928
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: A review

, , , , , , , & show all

References

  • Aoki, R., K. Kamikado, W. Suda, H. Takii, Y. Mikami, N. Suganuma, M. Hattori, and Y. Koga. 2017. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports 7:43522. doi: 10.1038/srep43522.
  • Balakumar, M., D. Prabhu, C. Sathishkumar, P. Prabu, N. Rokana, R. Kumar, S. Raghavan, A. Soundarajan, S. Grover, V. K. Batish, et al. 2018. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. European Journal of Nutrition 57 (1):279–95. 10.1007/s00394-016-1317-7.
  • Brown, J. M., and L. Yu. 2009. Opposing Gatekeepers of Apical Sterol Transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry 9 (1):18–29. doi: 10.2174/187152209788009797.
  • Brown, M. 2011. Modes of action of probiotics: Recent developments. Journal of Animal and Veterinary Advances 10 (14):1895–900. doi: doi: 10.3923/javaa.2011.1895.1900.
  • Byakika, S., I. M. Mukisa, Y. B. Byaruhanga, and C. Muyanja. 2019. A review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Reviews International 35 (5):427–66. doi: 10.1080/87559129.2019.1584815.
  • Caballero-Franco, C., K. Keller, C. D. Simone, and K. Chadee. 2007. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 292 (1):G315–G322. doi: 10.1152/ajpgi.00265.2006.
  • Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57 (6):1470–81. doi: 10.2337/db07-1403.
  • Cani, P. D., and N. M. Delzenne. 2009. The role of the gut microbiota in energy metabolism and metabolic disease. Current Pharmaceutical Design 15 (13):1546–58. doi: 10.2174/138161209788168164.
  • Chen, M., W. L. Guo, Q. Y. Li, J. X. Xu, Y. J. Cao, B. Liu, X. D. Yu, P. F. Rao, L. Ni, and X. C. Lv. 2020. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet. Food & Function 11 (4):3316–31. 10.1039/C9FO03003D.
  • Chen, M.-j., C. Liu, Y. Wan, L. Yang, S. Jiang, D.-w. Qian, and J.-a. Duan. 2021. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 165:108757. doi: 10.1016/j.steroids.2020.108757.
  • Chen, Y. T., N. S. Yang, Y. C. Lin, S. T. Ho, K. Y. Li, J. S. Lin, J. R. Liu, and M. J. Chen. 2018. A combination of Lactobacillus mali APS1 and dieting improved the efficacy of obesity treatment via manipulating gut microbiome in mice. Scientific Reports 8 (1):6153. doi: 10.1038/s41598-018-23844-y.
  • Chu, H., Y. Duan, L. Yang, and B. Schnabl. 2019. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut 68 (2):359–70. doi: 10.1136/gutjnl-2018-316307.
  • Cotten, R., P. Pham, S. Parker, D. Vattem, B. J. Friedman, and V. Maitin. 2011. Secreted bioactive factors from Bifidobacterium longum increase the levels of intestinal Fasting Induced Adipocyte Factor (FIAF) in vitro. The FASEB Journal 25 (S1):584.17–584.17. doi: 10.1096/fasebj.25.1_supplement.584.17.
  • Cui, Y., Q. Wang, R. Chang, X. Zhou, and C. Xu. 2019. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota. Journal of Agricultural and Food Chemistry 67 (10):2754–62. doi: 10.1021/acs.jafc.9b00080.
  • Damodharan, K., Y. S. Lee, S. Palaniyandi, S. H. Yang, and J. Suh. 2015. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Frontiers in Microbiology 6 (2015):768. doi: 10.3389/fmicb.2015.00768.
  • Evivie, S. E., G.-C. Huo, J. O. Igene, and X. Bian. 2017. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food & Nutrition Research 61 (1):1318034. doi: 10.1080/16546628.2017.1318034.
  • Fang, W., L. Zhang, Q. Meng, W. Wu, Y. K. Lee, J. Xie, and H. Zhang. 2018. Effects of dietary pectin on the profile and transport of intestinal bile acids in young pigs. Journal of Animal Science 96 (11):4743–54. doi: 10.1093/jas/sky327.
  • Gaemers, I. C., J. M. Stallen, C. Kunne, C. Wallner, J. van Werven, A. Nederveen, and W. H. Lamers. 2011. Lipotoxicity and steatohepatitis in an overfed mouse model for non-alcoholic fatty liver disease. Biochimica et Biophysica Acta 1812 (4):447–58. doi: 10.1016/j.bbadis.2011.01.003.
