672
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges

, , , , , & show all

References

  • Abbasi-Moayed, S., A. Bigdeli, and M. R. Hormozi-Nezhad. 2022. Determination of spermine and spermidine in meat with a ratiometric fluorescence nanoprobe and a combinational logic gate. Food Chemistry 384:132459. doi: 10.1016/j.foodchem.2022.132459.
  • Abd El-Aziz, M. A., H. M. Ibrahim, N. A. EL-Roos, B. Anis, and R. Elsabagh. 2020. Antibacterial efficacy of zinc oxide and titanium dioxide nanoparticles against Escherichia coli in minced meat. Journal of World’s Poultry Research 10 (3):267–75. doi: 10.36380/scil.2020.wvj35.
  • Abishad, P., J. Vergis, V. Unni, V. P. Ram, P. Niveditha, J. Yasur, S. Juliet, L. John, K. Byrappa, P. Nambiar, et al. 2022. Green synthesized silver nanoparticles using lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli. Probiotics and Antimicrobial Proteins 14 (5):904–14. doi: 10.1007/s12602-022-09961-1.
  • Agricultural Industry Standard of the People’s Republic of China. 2021. Technical specifications of processing and distribution of chilled meat (Standard No. NY/T 4026-2021). Last Modified June 1, 2022. Accessed June 10, 2022. http://down.foodmate.net/standard/sort/5/113994.html.
  • Ahangari, H., S. Kurbanoglu, A. Ehsani, and B. Uslu. 2021. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications. Trends in Food Science & Technology 112:75–87. doi: 10.1016/j.tifs.2021.03.037.
  • Ali, S. S., R. Al-Tohamy, E. Koutra, M. S. Moawad, M. Kornaros, A. M. Mustafa, Y. Mahmoud, A. Badr, M. Osman, T. Elsamahy, et al. 2021a. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. The Science of the Total Environment 792:148359. doi: 10.1016/j.scitotenv.2021.148359.
  • Ali, S. S., M. S. Moawad, M. A. Hussein, M. Azab, E. A. Abdelkarim, A. Badr, J. Sun, and M. Khalil. 2021b. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets. International Journal of Food Microbiology 344:109116. doi: 10.1016/j.ijfoodmicro.2021.109116.
  • Alsharif, N. B., G. F. Samu, S. Sáringer, A. Szerlauth, D. Takács, V. Hornok, I. Dékány, and I. Szilagyi. 2022. Antioxidant colloids via heteroaggregation of cerium oxide nanoparticles and latex beads. Colloids and Surfaces. B, Biointerfaces 216:112531. doi: 10.1016/j.colsurfb.2022.112531.
  • Argyri, A. A., O. S. Papadopoulou, A. Nisiotou, C. C. Tassou, and N. Chorianopoulos. 2018. Effect of high pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiology 70:55–64. doi: 10.1016/j.fm.2017.08.019.
  • Ashaolu, T. J., I. Khalifa, M. A. Mesak, J. M. Lorenzo, and M. A. Farag. 2021. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Critical Reviews in Food Science and Nutrition 1–18. doi: 10.1080/10408398.2021.1929059.
  • Bassey, A. P., K. Ye, C. Li, and G. Zhou. 2021. Transcriptomic-proteomic integration: A powerful synergy to elucidate the mechanisms of meat spoilage in the cold chain. Trends in Food Science & Technology 113:12–25. doi: 10.1016/j.tifs.2021.02.051.
  • Bi, X., Q. Bai, L. Wang, F. Du, M. Liu, W. W. Yu, S. Li, J. Li, Z. Zhu, N. Sui, et al. 2022. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Research 15 (2):1446–54. doi: 10.1007/s12274-021-3685-4.
  • Bing, J., X. Xiao, D. J. McClements, Y. Biao, and C. Chongjiang. 2021. Protein corona formation around inorganic nanoparticles: Food plant proteins-TiO2 nanoparticle interactions. Food Hydrocolloids. 115:106594. doi: 10.1016/j.foodhyd.2021.106594.
  • Bing, S., Y. Zang, Y. Li, B. Zhang, Q. Mo, X. Zhao, and C. Yang. 2022. A combined approach using slightly acidic electrolyzed water and tea polyphenols to inhibit lipid oxidation and ensure microbiological safety during beef preservation. Meat Science 183:108643. doi: 10.1016/j.meatsci.2021.108643.
