183
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the contribution of glucosinolates degradation products to cruciferous foods odor: factors that influence degradation pathways and odor attributes

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Abellán, Á., R. Domínguez-Perles, D. A. Moreno, and C. García-Viguera. 2019. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 11 (2):429. doi: 10.3390/nu11020429.
  • Al-Gendy, A. A., O. D. El-Gindi, A. S. Hafez, and A. M. Ateya. 2010. Glucosinolates, volatile constituents and biological activities of Erysimum corinthium Boiss. (Brassicaceae). Food Chemistry 118 (3):519–24. doi: 10.1016/j.foodchem.2009.05.009.
  • Alenyorege, E. A., H. L. Ma, J. H. Aheto, A. A. Agyekum, and C. S. Zhou. 2020. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. LWT 117:108666. doi: 10.1016/j.lwt.2019.108666.
  • Andernach, L., K. Witzel, and F. S. Hanschen. 2023. Glucosinolate-derived amine formation in Brassica oleracea vegetables. Food Chemistry 405 (Pt B):134907. doi: 10.1016/j.foodchem.2022.134907.
  • Angelino, D., and E. Jeffery. 2014. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods 7:67–76. doi: 10.1016/j.jff.2013.09.029.
  • Baenas, N., J. Marhuenda, C. García-Viguera, P. Zafrilla, and D. Moreno. 2019. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods (Basel, Switzerland) 8 (7):257. doi: 10.3390/foods8070257.
  • Baik, H. Y., J. A. Juvik, E. H. Jeffery, M. A. Wallig, M. Kushad, and B. P. Klein. 2003. Relating glucosinolate content and flavor of broccoli cultivars. Journal of Food Science 68 (3):1043–50. doi: 10.1111/j.1365-2621.2003.tb08285.x.
  • Baky, M. H., S. N. Shamma, J. Xiao, and M. A. Farag. 2022. Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chemistry 383:132374. doi: 10.1016/j.foodchem.2022.
  • Barrett, D. M., J. C. Beaulieu, and R. Shewfelt. 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition 50 (5):369–89. doi: 10.1080/10408391003626322.
  • Bell, L., E. Kitsopanou, O. O. Oloyede, and S. Lignou. 2021. Important odorants of four Brassicaceae species, and discrepancies between glucosinolate profiles and observed hydrolysis products. Foods (Basel, Switzerland) 10 (5):1055. doi: 10.3390/foods10051055.
  • Bell, L., L. Methven, A. Signore, M. J. Oruna-Concha, and C. Wagstaff. 2017. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry 218:181–91. doi: 10.1016/j.foodchem.2016.09.076.
  • Bell, L., O. O. Oloyede, S. Lignou, C. Wagstaff, and L. Methven. 2018. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Molecular Nutrition & Food Research 62 (18):e1700990. doi: 10.1002/mnfr.201700990.
  • Bhandari, S. R., J. S. Jo, and J. G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules (Basel, Switzerland) 20 (9):15827–41. doi: 10.3390/molecules200915827.
  • Bhandari, S. R., J. Rhee, C. S. Choi, J. S. Jo, Y. K. Shin, and J. G. Lee. 2020. Profiling of individual desulfo-glucosinolate content in cabbage head (Brassica oleracea var. capitata) germplasm. Molecules (Basel, Switzerland) 25 (8):1860. doi: 10.3390/molecules25081860.
  • Blažević, I., and J. Mastelić. 2009. Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry 113 (1):96–102. doi: 10.1016/j.foodchem.2008.07.029.
  • Blažević, I., S. Montaut, F. Burčul, C. E. Olsen, M. Burow, P. Rollin, and N. Agerbirk. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100. doi: 10.1016/j.phytochem.2019.112100.
  • Brindisi, L. J., W. Lyu, H. R. Juliani, Q. Wu, B. J. Tepper, and J. E. Simon. 2023. Determination of glucosinolates and breakdown products in Brassicaceae baby leafy greens using UHPLC-QTOF/MS and GC/MS. Food Chemistry Advances 3:100389. doi: 10.1016/j.focha.2023.
