298
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Milk-derived exosome nanovesicles: recent progress and daunting hurdles

, , , , , , & show all

References

  • Abdelmegid, S., J. Murugaiyan, M. Abo-Ismail, J. L. Caswell, D. Kelton, and G. M. Kirby. 2017. Identification of host defense-related proteins using label-free quantitative proteomic analysis of milk whey from cows with Staphylococcus aureus subclinical mastitis. International Journal of Molecular Sciences 19 (1):78. doi: 10.3390/ijms19010078.
  • Abou El Qassim, L., B. Martínez, A. Rodríguez, A. Dávalos, M. C. López de Las Hazas, M. Menéndez Miranda, and L. J. Royo. 2023. Effects of cow’s milk processing on microRNA levels. Foods (Basel, Switzerland) 12 (15):2950. doi: 10.3390/foods12152950.
  • Abou El Qassim, L., J. Alonso, K. Zhao, S. Le Guillou, J. Diez, F. Vicente, M. Fernández-Sanjurjo, E. Iglesias-Gutiérrez, L. Guan, and L. J. Royo. 2022. Differences in the microRNAs levels of raw milk from dairy cattle raised under extensive or intensive production systems. Veterinary Sciences 9 (12):vetsci9120661. doi: 10.3390/vetsci9120661.
  • Abou El Qassim, L., S. Le Guillou, and L. J. Royo. 2022. Variation of miRNA content in cow raw milk depending on the dairy production system. International Journal of Molecular Sciences 23 (19):11681. doi: 10.3390/ijms231911681.
  • Alibhai, F. J., F. Lim, A. Yeganeh, P. V. DiStefano, T. Binesh-Marvasti, A. Belfiore, L. Wlodarek, D. Gustafson, S. Millar, S.-H. Li, et al. 2020. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 19 (3):e13103. doi: 10.1111/acel.13103.
  • Ambele, M. A., P. Dhanraj, R. Giles, and M. S. Pepper. 2020. Adipogenesis: A complex interplay of multiple molecular determinants and pathways. International Journal of Molecular Sciences 21 (12):4283. doi: 10.3390/ijms21124283.
  • Amirian, M., A. M. Jafari-Nozad, M. Darroudi, T. Farkhondeh, and S. Samarghandian. 2023. Overview of the miR-29 family members’ function in breast cancer. International Journal of Biological Macromolecules 230:123280. doi: 10.1016/j.ijbiomac.2023.123280.
  • Bagnicka, E., E. Kawecka-Grochocka, K. Pawlina-Tyszko, M. Zalewska, A. Kapusta, E. Kościuczuk, S. Marczak, and T. Ząbek. 2021. MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Veterinary Research 52 (1):41. doi: 10.1186/s13567-021-00912-2.
  • Baier, S. R., C. Nguyen, F. Xie, J. R. Wood, and J. Zempleni. 2014. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of Nutrition 144 (10):1495–500. doi: 10.3945/jn.114.196436.
  • Balhara, A. K., M. Gupta, S. Singh, A. K. Mohanty, and I. Singh. 2013. Early pregnancy diagnosis in bovines: Current status and future directions. The Scientific World Journal 2013:958540–10. doi: 10.1155/2013/958540.
  • Benmoussa, A., S. Michel, C. Gilbert, and P. Provost. 2020. Isolating multiple extracellular vesicles subsets, including exosomes and membrane vesicles, from bovine milk using sodium citrate and differential ultracentrifugation. Bio-protocol 10 (11):e3636. doi: 10.21769/BioProtoc.3636.
  • Billa, P. A., Y. Faulconnier, T. Ye, M. Chervet, F. Le Provost, J. A. A. Pires, and C. Leroux. 2019. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows. BMC Genomics 20 (1):621. doi: 10.1186/s12864-019-5987-4.
  • Blans, K., M. S. Hansen, L. V. Sørensen, M. L. Hvam, K. A. Howard, A. Möller, L. Wiking, L. B. Larsen, and J. T. Rasmussen. 2017. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles 6 (1):1294340. doi: 10.1080/20013078.2017.1294340.
  • Bobrie, A., M. Colombo, S. Krumeich, G. Raposo, and C. Théry. 2012. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 1 (1):18397. doi: 10.3402/jev.v1i0.18397.
  • Bordoni, L., and R. Gabbianelli. 2021. The neglected nutrigenomics of milk: What is the role of inter-species transfer of small non-coding RNA? Food Bioscience 39:100796. doi: 10.1016/j.fbio.2020.100796.
  • Bourdon, C., P. Bardou, E. Aujean, S. Le Guillou, G. Tosser-Klopp, and F. Le Provost. 2019. RumimiR: A detailed microRNA database focused on ruminant species. Database: The Journal of Biological Databases and Curation 2019:baz099. doi: 10.1093/database/baz099.
  • Cai, M., H. He, X. Jia, S. Chen, J. Wang, Y. Shi, B. Liu, W. Xiao, and S. Lai. 2018. Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress & Chaperones 23 (4):663–72. doi: 10.1007/s12192-018-0876-3.
  • Carney, M. C., A. Tarasiuk, S. L. DiAngelo, P. Silveyra, A. Podany, L. L. Birch, I. M. Paul, S. Kelleher, and S. D. Hicks. 2017. Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Pediatric Research 82 (2):226–36. doi: 10.1038/pr.2017.54.