  • Gao, X., F. Wang, P. Zhao, R. Zhang, and Q. Zeng. 2019. Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats. PeerJ 7 (7):e7117. doi: 10.7717/peerj.7117.
  • Garcia, M., L. Thirouard, L. Sedès, M. Monrose, H. Holota, F. Caira, D. H. Volle, and C. Beaudoin. 2018. Nuclear receptor metabolism of bile acids and xenobiotics: A coordinated detoxification system with impact on health and diseases. International Journal of Molecular Sciences 19 (11):3630. doi: 10.3390/ijms19113630.
  • Goldenberg, J. Z., C. Yap, L. Lytvyn, C. K. Lo, J. Beardsley, D. Mertz, and B. C. Johnston. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. The Cochrane Database of Systematic Reviews 12 (12):Cd006095. doi: 10.1002/14651858.CD006095.pub4.
  • Gomes de Oliveira, M. E., E. Fernandes Garcia, C. E. Vasconcelos de Oliveira, A. M. Pereira Gomes, M. M. Esteves Pintado, A. R. M. Ferreira Madureira, M. L. da Conceição, R. d. C. Ramos do EgyptoQueiroga, and E. L. de Souza. 2014. Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Research International 64 (2014):241–7. doi: 10.1016/j.foodres.2014.06.032.
  • Han, Y.-H., J.-Y. Kee, S.-H. Park, J.-G. Mun, H.-D. Jeon, J. Park, Q.-P. Zou, X.-Q. Liu, and S.-H. Hong. 2019. Rubrofusarin-6-β-gentiobioside inhibits lipid accumulation and weight gain by regulating AMPK/mTOR signaling. Phytomedicine 62 (2019):152952. doi: 10.1016/j.phymed.2019.152952. [31132754]
  • Hansawasdi, C., J. Kawabata, and T. Kasai. 2001. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Bioscience, Biotechnology, and Biochemistry 65 (9):2087–9. doi: 10.1271/bbb.65.2087.
  • Horiuchi, H., K. Kamikado, R. Aoki, N. Suganuma, T. Nishijima, A. Nakatani, and I. Kimura. 2020. Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Scientific Reports 10 (1):4158. doi: 10.1038/s41598-020-60984-6.
  • Hou, G., W. Peng, L. Wei, R. Li, Y. Yuan, X. Huang, and Y. Yin. 2020. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing–finishing pigs via its bile salt hydrolase activity. Frontiers in Nutrition 7 (2020):617676. doi: 10.3389/fnut.2020.617676.
  • Hsieh, F.-C., C.-C. E. Lan, T.-Y. Huang, K.-W. Chen, C.-Y. Chai, W.-T. Chen, A.-H. Fang, Y.-H. Chen, and C.-S. Wu. 2016. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food & Function 7 (5):2374–88. doi: 10.1039/C5FO01396H.
  • Hu, J., S. Lin, B. Zheng, and P. C. K. Cheung. 2018. Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition 58 (8):1243–9. doi: 10.1080/10408398.2016.1245650.
  • Huang, W., G. Wang, Y. Xia, Z. Xiong, and L. Ai. 2020. Bile salt hydrolase-overexpressing Lactobacillus strains can improve hepatic lipid accumulation in vitro in an NAFLD cell model. Food & Nutrition Research 64 (0):3751. doi: 10.29219/fnr.v64.3751.
  • Hugon, P., J. C. Lagier, P. Colson, F. Bittar, and D. Raoult. 2017. Repertoire of human gut microbes. Microbial Pathogenesis 106 (2017):103–12. doi: 10.1016/j.micpath.2016.06.020.
  • Huo, Y., G. Zhao, J. Li, R. Wang, F. Ren, Y. Li, and X. Wang. 2022. Bifidobacterium animalis subsp. lactis A6 enhances fatty acid β-oxidation of adipose tissue to ameliorate the development of obesity in mice. Nutrients 14 (3):598. doi: 10.3390/nu14030598.
  • In Kim, H., J.-K. Kim, J.-Y. Kim, S.-E. Jang, M. J. Han, and D.-H. Kim. 2019. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutrition Research (New York, NY) 67 (2019):78–89. doi: 10.1016/j.nutres.2019.03.008.
  • Jeung, W. H., J. J. Shim, S. W. Woo, J. H. Sim, and J. L. Lee. 2018. Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 cell extracts inhibit adipogenesis in 3T3-L1 and HepG2 cells. Journal of Medicinal Food 21 (9):876–86. doi: 10.1089/jmf.2017.4157.