  • Chen, W. T., E. Karangwa, J. Y. Yu, S. Q. Xia, B. Feng, and X. M. Zhang. 2018. Effect of sodium chloride concentration on off-flavor removal correlated to glucosinolate degradation and red radish anthocyanin stability. Journal of Food Science and Technology 56 (2):937–50. doi: 10.1007/s13197-018-03559-8.
  • Chen, X. M., F. S. Hanschen, S. Neugart, M. Schreiner, S. A. Vargas, B. Gutschmann, and S. Baldermann. 2019. Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis). Journal of Food Composition and Analysis 82:103232. doi: 10.1016/j.jfca.2019.06.004.
  • Chorol, S., P. Angmo, A. Narayal, D. M. Nambiar, T. Tamchos, D. Angchok, and O. P. Chaurasia. 2018. Variation in glucosinolate contents and quality characteristics in the seed of radish (Raphanus sativus L.) along an altitudinal gradient in trans-Himalayan Ladakh. Defence Life Science Journal 3 (2):151–6. doi: 10.1007/s13197-018-03559-8.
  • Delbaere, S. M., T. Bernaerts, M. Vangrunderbeek, F. Vancoillie, M. E. Hendrickx, T. Grauwet, and A. M. Van Loey. 2022. The volatile profile of Brussels sprouts (Brassica oleracea Var. gemmifera) as affected by pulsed electric fields in comparison to other pretreatments, selected to steer (bio)chemical reactions. Foods (Basel, Switzerland) 11 (18):2892. doi: 10.3390/foods11182892.
  • Delbaere, S. M., T. Bernaerts, M. Vangrunderbeek, F. Vancoillie, M. E. Hendrickx, T. Grauwet, and A. M. Van Loey. 2023. The volatile profile of pasteurized leek (Allium ampeloprasum var. porrum) and Brussels sprouts (Brassica oleracea var. gemmifera) (products), as a witness to (bio)chemical reactivity, influenced by pretreatment and successive refrigerated storage. Food Research International (Ottawa, Ont.) 169:112864. doi: 10.1016/j.foodres.2023.
  • Engel, E., C. Baty, D. L. Corre, I. Souchon, and N. Martin. 2002. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. Journal of Agricultural and Food Chemistry 50 (22):6459–67. doi: 10.1021/jf025579u.
  • Eylen, D. V., N. Bellostas, B. W. Strobel, I. Oey, M. Hendrickx, A. Van Loey, H. Sørensen, and J. C. Sørensen. 2009. Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chemistry 112 (3):646–53. doi: 10.1016/j.foodchem.2008.06.025.
  • Eylen, D. V., I. Oey, M. Hendrickx, and A. V. Loey. 2008. Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. Journal of Food Engineering 89 (2):178–86. doi: 10.1016/j.jfoodeng.2008.04.016.
  • Fenwick, G. R., R. K. Heaney, and W. J. Mullin. 1983. Glucosinolates and their breakdown products in food and food plants. Critical Reviews in Food Science and Nutrition 18 (2):123–201. doi: 10.1080/10408398209527361.
  • Fernandes, F., P. G. D. Pinho, P. Valentão, J. A. Pereira, and P. B. Andrade. 2009. Volatile constituents throughout Brassica oleracea L. Var. acephala Germination. Journal of Agricultural and Food Chemistry 57 (15):6795–802. doi: 10.1021/jf901532m.
  • Gao, L., H. Li, B. Q. Li, H. L. Shao, X. Y. Yu, Z. Miao, L. Z. Zhang, L. Q. Zhu, and H. G. Sheng. 2022. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. Journal of Ethnopharmacology 294:115387. doi: 10.1016/j.jep.2022.115387.