  • Chandler, T. L., A. Newman, J. E. Cha, A. S. Sipka, and S. Mann. 2023. Leukocytes, microRNA, and complement activity in raw, heat-treated, and frozen colostrum and their dynamics as colostrum transitions to mature milk in dairy cows. Journal of Dairy Science 106 (7):4918–31. doi: 10.3168/jds.2022-22876.
  • Chen, L., X. Liu, Z. Li, H. Wang, Y. Liu, H. He, J. Yang, F. Niu, L. Wang, and J. Guo. 2014. Expression differences of miRNAs and genes on NF-κB pathway between the healthy and the mastitis Chinese Holstein cows. Gene 545 (1):117–25. doi: 10.1016/j.gene.2014.04.071.
  • Chen, Z., H. Shi, S. Sun, J. Luo, W. Zhang, Y. Hou, and J. J. Loor. 2018. MiR-183 regulates milk fat metabolism via MST1 in goat mammary epithelial cells. Gene 646:12–9. doi: 10.1016/j.gene.2017.12.052.
  • Chu, M., Y. Zhao, S. Yu, Y. Hao, P. Zhang, Y. Feng, H. Zhang, D. Ma, J. Liu, M. Cheng, et al. 2018. MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells. The International Journal of Biochemistry & Cell Biology 97:118–27. doi: 10.1016/j.biocel.2018.02.014.
  • Colitti, M., S. Sgorlon, D. Licastro, and B. Stefanon. 2019. Differential expression of miRNAs in milk exosomes of cows subjected to group relocation. Research in Veterinary Science 122:148–55. doi: 10.1016/j.rvsc.2018.11.024.
  • Coumans, F. A. W., A. R. Brisson, E. I. Buzas, F. Dignat-George, E. E. E. Drees, S. El-Andaloussi, C. Emanueli, A. Gasecka, A. Hendrix, A. F. Hill, et al. 2017. Methodological guidelines to study extracellular vesicles. Circulation Research 120 (10):1632–48. doi: 10.1161/circresaha.117.309417.
  • De-Juano, M. D. S., G. Silvestrelli, and S. E. Ulbrich. 2023. One-week storage of refrigerated bovine milk does not affect the size, concentration, and molecular properties of extracellular vesicles. Journal of Dairy Science 107 (2):1164–74. doi: 10.3168/jds.2023-23726.
  • Delacour, D., C. Greb, A. Koch, E. Salomonsson, H. Leffler, A. Le Bivic, and R. Jacob. 2007. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic (Copenhagen, Denmark) 8 (4):379–88. doi: 10.1111/j.1600-0854.2007.00539.x.
  • Desai, N., A. Gadeval, U. Kathar, P. Sengupta, K. Kalia, and R. K. Tekade. 2021. Emerging roles and biopharmaceutical applications of milk derived exosomes. Journal of Drug Delivery Science and Technology 64:102577. doi: 10.1016/j.jddst.2021.102577.
  • Ding, L., X. Yang, Z. Gao, C. Y. Effah, X. Zhang, Y. Wu, and L. Qu. 2021. A holistic review of the state-of-the-art microfluidics for exosome separation: An overview of the current status, existing obstacles, and future outlook. Small (Weinheim an Der Bergstrasse, Germany) 17 (29):e2007174. doi: 10.1002/smll.202007174.
  • Emami, F., A. Vatanara, E. J. Park, and D. H. Na. 2018. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics 10 (3). doi: 10.3390/pharmaceutics10030131.
  • Fahey, M. J., A. J. Fischer, M. A. Steele, and S. L. Greenwood. 2020. Characterization of the colostrum and transition milk proteomes from primiparous and multiparous Holstein dairy cows. Journal of Dairy Science 103 (2):1993–2005. doi: 10.3168/jds.2019-17094.
  • Ferreira, R. F., T. Blees, F. Shakeri, A. Buness, M. Sylvester, G. Savoini, A. Agazzi, V. Mrljak, and H. Sauerwein. 2021. Comparative proteome profiling in exosomes derived from porcine colostrum versus mature milk reveals distinct functional proteomes. Journal of Proteomics 249:104338. doi: 10.1016/j.jprot.2021.104338.
  • Gao, H. N., F. Z. Ren, P. C. Wen, L. X. Xie, R. Wang, Z. N. Yang, and Y. X. Li. 2021. Yak milk-derived exosomal microRNAs regulate intestinal epithelial cells on proliferation in hypoxic environment. Journal of Dairy Science 104 (2):1291–303. doi: 10.3168/jds.2020-19063.
  • González, M. I., B. Gallardo, C. Cerón, E. Aguilera-Jiménez, M. Cortes-Canteli, H. Peinado, M. Desco, and B. Salinas. 2023. Isolation of goat milk small extracellular vesicles by novel combined bio-physical methodology. Frontiers in Bioengineering and Biotechnology 11:1197780. doi: 10.3389/fbioe.2023.1197780.
  • Guo, Y., X. Zhang, W. Huang, and X. Miao. 2017. Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle. Scientific Reports 7 (1):44026. doi: 10.1038/srep44026.