  • Boyacι-Gündüz, C. P., S. A. Ibrahim, O. C. Wei, and C. M. Galanakis. 2021. Transformation of the food sector: Security and resilience during the COVID-19 pandemic. Foods 10 (3):497. doi: 10.3390/foods10030497.
  • Brown, T., J. E. Corry, and J. A. Evans. 2007. Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system. Meat Science 77 (4):670–7. doi: 10.1016/j.meatsci.2007.05.021.
  • Bruce, J., K. Bosnick, and E. K. Heidari. 2022. Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage. Sensors and Actuators B: Chemical 355:131316. doi: 10.1016/j.snb.2021.131316.
  • Bugatti, V., L. Vertuccio, F. Zuppardi, V. Vittoria, and G. Gorrasi. 2019. Pet and active coating based on a ldh nanofiller hosting p-hydroxybenzoate and food-grade zeolites: Evaluation of antimicrobial activity of packaging and shelf life of red meat. Nanomaterials 9 (12):1727. doi: 10.3390/nano9121727.
  • Campo, M. M., G. R. Nute, S. I. Hughes, M. Enser, J. D. Wood, and R. I. Richardson. 2006. Flavour perception of oxidation in beef. Meat Science 72 (2):303–11. doi: 10.1016/j.meatsci.2005.07.015.
  • Center for Food Safety and Applied Nutrition. 2018. Center for food safety and applied nutrition nanotechnology programs. Last Modified March 19, 2018. Accessed June 10, 2022. https://www.fda.gov/science-research/nanotechnology-programs-fda/center-food-safety-and-applied-nutrition-nanotechnology-programs.
  • Chang, X., Y. Hou, Q. Liu, Z. Hu, Q. Xie, Y. Shan, G. Li, and S. Ding. 2021. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids 119:106846. doi: 10.1016/j.foodhyd.2021.106846.
  • Chen, J., X. Chen, G. Zhou, and X. Xu. 2022a. Ultrasound: A reliable method for regulating food component interactions in protein-based food matrices. Trends in Food Science & Technology 128:316–30. doi: 10.1016/j.tifs.2022.08.014.
  • Chen, J., X. Chen, G. Zhou, and X. Xu. 2022b. New insights into the ultrasound impact on covalent reactions of myofibrillar protein. Ultrasonics Sonochemistry 84:105973. doi: 10.1016/j.ultsonch.2022.105973.
  • Chen, J., Y. Lu, F. Yan, Y. Wu, D. Huang, and Z. Weng. 2020. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chemistry 310:125922. doi: 10.1016/j.foodchem.2019.125922.
  • Chen, L., X. Niu, X. Fan, Y. Liu, J. Yang, X. Xu, G. Zhou, B. Zhu, N. Ullah, and X. Feng. 2022d. Highly absorbent antibacterial chitosan-based aerogels for shelf-life extension of fresh pork. Food Control. 136:108644. doi: 10.1016/j.foodcont.2021.108644.
  • Chen, J., X. Zhang, X. Chen, A. P. Bassey, G. Zhou, and X. Xu. 2022c. Phenolic modification of myofibrillar protein enhanced by ultrasound: The structure of phenol matters. Food Chemistry 386:132662. doi: 10.1016/j.foodchem.2022.132662.
  • Chen, H., D. Zheng, W. Pan, X. Li, B. Lv, W. Gu, J. O. Machuki, J. Chen, W. Liang, K. Qin, et al. 2021. Biomimetic nanotheranostics camouflaged with cancer cell membranes integrating persistent oxygen supply and homotypic targeting for hypoxic tumor elimination. ACS Applied Materials & Interfaces 13 (17):19710–25. doi: 10.1021/acsami.1c03010.
  • Coreas, R., X. Cao, G. M. DeLoid, P. Demokritou, and W. Zhong. 2020. Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact 20:100272. doi: 10.1016/j.impact.2020.100272.
  • Das, R., A. Dhiman, A. Kapil, V. Bansal, and T. K. Sharma. 2019. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Analytical and Bioanalytical Chemistry 411 (6):1229–38. doi: 10.1007/s00216-018-1555-z.
  • Ding, N., S. Dong, Y. Zhang, D. Lu, J. Lin, Q. Zhao, and X. Shi. 2022. Portable silver-doped prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness. Sensors and Actuators B: Chemical 363:131811. doi: 10.1016/j.snb.2022.131811.