  • Guo, Q., L. Guo, Z. Wang, Y. Zhuang, and Z. Gu. 2013. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts. Food Chemistry 141 (3):1580–6. doi: 10.1016/j.foodchem.2013.04.026.
  • Han, Z., H. Li, X. C. Yu, and D. W. Sun. 2016. Effects of low temperature cooking on the retention of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) of Chinese white radish (Raphanussativus L.). Food and Bioprocess Technology 9 (10):1640–7. doi: 10.1007/s11947-016-1787-x.
  • Hanschen, F. S. 2020. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chemistry 321:126694. doi: 10.1016/j.foodchem.2020.126694.
  • Hanschen, F. S., A. Bauer, I. Mewis, C. Keil, M. Schreiner, S. Rohn, and L. W. Kroh. 2012. Thermally induced degradation of aliphatic glucosinolates: Identification of intermediary breakdown products and proposed degradation pathways. Journal of Agricultural and Food Chemistry 60 (39):9890–9. doi: 10.1021/jf302744y.
  • Hanschen, F. S., R. Klopsch, T. Oliviero, M. Schreiner, R. Verkerk, and M. Dekker. 2017. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Scientific Reports 7 (1):40807. doi: 10.1038/srep40807.
  • Hanschen, F. S., C. Kühn, M. Nickel, S. Rohn, and M. Dekker. 2018. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products. Food Chemistry 263:240–50. doi: 10.1016/j.foodchem.2018.04.069.
  • Hanschen, F. S., E. Lamy, M. Schreiner, and S. Rohn. 2014. Reactivity and stability of glucosinolates and their breakdown products in foods. Angewandte Chemie (International ed. in English) 53 (43):11430–50. doi: 10.1002/anie.201402639.
  • Hanschen, F. S., S. Platz, I. Mewis, M. Schreiner, S. Rohn, and L. W. Kroh. 2012. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems. Journal of Agricultural and Food Chemistry 60 (9):2231–41. doi: 10.1021/jf204830p.
  • Hanschen, F. S., S. Rohn, I. Mewis, M. Schreiner, and L. W. Kroh. 2012. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chemistry 130 (1):1–8. doi: 10.1016/j.foodchem.2011.05.109.
  • Hanschen, F. S., and M. Schreiner. 2017. Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Frontiers in Plant Science 8:1095. doi: 10.3389/fpls.2017.01095.
  • Helland, H. S., A. Leufvén, G. B. Bengtsson, M. K. Pettersen, P. Lea, and A.-B. Wold. 2016. Storage of fresh-cut swede and turnip: Effect of temperature, including sub-zero temperature, and packaging material on sensory attributes, sugars and glucosinolates. Postharvest Biology and Technology 111:370–9. doi: 10.1016/j.postharvbio.2015.09.011.
  • Hong, S. J., C. G. Boo, J. Lee, S. W. Hur, S. M. Jo, H. Jeong, S. Yoon, Y. J. Lee, S. S. Park, and E. C. Shin. 2021. Chemosensory approach supported-analysis of wintering radishes produced in Jeju island by different processing methods. Food Science and Biotechnology 30 (8):1033–49. doi: 10.1007/s10068-021-00948-2.
  • Hwang, I. M., B. Park, Y. M. Dang, S. Y. Kim, and H. Y. Seo. 2019. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chemistry 282:127–33. doi: 10.1016/j.foodchem.2018.12.036.
  • Iranshahi, M. 2012. A review of volatile sulfur-containing compounds from terrestrial plants: Biosynthesis, distribution and analytical methods. Journal of Essential Oil Research 24 (4):393–434. doi: 10.1080/10412905.2012.692918.
  • Jacobsson, A., T. Nielsen, and I. Sjöholm. 2004. Influence of temperature, modified atmosphere packaging, and heat treatment on aroma compounds in broccoli. Journal of Agricultural and Food Chemistry 52 (6):1607–14. doi: 10.1021/jf030631n.
