improving foam performance using colloidal protein–polyphenol complexes: Lactoferrin and tannic acid. Food Chemistry 377:131950. doi: 10.1016/j.foodchem.2021.131950.
  • Damodaran, S. 2017. Food proteins and their applications. Florida, USA: CRC Press.
  • Daniloski, D., A. T. Petkoska, N. A. Lee, A. E.-D. Bekhit, A. Carne, R. Vaskoska, and T. Vasiljevic. 2021. Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends in Food Science & Technology 111:688–705. doi: 10.1016/j.tifs.2021.03.024.
  • Di Mattia, C. D., G. Sacchetti, D. Mastrocola, D. K. Sarker, and P. Pittia. 2010. Surface properties of phenolic compounds and their influence on the dispersion degree and oxidative stability of olive oil O/W emulsions. Food Hydrocolloids 24 (6–7):652–8. doi: 10.1016/j.foodhyd.2010.03.007.
  • Djuardi, A. U. P., N. D. Yuliana, M. Ogawa, T. Akazawa, and M. T. Suhartono. 2020. Emulsifying properties and antioxidant activity of soy protein isolate conjugated with tea polyphenol extracts. Journal of Food Science and Technology 57 (10):3591–600.
  • Dong, M., Y. Xu, Y. Zhang, M. Han, P. Wang, X. Xu, and G. Zhou. 2020. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innovative Food Science & Emerging Technologies 59:102277. doi: 10.1016/j.ifset.2019.102277.
  • Dubeau, S., G. Samson, and H.-A. Tajmir-Riahi. 2010. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chemistry 122 (3):539–45. doi: 10.1016/j.foodchem.2010.03.005.
  • Emmambux, M., M. Stading, and J. Taylor. 2004. Sorghum kafirin film property modification with hydrolysable and condensed tannins. Journal of Cereal Science 40 (2):127–35. doi: 10.1016/j.jcs.2004.08.005.
  • Espinoza-Herrera, J., L. M. Martínez, S. O. Serna-Saldívar, and C. Chuck-Hernández. 2021. Methods for the modification and evaluation of cereal proteins for the substitution of wheat gluten in dough systems. Foods 10 (1):118. doi: 10.3390/foods10010118.
  • Fan, J.-X., X.-N. Guo, and K.-X. Zhu. 2022. Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. Food Hydrocolloids 124:107298. doi: 10.1016/j.foodhyd.2021.107298.
  • Gan, J., H. Chen, J. Liu, Y. Wang, S. Nirasawa, and Y. Cheng. 2016. Interactions of β-Conglycinin (7S) with Different Phenolic Acids—Impact on Structural Characteristics and Proteolytic Degradation of Proteins. International Journal of Molecular Sciences 17 (10):1671. doi: 10.3390/ijms17101671.
  • Ghosh, T., T. Das, and R. Purwar. 2021. Review of electrospun hydrogel nanofiber system: Synthesis, properties and applications. Polymer Engineering & Science 61 (7):1887–911. doi: 10.1002/pen.25709.
  • Gómez-Mascaraque, L. G., M. Martínez-Sanz, M. J. Fabra, and A. López-Rubio. 2019. Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocolloids 90:523–33. doi: 10.1016/j.foodhyd.2018.12.017.
  • Gopirajah, R., P. Singha, S. Javad, and S. S. Rizvi. 2020. Emulsifying properties of milk protein concentrate functionalized by supercritical fluid extrusion. Journal of Food Processing and Preservation 44 (10):e14754. doi: 10.1111/jfpp.14754.
  • Guimarães Drummond e Silva, F., B. Miralles, B. Hernández-Ledesma, L. Amigo, A. H. Iglesias, F. G. Reyes Reyes, and F. M. Netto. 2017. Influence of protein–phenolic complex on the antioxidant capacity of flaxseed (Linum usitatissimum L.) products. Journal of Agricultural and Food Chemistry 65 (4):800–9.