  • Dobersek, U., K. Teel, S. Altmeyer, J. Adkins, G. Wy, and J. Peak. 2021. Meat and mental health: A meta-analysis of meat consumption, depression, and anxiety. Critical Reviews in Food Science and Nutrition 1–18. doi: 10.1080/10408398.2021.1974336.
  • Du, S., Z. Zhang, L. Xiao, Y. Lou, Y. Pan, and Y. Zhao. 2016. Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp. Frontiers in Microbiology 7:305. doi: 10.3389/fmicb.2016.00305.
  • Dziewięcka, M., P. Witas, J. Karpeta-Kaczmarek, J. Kwaśniewska, B. Flasz, K. Balin, and M. Augustyniak. 2018. Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food. The Science of the Total Environment 635:947–55. doi: 10.1016/j.scitotenv.2018.04.207.
  • EFSA Scientific Committee, More, S., V. Bampidis, D. Benford, C. Bragard, T. Halldorsson, A. Hernández-Jerez, S. H. Bennekou, K. Koutsoumanis, C. Lambré, K. Machera, et al. 2021. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA Journal. European Food Safety Authority 19 (8):e06769. doi: 10.2903/j.efsa.2021.6769.
  • Fang, Y., W. Wu, Y. Qin, H. Liu, K. Lu, L. Wang, and M. Zhang. 2022. Recent development in antibacterial activity and application of nanozymes in food preservation. Critical Reviews in Food Science and Nutrition 1–19. doi: 10.1080/10408398.2022.2065660.
  • Food Standards Australia New Zealand (FSANZ). 2021. Nanotechnology and food. Last Modified May 1, 2021. Accessed June 10, 2022. https://www.foodstandards.gov.au/consumer/foodtech/nanotech/Pages/default.aspx.
  • Galanakis, C. M. 2022. Sustainable applications for the valorization of cereal processing by-products. Foods 11 (2):241. doi: 10.3390/foods11020241.
  • Galanakis, C. M., T. M. Aldawoud, M. Rizou, N. J. Rowan, and S. A. Ibrahim. 2020. Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 9 (11):1701. doi: 10.3390/foods9111701.
  • Galanakis, C. M., M. Rizou, T. M. Aldawoud, I. Ucak, and N. J. Rowan. 2021. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science & Technology 110:193–200. doi: 10.1016/j.tifs.2021.02.002.
  • Gallocchio, F., V. Cibin, G. Biancotto, A. Roccato, O. Muzzolon, L. Carmen, B. Simone, L. Manodori, A. Fabrizi, I. Patuzzi, et al. 2016. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (6):1063–71. doi: 10.1080/19440049.2016.1179794.
  • Gao, L., J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, et al. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2 (9):577–83. doi: 10.1038/nnano.2007.260.
  • Ghaderi-Ghahfarokhi, M., M. Barzegar, M. A. Sahari, H. Ahmadi Gavlighi, and F. Gardini. 2017. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. International Journal of Biological Macromolecules 102:19–28. doi: 10.1016/j.ijbiomac.2017.04.002.
  • Gmoshinski, I. V., V. A. Shipelin, and S. A. Khotimchenko. 2018. Nanomaterials in food products and their package: Comparative analysis of risks and advantages. Health Risk Analysis 4:133–41. doi: 10.21668/health.risk/2018.4.16.eng.
  • Gómez-Llorente, H., P. Hervás, É. Pérez-Esteve, J. M. Barat, and I. Fernández-Segovia. 2022. Nanotechnology in the agri-food sector: Consumer perceptions. NanoImpact 26:100399. doi: 10.1016/j.impact.2022.100399.
  • Gong, L., X. Zhang, K. Ge, Y. Yin, J. O. a Machuki, Y. Yang, H. Shi, D. Geng, and F. Gao. 2021. Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer’s disease. Biomaterials 267:120483. doi: 10.1016/j.biomaterials.2020.120483.
  • Government of Canada. 2022. General guidance for nanotechnology in food. Last Modified October 28, 2011. Accessed June 10, 2022 https://www.canada.ca/en/health-canada/services/drugs-health-products/nanotechnology-based-health-products-food.html.
  • Han, J. W., M. Zuo, W. Y. Zhu, J. H. Zuo, E. L. Lü, and X. T. Yang. 2021. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends in Food Science & Technology 109:536–51. doi: 10.1016/j.tifs.2021.01.066.
  • Hong, S. I., Y. Cho, and J. W. Rhim. 2021. Effect of Agar/AgNP composite film packaging on refrigerated beef loin quality. Membranes 11 (10):750. doi: 10.3390/membranes11100750.