  • Jia, X., L. F. Wang, C. Zheng, Y. Y. Yang, X. Y. Wang, J. Hui, and Q. Zhou. 2020. Key odorant differences in fragrant Brassica napus and Brassica juncea oils revealed by gas chromatography–olfactometry, odor activity values, and aroma recombination. Journal of Agricultural and Food Chemistry 68 (50):14950–60. doi: 10.1021/acs.jafc.0c05944.
  • Jia, X., P. Yu, Q. An, J. N. Ren, G. Fan, Z. L. Wei, X. X. Li, and S. Y. Pan. 2023. Identification of glucosinolates and volatile odor compounds in microwaved radish (Raphanus sativus L.) seeds and the corresponding oils by UPLC-IMS-QTOF-MS and GC × GC-qMS analysis. Food Research International (Ottawa, Ont.) 169:112873. doi: 10.1016/j.foodres.2023.112873.
  • Jing, B. Y., R. Guo, M. Z. Wang, L. Y. Zhang, and X. Z. Yu. 2020. Influence of seed roasting on the quality of glucosinolate content and flavor in virgin rapeseed oil. LWT 126:109301. doi: 10.1016/j.lwt.2020.
  • Kissen, R., and A. M. Bones. 2009. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. The Journal of Biological Chemistry 284 (18):12057–70. doi: 10.1074/jbc.M807500200.
  • Klopsch, R., K. Witzel, A. Artemyeva, S. Ruppel, and F. S. Hanschen. 2018. Genotypic variation of glucosinolates and their breakdown products in leaves of Brassica rapa. Journal of Agricultural and Food Chemistry 66 (22):5481–90. doi: 10.1021/acs.jafc.8b01038.
  • Klopsch, R., K. Witzel, A. Börner, M. Schreiner, and F. S. Hanschen. 2017. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Food Research International (Ottawa, Ont.) 100 (Pt 3):392–403. doi: 10.1016/j.foodres.2017.04.016.
  • Langenhove, H. J. V., C. P. Cornelis, and N. M. Schamp. 1991. Identification of volatiles emitted during the blanching process of Brussels sprouts and cauliflower. Journal of the Science of Food and Agriculture 55 (3):483–7. doi: 10.1002/jsfa.2740550316.
  • Lee, J. G., G. Bonnema, N. Zhang, J. H. Kwak, R. D. Vos, and J. Beekwilder. 2013. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. Journal of Agricultural and Food Chemistry 61 (16):3984–93. doi: 10.1021/jf400890p.
  • Leng, C. Q., Y. X. Zhang, M. Wang, P. Wang, Z. X. Gu, and R. Q. Yang. 2019. Dynamic variation of glucosinolates and isothiocyanates in broccoli sprouts during hydrolysis. Scientia Horticulturae 255:128–33. doi: 10.1016/j.scienta.2019.05.026.
  • Li, Z. S., S. N. Zheng, Y. M. Liu, Z. Y. Fang, L. M. Yang, M. Zhuang, Y. Y. Zhang, H. H. Lv, Y. Wang, and D. H. Xu. 2021. Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method. Food Chemistry 334:127519. doi: 10.1016/j.foodchem.2020.127519.
  • Liang, Q., W. Xiong, Q. Zhou, C. Cui, X. Xu, L. Zhao, P. Xuan, and Y. Z. Yao. 2023. Glucosinolates or erucic acid, which one contributes more to volatile flavor of fragrant rapeseed oil? Food Chemistry 448:139098. doi: 10.1016/j.foodchem.2023.135594.
  • Luo, S. F., R. H. An, H. S. Zhou, Y. T. Zhang, J. Ling, H. L. Hu, and P. X. Li. 2022. The glucosinolate profiles of Brassicaceae vegetables responded differently to quick-freezing and drying methods. Food Chemistry 383:132624. doi: 10.1016/j.foodchem.2022.132624.