  • Gulrez, S. K., S. Al-Assaf, and G. O. Phillips. 2011. Hydrogels: Methods of preparation, characterisation and applications. In Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications, ed. A. Carpi, 117–50. Norderstedt, Germany: BoD – Books on Demand.
  • Guo, Y., Y-h Bao, K-f Sun, C. Chang, and W-f Liu. 2021. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocolloids 112:106293. doi: 10.1016/j.foodhyd.2020.106293.
  • Haque, M. A., Y. P. Timilsena, and B. Adhikari. 2016. Food proteins, structure, and function. In Reference module in food science, ed. N. Hilal, A. F. Ismail, T. Matsuura, and D. Oatley-Radcliffe, 1–8. Amsterdam: Elsevier.
  • Hassan, A. B., N. S. Mahmoud, K. Elmamoun, O. Q. Adiamo, and I. A. M. Ahmed. 2018. Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds. Radiation Physics and Chemistry 144:85–91. doi: 10.1016/j.radphyschem.2017.11.020.
  • Hebbar, R., A. Isloor, and A. Ismail. 2017. Contact angle measurements. In Membrane characterization, ed. E. B. Azevedo, 219–55. Santa Maria, Brasil: Universidade Federal de Santa Maria.
  • Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, R. Long, and Y. W. Ho. 2011. Protein-binding affinity of Leucaena condensed tannins of differing molecular weights. Journal of Agricultural and Food Chemistry 59 (19):10677–82.
  • Iltchenco, S., D. Preci, C. Bonifacino, E. F. Fraguas, C. Steffens, L. A. Panizzolo, R. Colet, I. A. Fernandes, C. Abirached, E. Valduga, et al. 2018. Whey protein concentration by ultrafiltration and study of functional properties. Ciência Rural 48 (5):1–11 doi: 10.1590/0103-8478cr20170807.
  • Insaward, A., K. Duangmal, and T. Mahawanich. 2015. Mechanical, optical, and barrier properties of soy protein film as affected by phenolic acid addition. Journal of Agricultural and Food Chemistry 63 (43):9421–6.
  • Jia, X., M. Zhao, N. Xia, J. Teng, C. Jia, B. Wei, L. Huang, and D. Chen. 2019. Interaction between plant phenolics and rice protein improved oxidative stabilities of emulsion. Journal of Cereal Science 89:102818. doi: 10.1016/j.jcs.2019.102818.
  • Jin, B., X. Zhou, S. Zhou, Y. Liu, R. Guan, Z. Zheng, and Y. Liang. 2019. Influence of phenolic acids on the storage and digestion stability of curcumin emulsions based on soy protein-pectin-phenolic acids ternary nano-complexes. Journal of Microencapsulation 36 (7):622–34. doi: 10.1080/02652048.2019.1662122.
  • Kang, D., W. Zhang, J. M. Lorenzo, and X. Chen. 2021. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Critical Reviews in Food Science and Nutrition 61 (11):1914–33. doi: 10.1080/10408398.2020.1767538.
  • Kaspchak, E., L. I. Mafra, and M. R. Mafra. 2018. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility. Food Chemistry 252:1–8. doi: 10.1016/j.foodchem.2018.01.089.
  • Kelemen, V., A. Pichler, I. Ivić, I. Buljeta, J. Šimunović, and M. Kopjar. 2022. Brown rice proteins as delivery system of phenolic and volatile compounds of raspberry juice. International Journal of Food Science & Technology 57 (4):1866–74. doi: 10.1111/ijfs.15023.
  • Kim, G. J., and K. O. Kim. 2020. Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Scientific Reports 10 (1):1–12.
  • Kim, K., S. Kim, J. Ryu, J. Jeon, S. G. Jang, H. Kim, D.-G. Gweon, W. B. Im, Y. Han, H. Kim, et al. 2017. Processable high internal phase Pickering emulsions using depletion attraction. Nature Communications 8 (1):14305–8. doi: 10.1038/ncomms14305.