  • Hao, Z. Y., J. Q. Wang, Y. L. Luo, X. Liu, S. B. Li, M. L. Zhao, X. Y. Jin, J. Y. Shen, N. Ke, Y. Z. Song, et al. 2021. Deep small RNA-Seq reveals microRNAs expression profiles in lactating mammary gland of 2 sheep breeds with different milk performance. Domestic Animal Endocrinology 74:106561. doi: 10.1016/j.domaniend.2020.106561.
  • Hao, Z., H. Zhou, J. G. H. Hickford, H. Gong, J. Wang, J. Hu, X. Liu, S. Li, M. Zhao, and Y. Luo. 2020. Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-Seq. Genomics 112 (3):2186–93. doi: 10.1016/j.ygeno.2019.12.014.
  • Hinger, S. A., J. J. Abner, J. L. Franklin, D. K. Jeppesen, R. J. Coffey, and J. G. Patton. 2020. Rab13 regulates sEV secretion in mutant KRAS colorectal cancer cells. Scientific Reports 10 (1):15804. doi: 10.1038/s41598-020-72503-8.
  • Hobor, F., A. Dallmann, N. J. Ball, C. Cicchini, C. Battistelli, R. W. Ogrodowicz, E. Christodoulou, S. R. Martin, A. Castello, M. Tripodi, et al. 2018. A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nature Communications 9 (1):831. doi: 10.1038/s41467-018-03182-3.
  • Honan, M. C., M. J. Fahey, A. J. Fischer-Tlustos, M. A. Steele, and S. L. Greenwood. 2020. Shifts in the Holstein dairy cow milk fat globule membrane proteome that occur during the first week of lactation are affected by parity. Journal of Animal Science and Biotechnology 11 (1):81. doi: 10.1186/s40104-020-00478-7.
  • Howard, K. M., R. Jati Kusuma, S. R. Baier, T. Friemel, L. Markham, J. Vanamala, and J. Zempleni. 2015. Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. Journal of Agricultural and Food Chemistry 63 (2):588–92. doi: 10.1021/jf505526w.
  • Hsiao, Y.-S., C.-W. Chen, R. Haliq, P. Yiu, P.-I. Wu, and J. P. Chu. 2023. Microfluidic device using metallic nanostructure arrays for the isolation, detection, and purification of exosomes. Journal of Alloys and Compounds 947:169658. doi: 10.1016/j.jallcom.2023.169658.
  • Ishikawa, H., M. M. Rahman, M. Yamauchi, S. Takashima, Y. Wakihara, Y. O. Kamatari, K. Shimizu, A. Okada, and Y. Inoshima. 2020. mRNA profile in milk extracellular vesicles from bovine leukemia virus-infected cattle. Viruses 12 (6):669. doi: 10.3390/v12060669.
  • Jiang, B., X. Fan, D. Zhang, H. Liu, and C. Fan. 2019. Identifying UBA2 as a proliferation and cell cycle regulator in lung cancer A549 cells. Journal of Cellular Biochemistry 120 (8):12752–61. doi: 10.1002/jcb.28543.
  • Jiao, P., J. Wang, J. Yang, X. Wang, and Z. Luoreng. 2022. Bta-miR-223 targeting the RHOB gene in dairy cows attenuates LPS-induced inflammatory responses in mammary epithelial cells. Cells 11 (19):3144. doi: 10.3390/cells11193144.
  • Jin, W., E. M. Ibeagha-Awemu, G. Liang, F. Beaudoin, X. Zhao, and L. Guan Le. 2014. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 15 (1):181. doi: 10.1186/1471-2164-15-181.
  • Johnston, D., I. Malo Estepa, H. A. Ebhardt, M. A. Crowe, and M. G. Diskin. 2018. Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle. Theriogenology 114:301–7. doi: 10.1016/j.theriogenology.2018.04.008.
  • Kahn, S., Y. Liao, X. Du, W. Xu, J. Li, and B. Lönnerdal. 2018. Exosomal MicroRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Molecular Nutrition & Food Research 62 (11):e1701050. doi: 10.1002/mnfr.201701050.
  • Keerthikumar, S., D. Chisanga, D. Ariyaratne, H. Al Saffar, S. Anand, K. Zhao, M. Samuel, M. Pathan, M. Jois, N. Chilamkurti, et al. 2016. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology 428 (4):688–92. doi: 10.1016/j.jmb.2015.09.019.
  • Kleinjan, M., M. J. van Herwijnen, S. F. Libregts, R. J. van Neerven, A. L. Feitsma, and M. H. Wauben. 2021. Regular industrial processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles. The Journal of Nutrition 151 (6):1416–25. doi: 10.1093/jn/nxab031.
  • Kugeratski, F. G., K. Hodge, S. Lilla, K. M. McAndrews, X. Zhou, R. F. Hwang, S. Zanivan, and R. Kalluri. 2021. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nature Cell Biology 23 (6):631–41. doi: 10.1038/s41556-021-00693-y.
  • Ladeiro, Y., G. Couchy, C. Balabaud, P. Bioulac-Sage, L. Pelletier, S. Rebouissou, and J. Zucman-Rossi. 2008. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology (Baltimore, Md.) 47 (6):1955–63. doi: 10.1002/hep.22256.