  • Hu, W.-C., J. Pang, S. Biswas, K. Wang, C. Wang, and X. H. Xia. 2021. Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Analytical Chemistry 93 (24):8544–52. doi: 10.1021/acs.analchem.1c01261.
  • Huang, H., M. Li, M. Hao, L. L. Yu, and Y. Li. 2021. A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity. Talanta 235:122775. doi: 10.1016/j.talanta.2021.122775.
  • Huang, Y., J. Ren, and X. Qu. 2019b. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews 119 (6):4357–412. doi: 10.1021/acs.chemrev.8b00672.
  • Huang, L., D. W. Sun, H. Pu, and Q. Wei. 2019a. Development of nanozymes for food quality and safety detection: Principles and recent applications. Comprehensive Reviews in Food Science and Food Safety 18 (5):1496–513. doi: 10.1111/1541-4337.12485.
  • Islam, M. N., A. Rauf, F. I. Fahad, T. B. Emran, S. Mitra, A. Olatunde, M. A. Shariati, M. Rebezov, K. R. R. Rengasamy, and M. S. Mubarak. 2022. Superoxide dismutase: An updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition 62 (26):7282–300. doi: 10.1080/10408398.2021.1913400.
  • Ji, J., S. Shankar, F. Royon, S. Salmieri, and M. Lacroix. 2021. Essential oils as natural antimicrobials applied in meat and meat products—A review. Critical Reviews in Food Science and Nutrition 1–17. doi: 10.1080/10408398.2021.1957766.
  • Juling, S., A. Niedzwiecka, L. Böhmert, D. Lichtenstein, S. Selve, A. Braeuning, A. F. Thünemann, E. Krause, and A. Lampen. 2017. Protein corona analysis of silver nanoparticles links to their cellular effects. Journal of Proteome Research 16 (11):4020–34. doi: 10.1021/acs.jproteome.7b00412.
  • Katiyo, W., H. L. de Kock, R. Coorey, and E. M. Buys. 2019. Assessment of safety risks associated with handling chicken as based on practices and knowledge of a group of South African consumers. Food Control 101:104–11. doi: 10.1016/j.foodcont.2019.02.027.
  • Katsaros, G., and P. Taoukis. 2021. Microbial control by high pressure processing for shelf-life extension of packed meat products in the cold chain: modeling and case studies. Applied Sciences 11 (3):1317. doi: 10.3390/app11031317.
  • Keklik, N. M., A. Demirci, and V. M. Puri. 2010. Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light. Poultry Science 89 (3):570–81. doi: 10.3382/ps.2008-00476.
  • Khan, A. U., Y. Wei, A. Ahmad, Z. U. H. Khan, K. Tahir, S. U. Khan, N. Muhammad, F. U. Khan, and Q. Yuan. 2016. Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. Journal of Molecular Liquids 215:39–46. doi: 10.1016/j.molliq.2015.12.019.
  • Kropf, D. H. 1993. Colour stability. Factors affecting the colour of fresh meat. Meat Focus International (United Kingdom). https://agris.fao.org/agris-search/search.do?recordID=GB9401558.
  • Lan, W., A. Lang, D. Zhou, and J. Xie. 2021. Combined effects of ultrasound and slightly acidic electrolyzed water on quality of sea bass (Lateolabrax Japonicus) fillets during refrigerated storage. Ultrasonics Sonochemistry 81:105854. doi: 10.1016/j.ultsonch.2021.105854.
  • Li, H., J. Gan, Q. Yang, L. Fu, and Y. Wang. 2021b. Colorimetric detection of food freshness based on amine-responsive dopamine polymerization on gold nanoparticles. Talanta 234:122706. doi: 10.1016/j.talanta.2021.122706.
  • Li, S., Y. Hou, Q. Chen, X. Zhang, H. Cao, and Y. Huang. 2020b. Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation. ACS Applied Materials & Interfaces 12 (2):2581–90. doi: 10.1021/acsami.9b20275.
  • Li, F., Y. Liu, Y. Cao, Y. Zhang, T. Zhe, Z. Guo, X. Sun, Q. Wang, and L. Wang. 2020a. Copper sulfide nanoparticle-carrageenan films for packaging application. Food Hydrocolloids 109:106094. doi: 10.1016/j.foodhyd.2020.106094.
  • Li, S., C. Pang, X. Ma, Y. Zhang, Z. Xu, J. Li, M. Zhang, and M. Wang. 2021c. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchimica Acta 188 (12):1–8. doi: 10.1007/s00604-021-05084-6.