  • Jiang, D., D. Wang, X. Zhuang, Z. Wang, Y. Ni, S. Chen, and F. Sun. 2016. Berberine increases adipose triglyceride lipase in 3T3-L1 adipocytes through the AMPK pathway. Lipids in Health and Disease 15 (1):214. doi: 10.1186/s12944-016-0383-4.
  • Jiao, N., S. S. Baker, A. Chapa-Rodriguez, W. Liu, C. A. Nugent, M. Tsompana, L. Mastrandrea, M. J. Buck, R. D. Baker, R. J. Genco, et al. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67 (10):1881–91. doi: 10.1136/gutjnl-2017-314307.
  • Jung, S., Y. J. Lee, M. Kim, M. Kim, J. H. Kwak, J.-W. Lee, Y.-T. Ahn, J.-H. Sim, and J. H. Lee. 2015. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. Journal of Functional Foods 19 (2015):744–52. doi: 10.1016/j.jff.2015.10.006.
  • Kim, B., K.-Y. Park, Y. Ji, S. Park, W. Holzapfel, and C.-K. Hyun. 2016. Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochemical and Biophysical Research Communications 473 (2):530–6. doi: 10.1016/j.bbrc.2016.03.107.
  • Kim, S., S.-I. Choi, M. Jang, Y. Jeong, C.-H. Kang, and G.-H. Kim. 2020. Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes. Food Science and Biotechnology 29 (11):1541–51. doi: 10.1007/s10068-020-00819-2.
  • Kriaa, A., M. Bourgin, A. Potiron, H. Mkaouar, A. Jablaoui, P. Gérard, E. Maguin, and M. Rhimi. 2019. Microbial impact on cholesterol and bile acid metabolism: Current status and future prospects. Journal of Lipid Research 60 (2):323–32. doi: 10.1194/jlr.R088989.
  • Le Chatelier, E., T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, M. Almeida, M. Arumugam, J.-M. Batto, S. Kennedy, MetaHIT Consortium, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500 (7464):541–6. 10.1038/nature12506.
  • Le Poul, E., C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, et al. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. The Journal of Biological Chemistry 278 (28):25481–9. doi: 10.1074/jbc.M301403200.
  • Lee, Y.-S., D. Lee, G.-S. Park, S.-H. Ko, J. Park, Y.-K. Lee, and J. Kang. 2021. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota. Food & Function 12 (14):6363–73. doi: 10.1039/D1FO00698C.
  • Li, K.-K., P.-J. Tian, S.-D. Wang, P. Lei, L. Qu, J.-P. Huang, Y.-J. Shan, and B-l Li. 2017. Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway. Journal of Functional Foods 38 (2017):561–70. doi: 10.1016/j.jff.2017.09.049.
  • Li, X., Y. Huang, L. Song, Y. Xiao, S. Lu, J. Xu, J. Li, and Z. Ren. 2020. Lactobacillus plantarum prevents obesity via modulation of gut microbiota and metabolites in high-fat feeding mice. Journal of Functional Foods 73 (2020):104103. doi: 10.1016/j.jff.2020.104103.
  • Li, Y., T. Liu, X. Zhang, M. Zhao, H. Zhang, and F. Feng. 2019. Lactobacillus plantarum helps to suppress body weight gain, improve serum lipid profile and ameliorate low-grade inflammation in mice administered with glycerol monolaurate. Journal of Functional Foods 53:54–61. doi: 10.1016/j.jff.2018.12.015.
  • Liang, C., X.-H. Zhou, P.-M. Gong, H.-Y. Niu, L.-Z. Lyu, Y.-F. Wu, X. Han, and L.-W. Zhang. 2021. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food & Function 12 (10):4315–24. doi: 10.1039/D1FO00260K.
  • Lim, S.-M., J.-J. Jeong, K. H. Woo, M. J. Han, and D.-H. Kim. 2016. Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutrition Research (New York, NY) 36 (4):337–48. doi: 10.1016/j.nutres.2015.12.001.
  • Lindholm, C. R., R. L. Ertel, J. D. Bauwens, E. G. Schmuck, J. D. Mulligan, and K. W. Saupe. 2013. A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. Journal of Physiology and Biochemistry 69 (2):165–75. doi: 10.1007/s13105-012-0199-2.