  • Kopjar, M., I. Buljeta, I. Jelić, V. Kelemen, J. Šimunović, and A. Pichler. 2021. Encapsulation of cinnamic acid on plant-based proteins: Evaluation by HPLC, DSC and FTIR-ATR. Plants 10 (10):2158. doi: 10.3390/plants10102158.
  • Kroll, J., H. M. Rawel, and S. Rohn. 2003. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Science and Technology Research 9 (3):205–18. doi: 10.3136/fstr.9.205.
  • Ktari, N., R. B. S.-B. Salem, I. Bkhairia, S. B. Slima, R. Nasri, R. B. Salah, and M. Nasri. 2020. Functional properties and biological activities of peptides from zebra blenny protein hydrolysates fractionated using ultrafiltration. Food Bioscience 34:100539. doi: 10.1016/j.fbio.2020.100539.
  • Kumar, N., and N. Goel. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports (Amsterdam, Netherlands) 24:e00370.
  • Kuorwel, K. K., M. J. Cran, K. Sonneveld, J. Miltz, and S. W. Bigger. 2011. Antimicrobial activity of biodegradable polysaccharide and protein‐based films containing active agents. Journal of Food Science 76 (3):R90–R102.
  • Lamarra, J., M. N. Calienni, S. Rivero, and A. Pinotti. 2020. Electrospun nanofibers of poly (vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. International Journal of Biological Macromolecules 160:307–18.
  • Le Bourvellec, C., and C. Renard. 2012. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition 52 (3):213–48.
  • Li, J., J. Fu, Y. Ma, Y. He, R. Fu, A. Qayum, Z. Jiang, and L. Wang. 2022. Low temperature extrusion promotes transglutaminase cross-linking of whey protein isolate and enhances its emulsifying properties and water holding capacity. Food Hydrocolloids 125:107410. doi: 10.1016/j.foodhyd.2021.107410.
  • Li, J., N. Yang, J. Tang, Y. Gui, Y. Zhu, L. Guo, and B. Cui. 2022. The characterization of structural, thermal, pasting and gel properties of the blends of laccase-and tyrosinase-treated potato protein and starch. LWT 153:112463. doi: 10.1016/j.lwt.2021.112463.
  • Li, J., X. Jia, and L. Yin. 2021. Hydrogel: Diversity of structures and applications in food science. Food Reviews International 37 (3):313–72. doi: 10.1080/87559129.2020.1858313.
  • Li, M., H. Yu, Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2021. Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material. LWT 139:110800. doi: 10.1016/j.lwt.2020.110800.
  • Li, R., T. Dai, Y. Tan, G. Fu, Y. Wan, C. Liu, and D. J. McClements. 2020. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chemistry 310:125828. doi: 10.1016/j.foodchem.2019.125828.
  • Li, T., X. Li, T. Dai, P. Hu, X. Niu, C. Liu, and J. Chen. 2020. Binding mechanism and antioxidant capacity of selected phenolic acid-β-casein complexes. Food Research International 129:108802. doi: 10.1016/j.foodres.2019.108802.
  • Li, X., T. Dai, P. Hu, C. Zhang, J. Chen, C. Liu, and T. Li. 2020. Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocolloids 105:105761. doi: 10.1016/j.foodhyd.2020.105761.
  • Li, Y., H. Liu, Q. Liu, B. Kong, and X. Diao. 2019. Effects of zein hydrolysates coupled with sage (salvia officinalis) extract on the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions. Food Hydrocolloids 87:149–57. doi: 10.1016/j.foodhyd.2018.07.052.
  • Li, Y., Y. Li, Q. Li, Y. Lv, and S. Yi. 2021. Effects of gallic acid by ultrasound on physicochemical properties of lateolabrax japonicas myofibrillar protein. In E3S Web of Conferences (Vol. 251, p. 02043). doi: 10.1051/e3sconf/202125102043.