  • Liu, Y., J. Kangas, Y. Wang, K. Khosla, J. Pasek-Allen, A. Saunders, S. Oldenburg, and J. Bischof. 2020. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 12 (23):12346–56. doi: 10.1039/D0NR01614D.
  • Liu, P., X. Zheng, S. Shangguan, L. Zhao, X. Fang, Y. Huang, and S. W. Hermanowicz. 2022. Public perceptions and willingness-to-pay for nanopesticides. Nanomaterials 12 (8):1292. doi: 10.3390/nano12081292.
  • Li, F., T. Zhe, K. Ma, R. Li, M. Li, Y. Liu, Y. Cao, and L. Wang. 2021a. A naturally derived nanocomposite film with photodynamic antibacterial activity: new prospect for sustainable food packaging. ACS Applied Materials & Interfaces 13 (44):52998–3008. doi: 10.1021/acsami.1c12243.
  • Li, Z. Q., W. W. Zheng, Y. Liu, Y. Zhou, G. S. He, Y. X. Zheng, and W. D. Qu. 2018. Management and safety assessment of nanomaterials in food: Status and prospects. Zhonghua yu Fang yi Xue za Zhi [Chinese Journal of Preventive Medicine] 52 (10):1082–8. doi: 10.3760/cma.j.issn.0253-9624.2018.10.023.
  • Li, Y., W. Zhu, J. Li, and H. Chu. 2021d. Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids and Surfaces. B, Biointerfaces 198:111465. doi: 10.1016/j.colsurfb.2020.111465.
  • Ma, K., T. Zhe, F. Li, Y. Zhang, M. Yu, R. Li, and L. Wang. 2022. Sustainable films containing AIE-active berberine-based nanoparticles: A promising antibacterial food packaging. Food Hydrocolloids. 123:107147. doi: 10.1016/j.foodhyd.2021.107147.
  • Manea, F., F. B. Houillon, L. Pasquato, and P. Scrimin. 2004. Nanozymes: Gold nanoparticle-based transphosphorylation catalysts. Angewandte Chemie 116 (45):6291–5. doi: 10.1002/ange.200460649.
  • Mansur, A. R., C. N. Tango, G. H. Kim, and D. H. Oh. 2015. Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control. 47:277–84. doi: 10.1016/j.foodcont.2014.07.019.
  • Mirhosseini, M., A. Shekari-Far, F. Hakimian, B. F. Haghiralsadat, S. K. Fatemi, and F. Dashtestani. 2020. Core-shell Au@ Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application. Process Biochemistry 95:131–8. doi: 10.1016/j.procbio.2020.05.003.
  • Munekata, P. E., M. Pateiro, E. R. B. Bellucci, R. Domínguez, A. C. da Silva Barretto, and J. M. Lorenzo. 2021. Strategies to increase the shelf life of meat and meat products with phenolic compounds. Advances in Food and Nutrition Research 98:171–205. doi: 10.1016/bs.afnr.2021.02.008.
  • Nanotechnology Guidance Documents. 2018. Final guidance for industry-use of nanomaterials in food for animals. Last Modified March 23, Accessed June 10, 2022 https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-guidance-documents.
  • National Development and Reform Commission. 2021. The current situation, difficulties and policy suggestions of the development of cold chain logistics in China [Press release]. Last Modified June 17 Accessed June 10, 2022. https://www.thepaper.cn/newsDetail_forward_13181982.
  • National Standards of the People’s Republic of China. 2019. Nanotechnologies—Measurement method for peroxidase-like activity of iron oxide nanoparticles (Standard No. GB/T 37966-2019). Last Modified August 30, 2019. Accessed June 10, 2022. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=175A81A0DB4DEF94204E317888570758.
  • National Standards of the People’s Republic of China. 2021. Technical requirements for processing of chilled meat (Standard No. GB/T 40464-2021). Last Modified August 20, Accessed June 10, 2022. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=6DA619DD0CFAE297F09900DA9C6DE91A.
  • Ni, Y., J. Wang, J. Sun, and J. Wang. 2022. Konjac glucomannan films with quasi-pasteurization function for tangerines preservation. Food Chemistry 367:130622. doi: 10.1016/j.foodchem.2021.130622.
  • Pan, T., H. Chen, X. Gao, Z. Wu, Y. Ye, and Y. Shen. 2022. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Journal of Hazardous Materials 435:128996. doi: 10.1016/j.jhazmat.2022.128996.