  • Lai, Y.-C., G. H. Habiby, C. C. Jasing Pathiranage, M. M. Rahman, H.-W. Chen, A. A. Husna, C. Kubota, and N. Miura. 2021. Bovine serum miR-21 expression affected by mastitis. Research in Veterinary Science 135:290–2. doi: 10.1016/j.rvsc.2020.10.001.
  • Lai, Y.-C., T. Fujikawa, T. Maemura, T. Ando, G. Kitahara, Y. Endo, O. Yamato, M. Koiwa, C. Kubota, and N. Miura. 2017. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis. PloS One 12 (5):e0177182. doi: 10.1371/journal.pone.0177182.
  • Lawless, N., A. B. Foroushani, M. S. McCabe, C. O’Farrelly, and D. J. Lynn. 2013. Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection. PloS One 8 (3):e57543. doi: 10.1371/journal.pone.0057543.
  • Le Guillou, S., A. Leduc, J. Laubier, S. Barbey, M.-N. Rossignol, R. Lefebvre, S. Marthey, D. Laloë, and F. Le Provost. 2019. Characterization of Holstein and Normande whole milk miRNomes highlights breed specificities. Scientific Reports 9 (1):20345. doi: 10.1038/s41598-019-56690-7.
  • Leiferman, A., J. Shu, B. Upadhyaya, J. Cui, and J. Zempleni. 2019. Storage of extracellular vesicles in human milk, and microRNA profiles in human milk exosomes and infant formulas. Journal of Pediatric Gastroenterology and Nutrition 69 (2):235–8. doi: 10.1097/mpg.0000000000002363.
  • Li, R., M. J. Ahmad, M. Hou, X. Wang, S. Liu, J. Li, Q. Jiang, J. Huang, and L. Yang. 2023. Identification of target genes and pathways related to heat tolerance in Chinese Holstein cows. Livestock Science 271:105213. doi: 10.1016/j.livsci.2023.105213.
  • Li, Y., X. Zhang, C. Zhang, J. Yang, H. Chi, A. Li, and C. Li. 2022. Comparative study on the immunomodulatory function of extracellular vesicles from different dairy products. Food & Function 13 (5):2504–14. doi: 10.1039/d1fo02394b.
  • Li, Y., Y. Gao, C. Gong, Z. Wang, Q. Xia, F. Gu, C. Hu, L. Zhang, H. Guo, and S. Gao. 2018. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine: Nanotechnology, Biology, and Medicine 14 (7):1973–85. doi: 10.1016/j.nano.2018.05.020.
  • Liu, W., C. Du, L. Nan, C. Li, H. Wang, Y. Fan, A. Zhou, and S. Zhang. 2023. Influence of estrus on dairy cow milk exosomal miRNAs and their role in hormone secretion by granulosa cells. International Journal of Molecular Sciences 24 (11):9608. doi: 10.3390/ijms24119608.
  • Liu, X. M., L. Ma, and R. Schekman. 2021. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 10:71982. doi: 10.7554/eLife.71982.
  • Luoreng, Z. M., X. P. Wang, C. G. Mei, and L. S. Zan. 2018. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli. International Journal of Biological Sciences 14 (1):87–99. doi: 10.7150/ijbs.22498.
  • Ma, L., J. Singh, and R. Schekman. 2023. Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes. eLife 12:85878. doi: 10.7554/eLife.85878.
  • Ma, S., C. Tong, E. M. Ibeagha-Awemu, and X. Zhao. 2019. Identification and characterization of differentially expressed exosomal microRNAs in bovine milk infected with Staphylococcus aureus. BMC Genomics 20 (1):934. doi: 10.1186/s12864-019-6338-1.
  • Mackenzie, K., N. J. Foot, S. Anand, H. E. Dalton, N. Chaudhary, B. M. Collins, S. Mathivanan, and S. Kumar. 2016. Regulation of the divalent metal ion transporter via membrane budding. Cell Discovery 2 (1):16011. doi: 10.1038/celldisc.2016.11.
  • Maity, S., D. Das, and K. Ambatipudi. 2020. Quantitative alterations in bovine milk proteome from healthy, subclinical and clinical mastitis during S. aureus infection. Journal of Proteomics 223:103815. doi: 10.1016/j.jprot.2020.103815.
  • Marsh, S. R., K. J. Pridham, J. Jourdan, and R. G. Gourdie. 2021. Novel protocols for scalable production of high quality purified small extracellular vesicles from bovine milk. Nanotheranostics 5 (4):488–98. doi: 10.7150/ntno.62213.
  • Martino, E., A. Balestrieri, L. Mele, C. Sardu, R. Marfella, N. D’Onofrio, G. Campanile, and M. L. Balestrieri. 2022. Milk exosomal miR-27b worsen endoplasmic reticulum stress mediated colorectal cancer cell death. Nutrients 14 (23):5081. doi: 10.3390/nu14235081.
  • Masterson, H. K., T. F. O’Callaghan, M. O’Donovan, J. P. Murphy, K. Sugrue, R. A. Owens, and R. M. Hickey. 2024. Relative quantitative proteomic profiling of bovine colostrum and transition milk at onset of lactation. International Dairy Journal 148:105804. doi: 10.1016/j.idairyj.2023.105804.