  • Liu, F., C. Sun, W. Yang, F. Yuan, and Y. Gao. 2015. Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances 5 (20):15641–51. doi: 10.1039/C4RA10802G.
  • Liu, H., R. L. Hebb, N. Putri, and S. S. Rizvi. 2018. Physical properties of supercritical fluid extrusion products composed of milk protein concentrate with carbohydrates. International Journal of Food Science & Technology 53 (3):847–56. doi: 10.1111/ijfs.13624.
  • Liu, Y., D. Wang, Z. Sun, F. Liu, L. Du, and D. Wang. 2021. Preparation and characterization of gelatin/chitosan/3-phenylacetic acid food-packaging nanofiber antibacterial films by electrospinning. International Journal of Biological Macromolecules 169:161–70.
  • Liu, Y., Y. Ran, Y. Ge, F. Raza, S. Li, H. Zafar, Y. Wu, A. C. Paiva-Santos, C. Yu, M. Sun, et al. 2022. pH-sensitive peptide hydrogels as a combination drug delivery system for cancer treatment. Pharmaceutics 14 (3):652. doi: 10.3390/pharmaceutics14030652.
  • López-Yerena, A., M. Perez, A. Vallverdú-Queralt, and E. Escribano-Ferrer. 2020. Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics 12 (11):1123. doi: 10.3390/pharmaceutics12111123.
  • Lu, Q., X. Wang, X. Hu, P. Cebe, F. Omenetto, and D. L. Kaplan. 2010. Stabilization and release of enzymes from silk films. Macromolecular Bioscience 10 (4):359–68.
  • Malik, M. A., H. K. Sharma, and C. S. Saini. 2017. Effect of gamma irradiation on structural, molecular, thermal and rheological properties of sunflower protein isolate. Food Hydrocolloids 72:312–22. doi: 10.1016/j.foodhyd.2017.06.011.
  • Manu, B., and U. Prasada Rao. 2011. Role of peroxidase and H2O2 in cross‐linking of gluten proteins. Journal of Food Biochemistry 35 (6):1695–702. doi: 10.1111/j.1745-4514.2010.00494.x.
  • Martins, J. T., A. I. Bourbon, A. C. Pinheiro, L. H. Fasolin, and A. A. Vicente. 2018. Protein-based structures for food applications: From macro to nanoscale. Frontiers in Sustainable Food Systems 2:77. doi: 10.3389/fsufs.2018.00077.
  • Masamba, K., Y. Li, H. R. Sharif, J. Ma, and F. Zhong. 2016. Mechanical and water barrier properties of zein–corn starch composite films as affected by gallic acid treatment. International Journal of Food Engineering 12 (8):773–81. doi: 10.1515/ijfe-2016-0112.
  • Minaei, F., S. A. H. Ravandi, S. M. Hejazi, and F. Alihosseini. 2019. The fabrication and characterization of casein/peo nanofibrous yarn via electrospinning. e-Polymers 19 (1):154–67. doi: 10.1515/epoly-2019-0017.
  • Mirmoghtadaie, L., S. S. Aliabadi, and S. M. Hosseini. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry 199:619–27.
  • Morales, C., M. Roeckel, and K. Fernández. 2014. Microscopic modeling of país grape seed extract absorption in the small intestine. AAPS PharmSciTech 15 (1):103–10.
  • Mudalige, T., H. Qu, D. Van Haute, S. M. Ansar, A. Paredes, and T. Ingle. 2019. Characterization of nanomaterials: Tools and challenges. In Nanomaterials for food applications, ed. L. G. Gomez-Mascaraque, L. R. Amparo, M. J. F. Rovira, M. M. Sanz, 313–53. Amsterdam, Netherland: Elsevier Science.
  • Musso, Y. S., P. R. Salgado, and A. N. Mauri. 2017. Smart edible films based on gelatin and curcumin. Food Hydrocolloids 66:8–15. doi: 10.1016/j.foodhyd.2016.11.007.