  • Pandey, G. 2018. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology & Innovation 11:299–307. doi: 10.1016/j.eti.2018.06.012.
  • Papier, K., A. Knuppel, N. Syam, S. A. Jebb, and T. J. Key. 2021. Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition 1–12. doi: 10.1080/10408398.2021.1949575.
  • Qin, J., Y. Feng, D. Cheng, B. Liu, Z. Wang, Y. Zhao, and J. Wei. 2021. Construction of a mesoporous ceria hollow sphere/enzyme nanoreactor for enhanced cascade catalytic antibacterial therapy. ACS Applied Materials & Interfaces 13 (34):40302–14. doi: 10.1021/acsami.1c10821.
  • Qu, L., X. Fang, T. Xie, H. Xu, G. Yang, and W. Liu. 2022. Nanozyme-catalyzed cascade reactions for high-sensitive glucose sensing and efficient bacterial killing. Sensors and Actuators B: Chemical 353:131156. doi: 10.1016/j.snb.2021.131156.
  • Rahman, S. M. E., J. Wang, and D. H. Oh. 2013. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control. 30 (1):176–83. doi: 10.1016/j.foodcont.2012.06.041.
  • Ren, Q.-S., K. Fang, X. T. Yang, and J. W. Han. 2022. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends in Food Science & Technology 119:133–51. doi: 10.1016/j.tifs.2021.12.006.
  • Rysman, T., T. Van Hecke, C. Van Poucke, S. D. Smet, and G. Van Royen. 2016. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties. Food Chemistry 209:177–84. doi: 10.1016/j.foodchem.2016.04.027.
  • Shah, A., G. Lutfullah, K. Ahmad, A. T. Khalil, and M. Maaza. 2018. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chemistry Letters and Reviews 11 (3):318–33. doi: 10.1080/17518253.2018.1502365.
  • Shrivastava, S., P. K. Bairagi, and N. Verma. 2020. Spermine biomarker of cancerous cells voltammetrically detected on a poly (β-cyclodextrin)-electropolymerized carbon film dispersed with Cu-CNFs. Sensors and Actuators B: Chemical 313:128055. doi: 10.1016/j.snb.2020.128055.
  • Su, Z., T. Du, X. Liang, X. Wang, L. Zhao, J. Sun, J. Wang, and W. Zhang. 2022. Nanozymes for foodborne microbial contaminants detection: Mechanisms, recent advances, and challenges. Food Control. 141:109165. doi: 10.1016/j.foodcont.2022.109165.
  • Sun, J., Z. Zhang, H. Li, H. Yin, P. Hao, X. Dai, K. Jiang, C. Liu, T. Zhang, J. Yin, et al. 2022. Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate. Analytical Chemistry 94 (13):5273–83. doi: 10.1021/acs.analchem.1c05013.
  • Sund, J., H. Alenius, M. Vippola, K. Savolainen, and A. Puustinen. 2011. Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5 (6):4300–9. doi: 10.1021/nn101492k.
  • Swaidan, A., A. Barras, A. Addad, J. F. Tahon, J. Toufaily, T. Hamieh, S. Szunerits, and R. Boukherroub. 2021. Colorimetric sensing of dopamine in beef meat using copper sulfide encapsulated within bovine serum albumin functionalized with copper phosphate (CuS-BSA-Cu3(PO4)2) nanoparticles. Journal of Colloid and Interface Science 582 (Pt B):732–40. doi: 10.1016/j.jcis.2020.08.057.
  • Tarhan, Ö. 2020. Safety and regulatory issues of nanomaterials in foods. In Handbook of food nanotechnology, 655–703. Netherlands: Elsevier. doi: 10.1016/B978-0-12-815866-1.00016-9.
  • Torre, R., E. Costa-Rama, H. P. Nouws, and C. Delerue-Matos. 2020. Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. Journal of Analytical Science and Technology 11 (1):8. doi: 10.1186/s40543-020-0203-3.
  • Ulbin-Figlewicz, N., A. Jarmoluk, and K. Marycz. 2015. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology 65 (3):1537–46. doi: 10.1007/s13213-014-0992-y.
  • Ur Rahim, H., M. Qaswar, M. Uddin, C. Giannini, M. L. Herrera, and G. Rea. 2021. Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials 11 (8):2068. doi: 10.3390/nano11082068.