  • Mateescu, B., E. J. K. Kowal, B. W. M. van Balkom, S. Bartel, S. N. Bhattacharyya, E. I. Buzás, A. H. Buck, P. de Candia, F. W. N. Chow, S. Das, et al. 2017. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. Journal of Extracellular Vesicles 6 (1):1286095. doi: 10.1080/20013078.2017.1286095.
  • Mathivanan, S., and R. J. Simpson. 2009. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 9 (21):4997–5000. doi: 10.1002/pmic.200900351.
  • Mathivanan, S., C. J. Fahner, G. E. Reid, and R. J. Simpson. 2012. ExoCarta 2012: Database of exosomal proteins, RNA and lipids. Nucleic Acids Research 40 (Database issue):D1241–1244. doi: 10.1093/nar/gkr828.
  • Mazurov, D., L. Barbashova, and A. Filatov. 2013. Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. The FEBS Journal 280 (5):1200–13. doi: 10.1111/febs.12110.
  • Miglio, A., L. Moscati, G. Fruganti, M. Pela, E. Scoccia, A. Valiani, and C. Maresca. 2013. Use of milk amyloid A in the diagnosis of subclinical mastitis in dairy ewes. The Journal of Dairy Research 80 (4):496–502. doi: 10.1017/s0022029913000484.
  • Mollayusefian, I., V. Ranaei, Z. Pilevar, M. M. S. Cabral-Pinto, A. Rostami, A. Nematolahi, K. M. Khedher, V. N. Thai, Y. Fakhri, and A. Mousavi Khaneghah. 2021. The concentration of aflatoxin M1 in raw and pasteurized milk: A worldwide systematic review and meta-analysis. Trends in Food Science & Technology 115:22–30. doi: 10.1016/j.tifs.2021.06.033.
  • Morozumi, M., H. Izumi, T. Shimizu, and Y. Takeda. 2021. Comparison of isolation methods using commercially available kits for obtaining extracellular vesicles from cow milk. Journal of Dairy Science 104 (6):6463–71. doi: 10.3168/jds.2020-19849.
  • Mukherjee, K., B. Ghoshal, S. Ghosh, Y. Chakrabarty, S. Shwetha, S. Das, and S. N. Bhattacharyya. 2016. Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Reports 17 (8):1184–203. doi: 10.15252/embr.201541930.
  • Mukhopadhya, A., J. Santoro, B. Moran, Z. Useckaite, and L. O’Driscoll. 2021. Optimisation and comparison of orthogonal methods for separation and characterisation of extracellular vesicles to investigate how representative infant milk formula is of milk. Food Chemistry 353:129309. doi: 10.1016/j.foodchem.2021.129309.
  • Mumtaz, P. T., B. Bhat, E. M. Ibeagha-Awemu, Q. Taban, M. Wang, M. A. Dar, S. A. Bhat, N. Shabir, R. A. Shah, N. A. Ganie, et al. 2022. Mammary epithelial cell transcriptome reveals potential roles of lncRNAs in regulating milk synthesis pathways in Jersey and Kashmiri cattle. BMC Genomics 23 (1):176. doi: 10.1186/s12864-022-08406-x.
  • Naeem, A., K. Zhong, S. J. Moisá, J. K. Drackley, K. M. Moyes, and J. J. Loor. 2012. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. Journal of Dairy Science 95 (11):6397–408. doi: 10.3168/jds.2011-5173.
  • Nakanishi, R., S. Takashima, Y. Wakihara, Y. O. Kamatari, Y. Kitamura, K. Shimizu, A. Okada, and Y. Inoshima. 2022. Comparing microRNA in milk small extracellular vesicles among healthy cattle and cattle at high risk for bovine leukemia virus transmission. Journal of Dairy Science 105 (6):5370–80. doi: 10.3168/jds.2021-20989.
  • Ngo, S., S. Moloney, X. Li, L. McNaughton, P. A, and A. Sheppard. 2017. Distinct microRNA signatures for mastitis measured in milk following natural exposure in dairy Herds. Performances of Cold-Set Binders, Food Hydrocolloids, and Commercial Meat Binder on the Physical and Chemical Characteristics of Tilapia Fish Balls 1 (1):1–8. doi: 10.36876/ijas.1001.
  • Oh, S., M. R. Park, S. J. Son, and Y. Kim. 2015. Comparison of total RNA isolation methods for analysis of immune-related microRNAs in market milks. Korean Journal for Food Science of Animal Resources 35 (4):459–65. doi: 10.5851/kosfa.2015.35.4.459.
  • Ohta, M., S. Koshida, I. Jimbo, M. Oda, R. Inoue, T. Tsukahara, M. Terahara, Y. Nakamura, and Y. Maruo. 2022. Highest concentration of breast-milk-derived exosomes in colostrum. Pediatrics International: Official Journal of the Japan Pediatric Society 64 (1):e15346. doi: 10.1111/ped.15346.
  • Owen, I., and F. Shewmaker. 2019. The role of post-translational modifications in the phase transitions of intrinsically disordered proteins. International Journal of Molecular Sciences 20 (21):5501. doi: 10.3390/ijms20215501.
  • Özdemir, S. 2020. Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds. Gene 743:144609. doi: 10.1016/j.gene.2020.144609.