  • Neo, Y. P., C. O. Perera, M. K. Nieuwoudt, Z. Zujovic, J. Jin, S. Ray, and M. Gizdavic-Nikolaidis. 2014. Influence of heat curing on structure and physicochemical properties of phenolic acid loaded proteinaceous electrospun fibers. Journal of Agricultural and Food Chemistry 62 (22):5163–72.
  • Neo, Y. P., S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, and S. Y. Quek. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry 136 (2):1013–21. doi: 10.1016/j.foodchem.2012.09.010.
  • Ou, S., Y. Wang, S. Tang, C. Huang, and M. G. Jackson. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering 70 (2):205–10. doi: 10.1016/j.jfoodeng.2004.09.025.
  • Pan, X., Y. Fang, L. Wang, Y. Shi, M. Xie, J. Xia, F. Pei, P. Li, W. Xiong, X. Shen, et al. 2019. Covalent interaction between rice protein hydrolysates and chlorogenic acid: Improving the stability of oil-in-water emulsions. Journal of Agricultural and Food Chemistry 67 (14):4023–30. doi: 10.1021/acs.jafc.8b06898.
  • Parveen, S., P. Chaudhury, U. Dasmahapatra, and S. Dasgupta. 2019. Biodegradable protein films from gallic acid and the cataractous eye protein isolate. International Journal of Biological Macromolecules 139:12–20.
  • Pérez-Córdoba, L. J., I. T. Norton, H. K. Batchelor, K. Gkatzionis, F. Spyropoulos, and P. J. Sobral. 2018. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids 79:544–59. doi: 10.1016/j.foodhyd.2017.12.012.
  • Pham, L. B., B. Wang, B. Zisu, and B. Adhikari. 2019. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chemistry 293:463–71.
  • Picchio, M. L., Y. G. Linck, G. A. Monti, L. M. Gugliotta, R. J. Minari, and C. I. Alvarez Igarzabal. 2018. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocolloids 84:424–34. doi:10.1016/j.foodhyd.2018.06.028.
  • Pöri, P. 2020. Enzymatic modification of oat protein concentrate for increased fibrillation during high-moisture extrusion cooking.
  • Porto, M. D. A., J. P. Dos Santos, H. Hackbart, G. P. Bruni, L. M. Fonseca, E. da Rosa Zavareze, and A. R. G. Dias. 2019. Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. International Journal of Biological Macromolecules 126:834–41.
  • Poungchawanwong, S., W. Klaypradit, Q. Li, J. Wang, and H. Hou. 2020. Interaction effect of phenolic compounds on Alaska Pollock skin gelatin and associated changes. LWT 133:110018. doi: 10.1016/j.lwt.2020.110018.
  • Pourmohammadi, K., and E. Abedi. 2021. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chemistry 356:129679.
  • Prifti, D., and A. Maçi. 2017. Effect of Herbagreen nano-particles on biochemical and technological parameters of cereals (wheat and corn). European Scientific Journal 13:72–83.
  • Prodpran, T., S. Benjakul, and S. Phatcharat. 2012. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. International Journal of Biological Macromolecules 51 (5):774–82. doi: 10.1016/j.ijbiomac.2012.07.010.
  • Quan, T. H., S. Benjakul, T. Sae-leaw, A. K. Balange, and S. Maqsood. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Ribeiro‐Santos, R., de Melo, N. R. Andrade, M., and Sanches‐Silva, A. 2017. Potential of migration of active compounds from protein‐based films with essential oils to a food and a food simulant. Packaging Technology and Science 30 (12):791–8. doi: 10.1002/pts.2334.
  • Rohn, S. 2014. Possibilities and limitations in the analysis of covalent interactions between phenolic compounds and proteins. Food Research International 65:13–9. doi: 10.1016/j.foodres.2014.05.042.
  • Santos, T. M., Souza Filho, M. D. S. M. Muniz, C. R. Morais, J. P. S. Kotzebue, L. R. V. Pereira, A. L. S., and Azeredo, H. M. 2017. Zein films with unoxidized or oxidized tannic acid. Journal of the Science of Food and Agriculture 97 (13):4580–7. doi: 10.1002/jsfa.8327.