  • Vieira, K. C. D. O., H. R. A. D. Silva, I. P. M. Rocha, E. Barboza, and L. K. W. Eller. 2022. Foodborne pathogens in the omics era. Critical Reviews in Food Science and Nutrition 62 (24):6726–41. doi: 10.1080/10408398.2021.1905603.
  • Wang, Z., Z. He, A. M. Emara, X. Gan, and H. Li. 2019. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry 288:405–12. doi: 10.1016/j.foodchem.2019.02.126.
  • Wang, Q., H. Wang, T. Zhang, Z. Hu, L. Xia, L. Li, J. Chen, and S. Jiang. 2021b. Antibacterial activity of polyvinyl alcohol/WO3 films assisted by near-infrared light and its application in freshness monitoring. Journal of Agricultural and Food Chemistry 69 (3):1068–78. doi: 10.1021/acs.jafc.0c06961.
  • Wang, H., X. Zhang, G. Wang, K. Jia, X. Xu, and G. Zhou. 2017. Bacterial community and spoilage profiles shift in response to packaging in yellow-feather broiler, a highly popular meat in Asia. Frontiers in Microbiology 8:2588. doi: 10.3389/fmicb.2017.02588.
  • Wang, D., F. Zhou, D. Lai, Y. Zhang, J. Hu, and S. Lin. 2021a. Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage. Ultrasonics Sonochemistry 78:105715. doi: 10.1016/j.ultsonch.2021.105715.
  • Wei, F., X. Cui, Z. Wang, C. Dong, J. Li, and X. Han. 2021. Recoverable peroxidase-like Fe3O4@ MoS2-Ag nanozyme with enhanced antibacterial ability. Chemical Engineering Journal (Lausanne, Switzerland : 1996) 408:127240. doi: 10.1016/j.cej.2020.127240.
  • Wu, Z., C. Huang, Y. Dong, B. Zhao, and Y. Chen. 2022. Gold core@ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control. 137:108916. doi: 10.1016/j.foodcont.2022.108916.
  • Xiao, S., W. G. Zhang, E. J. Lee, C. W. Ma, and D. U. Ahn. 2011. Effects of diet, packaging, and irradiation on protein oxidation, lipid oxidation, and color of raw broiler thigh meat during refrigerated storage. Poultry Science 90 (6):1348–57. doi: 10.3382/ps.2010-01244.
  • Xu, J., S. Zhu, M. Zhang, P. Cao, and B. Adhikari. 2021. Combined radio frequency and hot water pasteurization of Nostoc sphaeroides: Effect on temperature uniformity, nutrients content, and phycocyanin stability. LWT 141:110880. doi: 10.1016/j.lwt.2021.110880.
  • Xue, L., N. Jin, R. Guo, S. Wang, W. Qi, Y. Liu, Y. Li, and J. Lin. 2021. Microfluidic colorimetric biosensors based on MnO2 nanozymes and convergence–divergence spiral micromixers for rapid and sensitive detection of salmonella. ACS Sensors 6 (8):2883–92. doi: 10.1021/acssensors.1c00292.[PMC].[34237939].
  • Yang, J., X. Zhang, L. Chen, X. Zhou, X. Fan, Y. Hu, X. Niu, X. Xu, G. Zhou, N. Ullah, et al. 2022. Antibacterial aerogels with nano‑silver reduced in situ by carboxymethyl cellulose for fresh meat preservation. International Journal of Biological Macromolecules 213:621–30. doi: 10.1016/j.ijbiomac.2022.05.145.[PMC].[35623462].
  • You, L., Y. Guo, R. Luo, Y. Fan, T. Zhang, Q. Hu, and S. Bo. 2018. Spoilage marker metabolites and pathway analysis in chilled tan sheep meat based on GC-MS. Food Science and Technology Research 24 (4):635–51. doi: 10.3136/fstr.24.635.
  • Yuan, L., W. Feng, Z. Zhang, Y. Peng, Y. Xiao, and J. Chen. 2021. Effect of potato starch-based antibacterial composite films with thyme oil microemulsion or microcapsule on shelf life of chilled meat. LWT 139:110462. doi: 10.1016/j.lwt.2020.110462.
  • Zhang, Y., X. Gao, Y. Ye, and Y. Shen. 2022b. Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness. The Analyst 147 (5):956–64. doi: 10.1039/D1AN02325J.
  • Zhang, X., J. Ong’achwa Machuki, W. Pan, W. Cai, Z. Xi, F. Shen, L. Zhang, Y. Yang, F. Gao, and M. Guan. 2020d. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 14 (4):4045–60. doi: 10.1021/acsnano.9b08737.