  • Pu, J., R. Li, C. Zhang, D. Chen, X. Liao, Y. Zhu, X. Geng, D. Ji, Y. Mao, Y. Gong, et al. 2017. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis. The Journal of Dairy Research 84 (3):300–8. doi: 10.1017/s0022029917000437.
  • Qiu, X., and Y. Dou. 2017. miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 88:430–5. doi: 10.1016/j.biopha.2016.11.120.
  • Quan, S., X. Nan, K. Wang, L. Jiang, J. Yao, and B. Xiong. 2020. Characterization of sheep milk extracellular vesicle-miRNA by sequencing and comparison with cow milk. Animals 10 (2):331 doi: 10.3390/ani10020331.
  • Rahman, M. M., S. Takashima, Y. O. Kamatari, K. Shimizu, A. Okada, and Y. Inoshima. 2021. Comprehensive proteomic analysis revealed a large number of newly identified proteins in the small extracellular vesicles of milk from late-stage lactating cows. Animals 11 (9):2506. doi: 10.3390/ani11092506.
  • Rahman, M. M., S. Takashima, Y. O. Kamatari, Y. Badr, Y. Kitamura, K. Shimizu, A. Okada, and Y. Inoshima. 2021. Proteomic profiling of milk small extracellular vesicles from bovine leukemia virus-infected cattle. Scientific Reports 11 (1):2951. doi: 10.1038/s41598-021-82598-2.
  • Raymond, F., G. Lefebvre, L. Texari, S. Pruvost, S. Metairon, G. Cottenet, A. Zollinger, B. Mateescu, C. Billeaud, J.-C. Picaud, et al. 2022. Longitudinal human milk miRNA composition over the First 3 mo of lactation in a Cohort of healthy mothers delivering term infants. The Journal of Nutrition 152 (1):94–106. doi: 10.1093/jn/nxab282.
  • Reinhardt, T. A., R. E. Sacco, B. J. Nonnecke, and J. D. Lippolis. 2013. Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. Journal of Proteomics 82:141–54. doi: 10.1016/j.jprot.2013.02.013.
  • Saenz-de-Juano, M. D., G. Silvestrelli, S. Bauersachs, and S. E. Ulbrich. 2022. Determining extracellular vesicles properties and miRNA cargo variability in bovine milk from healthy cows and cows undergoing subclinical mastitis. BMC Genomics 23 (1):189. doi: 10.1186/s12864-022-08377-z.
  • Sahu, S. K., M. Kumar, S. Chakraborty, S. K. Banerjee, R. Kumar, P. Gupta, K. Jana, U. D. Gupta, Z. Ghosh, M. Kundu, et al. 2017. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathogens 13 (5):e1006410. doi: 10.1371/journal.ppat.1006410.
  • Samuel, M., D. Chisanga, M. Liem, S. Keerthikumar, S. Anand, C.-S. Ang, C. G. Adda, E. Versteegen, M. Jois, and S. Mathivanan. 2017. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Scientific Reports 7 (1):5933. doi: 10.1038/s41598-017-06288-8.
  • Santoro, J., A. Mukhopadhya, C. Oliver, A. Brodkorb, L. Giblin, and L. O’Driscoll. 2023. An investigation of extracellular vesicles in bovine colostrum, first milk and milk over the lactation curve. Food Chemistry 401:134029. doi: 10.1016/j.foodchem.2022.134029.
  • Schanzenbach, C. I., B. Kirchner, S. E. Ulbrich, and M. W. Pfaffl. 2019. MicroRNA of whole milk samples are not suitable for pregnancy detection in cattle. Gene 692:17–21. doi: 10.1016/j.gene.2018.12.068.
  • Shang, J., J. Ning, X. Bai, X. Cao, X. Yue, and M. Yang. 2023. Identification and analysis of miRNAs expression profiles in human, bovine, and donkey milk exosomes. International Journal of Biological Macromolecules 252:126321. doi: 10.1016/j.ijbiomac.2023.126321.
  • Shiff, Y. E., S. Reif, R. Marom, K. Shiff, R. Reifen, and R. Golan-Gerstl. 2019. MiRNA-320a is less expressed and miRNA-148a more expressed in preterm human milk compared to term human milk. Journal of Functional Foods 57:68–74. doi: 10.1016/j.jff.2019.03.047.
  • Somiya, M., Y. Yoshioka, and T. Ochiya. 2018. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. Journal of Extracellular Vesicles 7 (1):1440132. doi: 10.1080/20013078.2018.1440132.
  • Statello, L., M. Maugeri, E. Garre, M. Nawaz, J. Wahlgren, A. Papadimitriou, C. Lundqvist, L. Lindfors, A. Collén, P. Sunnerhagen, et al. 2018. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PloS One 13 (4):e0195969. doi: 10.1371/journal.pone.0195969.
  • Stephen, B. J., N. Pareek, M. Saeed, M. A. Kausar, S. Rahman, and M. Datta. 2020. Xeno-miRNA in maternal-infant immune crosstalk: An aid to disease alleviation. Frontiers in Immunology 11:404. doi: 10.3389/fimmu.2020.00404.
  • Su, J. L., P. S. Chen, G. Johansson, and M. L. Kuo. 2012. Function and regulation of let-7 family microRNAs. MicroRNA (Shariqah, United Arab Emirates) 1 (1):34–9. doi: 10.2174/2211536611201010034.