  • Lv, X.-C., M. Chen, Z.-R. Huang, W.-L. Guo, L.-Z. Ai, W.-D. Bai, X.-D. Yu, Y.-L. Liu, P.-F. Rao, and L. Ni. 2021. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Research International (Ottawa, ON) 139:109956. doi: 10.1016/j.foodres.2020.109956.
  • Malaguarnera, M., M. Vacante, T. Antic, M. Giordano, G. Chisari, R. Acquaviva, S. Mastrojeni, G. Malaguarnera, A. Mistretta, G. L. Volti, et al. 2012. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Digestive Diseases and Sciences 57 (2):545–53. doi: 10.1007/s10620-011-1887-4.
  • Mazloom, Z., A. Yousefinejad, and M. H. Dabbaghmanesh. 2013. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: A clinical trial. Iranian Journal of Medical Sciences 38 (1):38–43.
  • Molina-Tijeras, J. A., P. Diez-Echave, T. Vezza, L. Hidalgo-García, A. J. Ruiz-Malagón, M. J. Rodríguez-Sojo, M. Romero, I. Robles-Vera, F. García, J. Plaza-Diaz, et al. 2021. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research 167:105471. doi: 10.1016/j.phrs.2021.105471.
  • Mousavi Khaneghah, A., K. Abhari, I. Eş, M. B. Soares, R. B. A. Oliveira, H. Hosseini, M. Rezaei, C. F. Balthazar, R. Silva, A. G. Cruz, et al. 2020. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends in Food Science & Technology 95 (2020):205–18. doi: 10.1016/j.tifs.2019.11.022.
  • Mu, J., J. Zhang, X. Zhou, Z. Zalan, F. Hegyi, K. Takács, A. Ibrahim, S. Awad, Y. Wu, X. Zhao, et al. 2020. Effect of Lactobacillus plantarum KFY02 isolated from naturally fermented yogurt on the weight loss in mice with high-fat diet-induced obesity via PPAR-α/γ signaling pathway. Journal of Functional Foods 75 (2020):104264. doi: 10.1016/j.jff.2020.104264.
  • Nami, Y., R. Vaseghi Bakhshayesh, M. Manafi, and M. A. Hejazi. 2019. Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT 111 (2019):876–82. doi: 10.1016/j.lwt.2019.05.057.
  • Neef, A., and Y. Sanz. 2013. Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition and Metabolic Care 16 (6):679–87. doi: 10.1097/MCO.0b013e328365c258.
  • Oh, N., J. Lee, H. Kim, M. Kwon, J. Seo, and S. Roh. 2021. Comparison of cell-free extracts from three newly identified Lactobacillus plantarum strains on the inhibitory effect of adipogenic differentiation and insulin resistance in 3T3-L1 adipocytes. BioMed Research International 2021 (2):6676502. doi: 10.1155/2021/6676502.
  • Pahumunto, N., B. Sophatha, S. Piwat, and R. Teanpaisan. 2019. Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: A double-blind, randomized, controlled study. Journal of Dental Sciences 14 (2):178–84. doi: 10.1016/j.jds.2019.01.008.
  • Pan, D. D., X. Q. Zeng, and Y. T. Yan. 2011. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. Journal of the Science of Food and Agriculture 91 (3):512–8. doi: 10.1002/jsfa.4214.
  • Papadimitriou, K., G. Zoumpopoulou, B. Foligné, V. Alexandraki, M. Kazou, B. Pot, and E. Tsakalidou. 2015. Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology 6 (2015):58. doi: 10.3389/fmicb.2015.00058.
  • Park, S., Y. Ji, H.-Y. Jung, H. Park, J. Kang, S.-H. Choi, H. Shin, C.-K. Hyun, K.-T. Kim, and W. H. Holzapfel. 2017. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue ­accumulation in a diet-induced obesity murine model. Applied Microbiology and Biotechnology 101 (4):1605–14. doi: 10.1007/s00253-016-7953-2.
  • Park, S., J. Kang, S. Choi, H. Park, E. Hwang, Y. G. Kang, A. R. Kim, W. Holzapfel, and Y. Ji. 2018. Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLos One 13 (8):e0203150. doi: 10.1371/journal.pone.0203150.
  • Pimentel, T. C., L. I. Gomes de Oliveira, E. de Lourdes Chaves Macedo, G. N. Costa, D. R. Dias, R. F. Schwan, and M. Magnani. 2021. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends in Food Science & Technology 114 (2021):25–59. doi: 10.1016/j.tifs.2021.05.024.
  • Postler, T. S., and S. Ghosh. 2017. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism 26 (1):110–30. doi: 10.1016/j.cmet.2017.05.008.