  • Schefer, S., M. Oest, and S. Rohn. 2021. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods 10 (11):2798. doi: 10.3390/foods10112798.
  • Schwenke, K. D. 2017. Enzyme and chemical modification of proteins. In Food proteins and their applications, 393–423. Florida, USA: CRC Press.
  • Sekowski, S., M. Bitiucki, M. Ionov, M. Zdeb, N. Abdulladjanova, R. Rakhimov, S. Mavlyanov, M. Bryszewska, and M. Zamaraeva. 2018. Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. Journal of Luminescence 194:170–8. doi: 10.1016/j.jlumin.2017.10.033.
  • Selvaraj, S., R. Thangam, and N. N. Fathima. 2018. Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications. International Journal of Biological Macromolecules 120 (Pt B):1674–81.
  • Singla, R. K., A. K. Dubey, A. Garg, R. K. Sharma, M. Fiorino, S. M. Ameen, Haddad, M. A., & M. Al-Hiary. 2019. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International, 102, 1397–400. doi: 10.1093/jaoac/102.5.1397.
  • Speight, J. G. 2016. Environmental organic chemistry for engineers. Oxford, UK: Butterworth-Heinemann.
  • Strauss, G., and S. M. Gibson. 2004. Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloids 18 (1):81–9. doi: 10.1016/S0268-005X(03)00045-6.
  • Taha, A., E. Ahmed, T. Hu, X. Xu, S. Pan, and H. Hu. 2019. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry 58:104627. doi: 10.1016/j.ultsonch.2019.104627.
  • Tavassoli-Kafrani, E., S. A. H. Goli, and M. Fathi. 2017. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds. International Journal of Biological Macromolecules 103:1062–8.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, and M. Hashemi. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition 58 (15):2583–97.
  • Velderrain-Rodríguez, G. R., H. Palafox-Carlos, A. Wall-Medrano, J. F. Ayala-Zavala, C.-Y O. Chen, M. Robles-Sánchez, H. Astiazaran-García, E. Alvarez-Parrilla, and G. A. González-Aguilar. 2014. Phenolic compounds: Their journey after intake. Food & Function 5 (2):189–97.
  • Wakuda, Y., S. Nishimoto, S-i Suye, and S. Fujita. 2018. Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Scientific Reports 8 (1):1–10. doi: 10.1038/s41598-018-24700-9.
  • Wan, Z.-L., J. Guo, and X.-Q. Yang. 2015. Plant protein-based delivery systems for bioactive ingredients in foods. Food & Function 6 (9):2876–89. doi: 10.1039/c5fo00050e.
  • Wan, Z.-L., J.-M. Wang, L.-Y. Wang, Y. Yuan, and X.-Q. Yang. 2014. Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chemistry 161:324–31.
  • Wang, Y., and Y. L. Xiong. 2021. Physicochemical and microstructural characterization of whey protein films formed with oxidized ferulic/tannic acids. Foods 10 (7):1599. doi: 10.3390/foods10071599.
  • Wei, Z., H. Zhang, and Q. Huang. 2019. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin–gallic acid conjugates and carboxymethyldextran. Food & Function 10 (8):4911–23.
  • Wei, Z., W. Yang, R. Fan, F. Yuan, and Y. Gao. 2015. Evaluation of structural and functional properties of protein–EGCG complexes and their ability of stabilizing a model β-carotene emulsion. Food Hydrocolloids 45:337–50. doi: 10.1016/j.foodhyd.2014.12.008.
  • Weiss, J., T. Ahmad, C. Zhang, and H. Zhang. 2020. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends in Food Science & Technology 106:91–103.
  • Wihodo, M., and C. I. Moraru. 2013. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering 114 (3):292–302. doi: 10.1016/j.jfoodeng.2012.08.021.