  • Sukreet, S., C. Pereira Braga, T. T. An, J. Adamec, J. Cui, and J. Zempleni. 2022. Ultrasonication of milk decreases the content of exosomes and microRNAs in an exosome-defined rodent diet. The Journal of Nutrition 152 (4):961–70. doi: 10.1093/jn/nxab452.
  • Sun, J., K. Aswath, S. G. Schroeder, J. D. Lippolis, T. A. Reinhardt, and T. S. Sonstegard. 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics 16 (1):806. doi: 10.1186/s12864-015-2044-9.
  • Sun, L., S. Lu, M. Bai, L. Xiang, J. Li, C. Jia, and H. Jiang. 2019. Integrative microRNA-mRNA analysis of muscle tissues in qianhua mutton merino and small tail han sheep reveals key roles for oar-miR-655-3p and oar-miR-381-5p. DNA and Cell Biology 38 (5):423–35. doi: 10.1089/dna.2018.4408.
  • Takanashi, Y., T. Kahyo, S. Kamamoto, H. Zhang, B. Chen, Y. Ping, K. Mizuno, A. Kawase, K. Koizumi, M. Satou, et al. 2022. Ubiquitin-like 3 as a new protein-sorting factor for small extracellular vesicles. Cell Structure and Function 47 (1):1–18. doi: 10.1247/csf.21078.
  • Talebi, F., S. Ghorbani, W. F. Chan, R. Boghozian, F. Masoumi, S. Ghasemi, M. Vojgani, C. Power, and F. Noorbakhsh. 2017. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Journal of Neuroinflammation 14 (1):55. doi: 10.1186/s12974-017-0832-7.
  • Tan, J., Y. Wen, and M. Li. 2021. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coordination Chemistry Reviews 446:214111. doi: 10.1016/j.ccr.2021.214111.
  • Temoche-Diaz, M. M., M. J. Shurtleff, R. M. Nottingham, J. Yao, R. P. Fadadu, A. M. Lambowitz, and R. Schekman. 2019. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife 8:47544. doi: 10.7554/eLife.47544.
  • Théry, C., K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson, R. Andriantsitohaina, A. Antoniou, T. Arab, F. Archer, G. K. Atkin-Smith, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 (1):1535750. doi: 10.1080/20013078.2018.1535750.
  • Tsukada, F., S. Takashima, Y. Wakihara, Y. O. Kamatari, K. Shimizu, A. Okada, and Y. Inoshima. 2022. Characterization of miRNAs in milk small extracellular vesicles from enzootic bovine leukosis cattle. International Journal of Molecular Sciences 23 (18):10782. doi: 10.3390/ijms231810782.
  • Valapala, M., and J. K. Vishwanatha. 2011. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. The Journal of Biological Chemistry 286 (35):30911–25. doi: 10.1074/jbc.M111.271155.
  • van Herwijnen, M. J. C., M. I. Zonneveld, S. Goerdayal, E. N. M. Nolte-’t Hoen, J. Garssen, B. Stahl, A. F. Maarten Altelaar, F. A. Redegeld, and M. H. M. Wauben. 2016. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Molecular & Cellular Proteomics: MCP 15 (11):3412–23. doi: 10.1074/mcp.M116.060426.
  • van Herwijnen, M. J. C., T. A. P. Driedonks, B. L. Snoek, A. M. T. Kroon, M. Kleinjan, R. Jorritsma, C. M. J. Pieterse, E. N. M. N. Hoen, and M. H. M. Wauben. 2018. Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Frontiers in Nutrition 5:81. doi: 10.3389/fnut.2018.00081.
  • Vaswani, K., Y. Q. Koh, F. B. Almughlliq, H. N. Peiris, and M. D. Mitchell. 2017. A method for the isolation and enrichment of purified bovine milk exosomes. Reproductive Biology 17 (4):341–8. doi: 10.1016/j.repbio.2017.09.007.
  • Verma, P., N. Mohanty, B. Pruseth, S. Sahoo, A. Katiyar, H. Singh, S. K. Jena, R. R. Das, T. K. Som, S. K. Sahoo, et al. 2022. Identification of candidate immune system microRNAs differentially found in colostrum and milk exosomes. MicroRNA (Shariqah, United Arab Emirates) 11 (3):216–26. doi: 10.2174/2211536611666220630102316.
  • Villarroya-Beltri, C., C. Gutiérrez-Vázquez, F. Sánchez-Cabo, D. Pérez-Hernández, J. Vázquez, N. Martin-Cofreces, D. J. Martinez-Herrera, A. Pascual-Montano, M. Mittelbrunn, and F. Sánchez-Madrid. 2013. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications 4 (1):2980. doi: 10.1038/ncomms3980.
  • Wallen, M., F. Aqil, W. Spencer, and R. C. Gupta. 2023. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Letters 561:216141. doi: 10.1016/j.canlet.2023.216141.
  • Wang, B., X. Tang, X. Gao, S. Xie, Y. Pi, M. Chen, and K. Chang. 2023. Tailored diagnostic tool for exosome detection utilizing DNA-based nanostructures. TrAC Trends in Analytical Chemistry 168:117336. doi: 10.1016/j.trac.2023.117336.