  • Pradhan, D., R. H. Mallappa, and S. Grover. 2020. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108 (2020):106872. doi: 10.1016/j.foodcont.2019.106872.
  • Qi, Y., C. Jiang, J. Cheng, K. W. Krausz, T. Li, J. M. Ferrell, F. J. Gonzalez, and J. Y. Chiang. 2015. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochimica et Biophysica Acta 1851 (1):19–29. doi: 10.1016/j.bbalip.2014.04.008.
  • Qu, T., L. Yang, Y. Wang, B. Jiang, M. Shen, and D. Ren. 2020. Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products. Food & Function 11 (2):1397–409. doi: 10.1039/C9FO02478F.
  • Rahayu, E. S., M. Mariyatun, N. E. Putri Manurung, P. N. Hasan, P. Therdtatha, R. Mishima, H. Komalasari, N. A. Mahfuzah, F. H. Pamungkaningtyas, W. K. Yoga, et al. 2021. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World Journal of Gastroenterology 27 (1):107–28. doi: 10.3748/wjg.v27.i1.107.
  • Rahman, M. S., I. Kang, Y. Lee, M. A. Habib, B. J. Choi, J. S. Kang, D.-S. Park, and Y.-S. Kim. 2021. Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. Journal of Agricultural and Food Chemistry 69 (21):6032–42. doi: 10.1021/acs.jafc.1c01440.
  • Ray, M., P. K. Hor, D. Ojha, J. P. Soren, S. N. Singh, and K. C. Mondal. 2018. Bifidobacteria and its rice fermented products on diet induced obese mice: Analysis of physical status, serum profile and gene expressions. Beneficial Microbes 9 (3):441–52. 10.3920/bm2017.0056.
  • Rooks, M. G., and W. S. Garrett. 2016. Gut microbiota, metabolites and host immunity. Nature Reviews. Immunology 16 (6):341–52. doi: 10.1038/nri.2016.42.
  • Roselli, M., A. Finamore, E. Brasili, R. Rami, F. Nobili, C. Orsi, A. V. Zambrini, and E. Mengheri. 2018. Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. Journal of Functional Foods 45 (2018):321–9. doi: 10.1016/j.jff.2018.03.039.
  • Sanchez, M., C. Darimont, V. Drapeau, S. Emady-Azar, M. Lepage, E. Rezzonico, C. Ngom-Bru, B. Berger, L. Philippe, C. Ammon-Zuffrey, et al. 2014. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. The British Journal of Nutrition 111 (8):1507–19. doi: 10.1017/S0007114513003875.
  • Shen, J., M. S. Obin, and L. Zhao. 2013. The gut microbiota, obesity and insulin resistance. Molecular Aspects of Medicine 34 (1):39–58. doi: 10.1016/j.mam.2012.11.001.
  • Solito, A., N. Bozzi Cionci, M. Calgaro, M. Caputo, L. Vannini, I. Hasballa, F. Archero, E. Giglione, R. Ricotti, G. E. Walker, et al. 2021. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clinical Nutrition 40 (7):4585–94. doi: 10.1016/j.clnu.2021.06.002.
  • Sun, H., M. Zhang, Y. Liu, Y. Wang, Y. Chen, W. Guan, X. Li, and Y. Wang. 2021. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. Carbohydrate Polymers 260 (2021):117843. doi: 10.1016/j.carbpol.2021.117843.
  • Tang, C., F. Meng, X. Pang, M. Chen, L. Zhou, Z. Lu, and Y. Lu. 2020. Protective effects of Lactobacillus acidophilus NX2-6 against oleic acid-induced steatosis, mitochondrial dysfunction, endoplasmic reticulum stress and inflammatory responses. Journal of Functional Foods 74 (2020):104206. doi: 10.1016/j.jff.2020.104206.
  • Teng, Y., Y. Wang, Y. Tian, Y.-y. Chen, W.-y. Guan, C.-h. Piao, and Y.-h. Wang. 2020. Lactobacillus plantarum LP104 ameliorates hyperlipidemia induced by AMPK pathways in C57BL/6N mice fed high-fat diet. Journal of Functional Foods 64 (2020):103665. doi: 10.1016/j.jff.2019.103665.
  • Tonucci, L. B., K. M. Olbrich dos Santos, L. Licursi de Oliveira, S. M. Rocha Ribeiro, and H. S. Duarte Martino. 2017. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clinical Nutrition 36 (1):85–92. doi: 10.1016/j.clnu.2015.11.011.