  • Zhang, Y., X. Rui, and B. K. Simpson. 2021b. Trends in nanozymes development versus traditional enzymes in food science. Current Opinion in Food Science 37:10–6. doi: 10.1016/j.cofs.2020.08.001.
  • Zhang, M., S. Song, D. Zhao, J. Shi, X. Xu, G. Zhou, and C. Li. 2020c. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. The Journal of Nutritional Biochemistry 85:108487. doi: 10.1016/j.jnutbio.2020.108487.
  • Zhang, Y., X. Tian, Y. Jiao, Q. Liu, R. Li, and W. Wang. 2021c. An out of box thinking: The changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Critical Reviews in Food Science and Nutrition 1–16. doi: 10.1080/10408398.2021.1963946.
  • Zhang, Q., X. Wang, Y. Kang, H. Sun, Y. Liang, J. Liu, Z. Su, J. Dan, L. Luo, T. Yue, et al. 2021a. Natural products self-assembled nanozyme for cascade detection of glucose and bacterial viability in food. Foods 10 (11):2596. doi: 10.3390/foods10112596.
  • Zhang, L., W. Wang, Y. Ni, C. Yang, X. Jin, Y. Wang, Y. yang, Y. Jin, J. Sun, and J. Wang. 2022a. ZnO/C-mediated k-carrageenan based pseudo-pasteurization films for kumquat preservation. Food Hydrocolloids. 128:107582. doi: 10.1016/j.foodhyd.2022.107582.
  • Zhang, X., Z. Xi, J. O. Machuki, J. Luo, D. Yang, J. Li, W. Cai, Y. Yang, L. Zhang, J. Tian, et al. 2019. Gold cube-in-cube based oxygen nanogenerator: A theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano 13 (5):5306–25. doi: 10.1021/acsnano.8b09786.
  • Zhang, L., M. Zhang, and A. S. Mujumdar. 2021. Technological innovations or advancement in detecting frozen and thawed meat quality: A review. Critical Reviews in Food Science and Nutrition 1–17. doi: 10.1080/10408398.2021.1964434.
  • Zhang, M., D. Zhao, G. Zhou, and C. Li. 2020a. Dietary pattern, gut microbiota, and Alzheimer’s disease. Journal of Agricultural and Food Chemistry 68 (46):12800–9. doi: 10.1021/acs.jafc.9b08309.
  • Zhang, M., D. Zhao, S. Zhu, Y. Nian, X. Xu, G. Zhou, and C. Li. 2020b. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Research International 134:109225. doi: 10.1016/j.foodres.2020.109225.
  • Zhao, M., X. Lin, X. Zhou, Y. Zhang, H. Wu, and Y. Liu. 2022. Single probe-based chemical-tongue sensor array for multiple bacterial identification and photothermal sterilization in real time. ACS Applied Materials & Interfaces 14 (6):7706–16. doi: 10.1021/acsami.1c24042.
  • Zhao, J., F. Wei, W. Xu, and X. Han. 2020. Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOFs for food packaging. Applied Surface Science 510:145418. doi: 10.1016/j.apsusc.2020.145418.
  • Zhou, L., W. Zhang, and J. Wang. 2022a. Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends in Food Science & Technology 122:140–56. doi: 10.1016/j.tifs.2022.02.024.
  • Zhou, L., W. Zhang, J. Wang, R. Zhang, and J. Zhang. 2022b. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrasonics Sonochemistry 82:105885. doi: 10.1016/j.ultsonch.2021.105885.
  • Zhou, G., W. Zhang, and X. Xu. 2012. China’s meat industry revolution: Challenges and opportunities for the future. Meat Science 92 (3):188–96. doi: 10.1016/j.meatsci.2012.04.016.
  • Zhu, F., Z. Dong, X. Li, and Q. Xiong. 2022. Microbial inactivation property of pulsed corona discharge plasma and its effect on chilled pork preservation. Foodborne Pathogens and Disease 19 (2):159–67. doi: 10.1089/fpd.2021.0035.
  • Zhu, Y., P. Liu, T. Xue, J. Xu, D. Qiu, Y. Sheng, W. Li, X. Lu, Y. Ge, and Y. Wen. 2021. Facile and rapid one-step mass production of flexible 3D porous graphene nanozyme electrode via direct laser-writing for intelligent evaluation of fish freshness. Microchemical Journal 162:105855. doi: 10.1016/j.microc.2020.105855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.