  • Wang, M., S. Moisá, M. J. Khan, J. Wang, D. Bu, and J. J. Loor. 2012. MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. Journal of Dairy Science 95 (11):6529–35. doi: 10.3168/jds.2012-5748.
  • Wang, X., Z. Xiang, Y. Liu, C. Huang, Y. Pei, X. Wang, H. Zhi, W. H.-S. Wong, H. Wei, I. O.-L. Ng, et al. 2020. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Science Translational Medicine 12 (563):eaaz3426. doi: 10.1126/scitranslmed.aaz3426.
  • Wang, Y., J. Fang, H.-F. Zeng, J.-F. Zhong, H.-X. Li, and K.-L. Chen. 2022. Identification and bioinformatics analysis of differentially expressed milk exosomal microRNAs in milk exosomes of heat-stressed Holstein cows. Functional & Integrative Genomics 22 (1):77–87. doi: 10.1007/s10142-021-00814-8.
  • Wicik, Z., M. Gajewska, A. Majewska, D. Walkiewicz, E. Osińska, and T. Motyl. 2016. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. Journal of Animal Breeding and Genetics = Zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie 133 (1):31–42. doi: 10.1111/jbg.12172.
  • Wijenayake, S., S. Eisha, Z. Tawhidi, M. A. Pitino, M. A. Steele, A. S. Fleming, and P. O. McGowan. 2021. Comparison of methods for pre-processing, exosome isolation, and RNA extraction in unpasteurized bovine and human milk. PloS One 16 (9):e0257633. doi: 10.1371/journal.pone.0257633.
  • Wilms, J. N., K. S. Hare, A. J. Fischer-Tlustos, P. Vahmani, M. E. R. Dugan, L. N. Leal, and M. A. Steele. 2022. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. Journal of Dairy Science 105 (3):2612–30. doi: 10.3168/jds.2021-20880.
  • Witwer, K. W., E. I. Buzás, L. T. Bemis, A. Bora, C. Lässer, J. Lötvall, E. N. Nolte-’t Hoen, M. G. Piper, S. Sivaraman, J. Skog, et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles 2 (1):20306. doi: 10.3402/jev.v2i0.20360.
  • Wozniak, A. L., A. Adams, K. E. King, W. Dunn, L. K. Christenson, W. T. Hung, and S. A. Weinman. 2020. The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. The Journal of Cell Biology 219 (10):e201912074. doi: 10.1083/jcb.201912074.
  • Wu, L., L. Wang, X. Liu, Y. Bai, R. Wu, X. Li, Y. Mao, L. Zhang, Y. Zheng, T. Gong, et al. 2022. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta Pharmaceutica Sinica. B 12 (4):2029–42. doi: 10.1016/j.apsb.2021.12.015.
  • Xu, X., L. Xu, C. Wen, J. Xia, Y. Zhang, and Y. Liang. 2023. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Materials Today. Bio 22:100760. doi: 10.1016/j.mtbio.2023.100760.
  • Yang, M., D. Song, X. Cao, R. Wu, B. Liu, W. Ye, J. Wu, and X. Yue. 2017. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Research International (Ottawa, Ont.) 92:17–25. doi: 10.1016/j.foodres.2016.11.041.
  • Yassin, A. M., M. I. Abdel Hamid, O. A. Farid, H. Amer, and M. Warda. 2016. Dromedary milk exosomes as mammary transcriptome nano-vehicle: Their isolation, vesicular and phospholipidomic characterizations. Journal of Advanced Research 7 (5):749–56. doi: 10.1016/j.jare.2015.10.003.
  • Zbinden, C., R. Stephan, S. Johler, N. Borel, J. Bünter, R. M. Bruckmaier, and O. Wellnitz. 2014. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PloS One 9 (1):e87374. doi: 10.1371/journal.pone.0087374.
  • Zeng, B., T. Chen, J.-Y. Luo, L. Zhang, Q.-Y. Xi, Q.-Y. Jiang, J.-J. Sun, and Y.-L. Zhang. 2021. Biological characteristics and roles of noncoding RNAs in milk-derived extracellular vesicles. Advances in Nutrition (Bethesda, Md.) 12 (3):1006–19. doi: 10.1093/advances/nmaa124.
  • Zhang, T., Y. Zheng, F. Zhang, X. Wang, J. Du, and X. Wang. 2024. MiR-199a-5p inhibits dermal papilla cells proliferation by regulating VEGFA expression in Cashmere goat. Gene 893:147901. doi: 10.1016/j.gene.2023.147901.
  • Zhang, Y., J. Bi, J. Huang, Y. Tang, S. Du, and P. Li. 2020. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine 15:6917–34. doi: 10.2147/ijn.S264498.
  • Zhao, Z., S. Yu, M. Xu, and P. Li. 2018. Effects of microwave on extracellular vesicles and microRNA in milk. Journal of Dairy Science 101 (4):2932–40. doi: 10.3168/jds.2016-12021.
  • Zhu, L., S. Fu, L. Li, and Y. Liu. 2022. Changes of extracellular vesicles in goat milk treated with different methods. LWT 170:114038. doi: 10.1016/j.lwt.2022.114038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.