  • Toshimitsu, T., S. Ozaki, J. Mochizuki, K. Furuichi, and Y. Asami. 2017. Effects of Lactobacillus plantarum strain OLL2712 culture conditions on the anti-inflammatory activities for murine immune cells and obese and type 2 diabetic mice. Applied and Environmental Microbiology 83 (7):e03001–16. doi: 10.1128/AEM.03001-16.
  • Ukibe, K., M. Miyoshi, and Y. Kadooka. 2015. Administration of Lactobacillus gasseri SBT2055 suppresses macrophage infiltration into adipose tissue in diet-induced obese mice. The British Journal of Nutrition 114 (8):1180–7. doi: 10.1017/s0007114515002627.
  • Wang, G., W. Huang, Y. Xia, Z. Xiong, and L. Ai. 2019. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food & Function 10 (3):1684–95. doi: 10.1039/C8FO02181C.
  • Wang, T., H. Yan, Y. Lu, X. Li, X. Wang, Y. Shan, Y. Yi, B. Liu, Y. Zhou, and X. Lü. 2020. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation. European Journal of Nutrition 59 (6):2709–28. doi: 10.1007/s00394-019-02117-y.
  • Wang, Y., Y. Tian, N. Zhang, X. Li, X. Wang, W. Wang, J. Zhang, C. Piao, Y. Wang, and J. Liu. 2021. Pediococcus pentosaceus PP04 improves high-fat diet-induced liver injury by the modulation of gut inflammation and intestinal microbiota in C57BL/6N mice. Food & Function 12 (15):6851–62. doi: 10.1039/D1FO00857A.
  • Wang, Y., Y. You, Y. Tian, H. Sun, X. Li, X. Wang, Y. Wang, and J. Liu. 2020. Pediococcus pentosaceus PP04 ameliorates high-fat diet-induced hyperlipidemia by regulating lipid metabolism in C57BL/6N mice. Journal of Agricultural and Food Chemistry 68 (51):15154–63. doi: 10.1021/acs.jafc.0c05060.
  • WHO. 2021. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. Geneva, Switzerland. https://www.who.int/publications/i/item/9789240027053.
  • Yadav, H., J. H. Lee, J. Lloyd, P. Walter, and S. G. Rane. 2013. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. The Journal of Biological Chemistry 288 (35):25088–97. doi: 10.1074/jbc.M113.452516.
  • Yoon, H., Y. Lee, H. Park, H. J. Kang, Y. Ji, and W. H. Holzapfel. 2021. Lactobacillus johnsonii BFE6154 ameliorates diet-induced hypercholesterolemia. Probiotics and Antimicrobial Proteins doi: 10.1007/s12602-021-09859-4.
  • Yoon, S., H. Cho, Y. Nam, M. Park, A. Lim, J. H. Kim, J. Park, and W. Kim. 2022. Multifunctional probiotic and functional properties of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi. Journal of Microbiology and Biotechnology 32 (1):72–80. doi: 10.4014/jmb.2109.09025.
  • Zeng, Z., J. Luo, F. Zuo, Y. Zhang, H. Ma, and S. Chen. 2016. Screening for potential novel probiotic Lactobacillus strains based on high dipeptidyl peptidase IV and α-glucosidase inhibitory activity. Journal of Functional Foods 20 (2016):486–95. doi: 10.1016/j.jff.2015.11.030.
  • Zhang, F., L. Qiu, X. Xu, Z. Liu, H. Zhan, X. Tao, N. P. Shah, and H. Wei. 2017. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. Journal of Dairy Science 100 (3):1618–28. doi: 10.3168/jds.2016-11870.
  • Zhang, J., S. Wang, Z. Zeng, Y. Qin, Q. Shen, and P. Li. 2020. Anti-diabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model. Journal of Functional Foods 67 (2020):103843. doi: 10.1016/j.jff.2020.103843.
  • Zhang, Y., H. Kishi, and S. Kobayashi. 2018. Add-on therapy with traditional Chinese medicine: An efficacious approach for lipid metabolism disorders. Pharmacological Research 134 (2018):200–11. doi: 10.1016/j.phrs.2018.06.004.
  • Zhang, Z., X. Liang, Y. Lv, H. Yi, Y. Chen, L. Bai, H. Zhou, T. Liu, R. Li, and L. Zhang. 2020. Evaluation of probiotics for improving and regulation metabolism relevant to type 2 diabetes in vitro. Journal of Functional Foods 64 (2020):103664. doi: 10.1016/j.jff.2019.103664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.