  • Wu, D., Y. Dai, Y. Huang, J. Gao, H. Liang, M. Eid, Q. Deng, and B. Zhou. 2020. Metal–phenolic network covering on zein nanoparticles as a regulator on the oil/water interface. Journal of Agricultural and Food Chemistry 68 (31):8471–82. doi: 10.1021/acs.jafc.0c02632.
  • Wu, S., Y. Zhang, F. Ren, Y. Qin, J. Liu, J. Liu, Q. Wang, and H. Zhang. 2018. Structure–affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity. Food Chemistry 245:613–9. doi: 10.1016/j.foodchem.2017.10.122.
  • Xiao, J., F. Mao, F. Yang, Y. Zhao, C. Zhang, and K. Yamamoto. 2011. Interaction of dietary polyphenols with bovine milk proteins: Molecular structure–affinity relationship and influencing bioactivity aspects. Molecular Nutrition & Food Research 55 (11):1637–45. doi: 10.1002/mnfr.201100280.
  • Xie, J., and Y.-L. Hsieh. 2003. Ultra-high surface fibrous membranes from electrospinning of natural proteins: Casein and lipase enzyme. Journal of Materials Science 38 (10):2125–33. doi: 10.1023/A:1023763727747.
  • Yan, X., S. Liang, T. Peng, G. Zhang, Z. Zeng, P. Yu, D. Gong, and S. Deng. 2020. Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocolloids 102:105612. doi: 10.1016/j.foodhyd.2019.105612.
  • Yan, X., Y. Gao, S. Liu, G. Zhang, J. Zhao, D. Cheng, Z. Zeng, X. Gong, P. Yu, and D. Gong. 2021. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed ­kernel. Food Chemistry 352:129377. doi: 10.1016/j.foodchem.2021.129377.
  • Yi, F., K. Wu, G. Yu, and C. Su. 2021. Preparation of Pickering emulsion based on soy protein isolate-gallic acid with outstanding ­antioxidation and antimicrobial. Colloids and Surfaces. B, Biointerfaces 206:111954.
  • Yi, J., M. Qiu, N. Liu, L. Tian, X. Zhu, E. A. Decker, and D. J. McClements. 2020. Inhibition of lipid and protein oxidation in whey-protein-stabilized emulsions using a natural antioxidant: Black rice anthocyanins. Journal of Agricultural and Food Chemistry 68 (37):10149–56.
  • Yuan, S., Y. Zhang, J. Liu, Y. Zhao, L. Tan, J. Liu, Q. Wang, and H. Zhang. 2019. Structure-affinity relationship of the binding of phenolic acids and their derivatives to bovine serum albumin. Food Chemistry 278:77–83. doi: 10.1016/j.foodchem.2018.11.060.
  • Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry 44 (9):e13394. doi: 10.1111/jfbc.13394.
  • Zeeb, B., D. J. McClements, and J. Weiss. 2017. Enzyme-based strategies for structuring foods for improved functionality. Annual Review of Food Science and Technology 8:21–34.
  • Zhan, F., J. Hu, C. He, J. Sun, J. Li, and B. Li. 2020. Complexation between sodium caseinate and gallic acid: Effects on foam properties and interfacial properties of foam. Food Hydrocolloids 99:105365. doi: 10.1016/j.foodhyd.2019.105365.
  • Zhan, F., J. Li, Y. Wang, M. Shi, B. Li, and F. Sheng. 2018. Bulk, foam, and interfacial properties of tannic acid/sodium caseinate nanocomplexes. Journal of Agricultural and Food Chemistry 66 (26):6832–9.
  • Zhan, F., X. Tang, R. Sobhy, B. Li, and Y. Chen. 2022. Structural and rheology properties of pea protein isolate‐stabilised emulsion gel: Effect of crosslinking with transglutaminase. International Journal of Food Science & Technology 57 (2):974–82. doi: 10.1111/ijfs.15446.
  • Zhang, L., L.-J. Wang, W. Jiang, and J.-Y. Qian. 2017. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT 84:73–81. doi: 10.1016/j.lwt.2017.05.048.
  • Zhang, Q., L. Li, Q. Lan, M. Li, D. Wu, H. Chen, Y. Liu, D. Lin, W. Qin, Z. Zhang, et al. 2019. Protein glycosylation: A promising way to modify the functional properties and extend the application in food system. Critical Reviews in Food Science and Nutrition 59 (15):2506–33. doi: 10.1080/10408398.2018.1507995.
  • Zhang, Q., Z. Cheng, Y. Wang, and L. Fu. 2021. Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition 61 (21):3589–615.
  • Zhang, X., M. D. Do, P. Casey, A. Sulistio, G. G. Qiao, L. Lundin, P. Lillford, and S. Kosaraju. 2010a. Chemical cross-linking gelatin with natural phenolic compounds as studied by high-resolution NMR spectroscopy. Biomacromolecules 11 (4):1125–32. doi: 10.1021/bm1001284.
  • Zhang, X., M. D. Do, P. Casey, A. Sulistio, G. G. Qiao, L. Lundin, P. Lillford, and S. Kosaraju. 2010b. Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid. Journal of Agricultural and Food Chemistry 58 (11):6809–15. doi: 10.1021/jf1004226.
  • Zhang, Y., S. Wu, Y. Qin, J. Liu, J. Liu, Q. Wang, F. Ren, and H. Zhang. 2018. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chemistry 240:1072–80. doi: 10.1016/j.foodchem.2017.07.100.
  • Zhao, Q., X. Yu, C. Zhou, A. E. A. Yagoub, and H. Ma. 2020. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. LWT 124:109192. doi: 10.1016/j.lwt.2020.109192.
  • Zhao, Z., J. Xiao, W. Wang, and Y. Cao. 2020. Zein/phenolic antioxidant nanoparticles stabilized Pickering emulsions: Effect of antioxidant hydrophobicity on lipid oxidation. Journal of Physics: Conference Series 1605 (1):012181. doi: 10.1088/1742-6596/1605/1/012181.
  • Zhao, Z., M. Lu, Z. Mao, J. Xiao, Q. Huang, X. Lin, and Y. Cao. 2020. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. International Journal of Biological Macromolecules 152:223–33.
  • Zhong, Y., J. Zhao, T. Dai, D. J. McClements, and C. Liu. 2021. The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocolloids 113:106444. doi: 10.1016/j.foodhyd.2020.106444.
  • Zhou, B., S. Gao, X. Li, H. Liang, and S. Li. 2020. Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. International Journal of Food Science & Technology 55 (5):1924–34. doi: 10.1111/ijfs.14419.
  • Zhou, F.-Z., X.-H. Yu, D.-H. Luo, B. Liu, T. Yang, S.-W. Yin, and X.-Q. Yang. 2021. Facile and Robust Route for Preparing Pickering High Internal Phase Emulsions Stabilized by Bare Zein Particles. ACS Food Science & Technology 1 (8):1481–91. doi: 10.1021/acsfoodscitech.1c00218.
  • Zhu, X., Y. Chen, Y. Hu, Y. Han, J. Xu, Y. Zhao, X. Chen, and B. Li. 2021. Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties. Food Hydrocolloids 111:106179. doi: 10.1016/j.foodhyd.2020.106179.
  • Zink, J., T. Wyrobnik, T. Prinz, and M. Schmid. 2016. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences 17 (9):1376. doi: 10.3390/ijms17091376.
  • Zou, Y., J. Guo, S.-W. Yin, J.-M. Wang, and X.-Q. Yang. 2015. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. Journal of Agricultural and Food Chemistry 63 (33):7405–14.
  • Zupančič, Š. 2019. Core-shell nanofibers as drug-delivery systems. Acta Pharmaceutica (Zagreb, Croatia) 69 (2):131–53. doi: 10.2478/acph-2019-0014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.