  • Lv, J. Y., J. Wu, J. H. Zuo, L. L. Fan, J. Y. Shi, L. P. Gao, M. Li, and Q. Wang. 2017. Effect of Se treatment on the volatile compounds in broccoli. Food Chemistry 216:225–33. doi: 10.1016/j.foodchem.2016.08.005.
  • Mao, X. H., X. Z. Zhao, Z. Y. Huyan, T. T. Liu, and X. Z. Yu. 2019. Relationship of glucosinolate thermal degradation and roasted rapeseed oil volatile odor. Journal of Agricultural and Food Chemistry 67 (40):11187–97. doi: 10.1021/acs.jafc.9b04952.
  • Marcinkowska, M., S. Frank, M. Steinhaus, and H. H. Jeleń. 2021. Key odorants of raw and cooked green kohlrabi (Brassica oleracea var. gongylodes L.). Journal of Agricultural and Food Chemistry 69 (41):12270–7. doi: 10.1021/acs.jafc.1c04339.
  • Marcinkowska, M., and H. H. Jeleń. 2020. Determination of the odor threshold concentrations and partition coefficients of isothiocyanates from Brassica vegetables in aqueous solution. LWT 131:109793. doi: 10.1016/j.lwt.2020.109793.
  • Marcinkowska, M. A., and H. H. Jeleń. 2022. Role of sulfur compounds in vegetable and mushroom aroma. Molecules (Basel, Switzerland) 27 (18):6116. doi: 10.3390/molecules27186116.
  • Matera, R., S. Gabbanini, G. R. De Nicola, R. Iori, G. Petrillo, and L. Valgimigli. 2012. Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts. Food Chemistry 133 (2):563–72. doi: 10.1016/j.foodchem.2012.01.050.
  • Nakamura, Y., K. Nakamura, Y. Asai, T. Wada, K. Tanaka, T. Matsuo, S. Okamoto, J. Meijer, Y. Kitamura, A. Nishikawa, et al. 2008. Comparison of the glucosinolate-myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. Journal of Agricultural and Food Chemistry 56 (8):2702–7. doi: 10.1021/jf7035774.
  • Niu, Y., A. Rogiewicz, C. Wan, M. Guo, F. Huang, and B. A. Slominski. 2015. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. Journal of Agricultural and Food Chemistry 63 (12):3078–84. doi: 10.1021/jf504872x.
  • Nor, N. D. M., S. Lignou, L. Bell, C. Houston-Price, K. Harvey, and L. Methven. 2020. The relationship between glucosinolates and the sensory characteristics of steamed-pureed turnip (Brassica Rapa subsp. Rapa L.). Foods (Basel, Switzerland) 9 (11):1719. doi: 10.3390/foods9111719.
  • Oerlemans, K., D. M. Barrett, C. B. Suades, R. Verkerk, and M. Dekker. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chemistry 95 (1):19–29. doi: 10.1016/j.foodchem.2004.12.013.
  • Oh, J., and I. H. Cho. 2021. The aroma profile and aroma-active compounds of Brassica oleracea (kale) tea. Food Science and Biotechnology 30 (9):1205–11. doi: 10.1007/s10068-021-00962-4.
  • Oliviero, T., R. Verkerk, and M. Dekker. 2012. Effect of water content and temperature on glucosinolate degradation kinetics in broccoli (Brassica oleracea var. italica). Food Chemistry 132 (4):2037–45. doi: 10.1016/j.foodchem.2011.12.045.
  • Ortner, E., and M. Granvogl. 2017. Thermally induced generation of desirable aroma-active compounds from the glucosinolate sinigrin. Journal of Agricultural and Food Chemistry 66 (10):2485–90. doi: 10.1021/acs.jafc.7b01039.
  • Ortner, E., M. Granvogl, and P. Schieberle. 2016. Elucidation of thermally induced changes in key odorants of white mustard seeds (Sinapis alba L.) and rapeseeds (Brassica napus L.) using molecular sensory science. Journal of Agricultural and Food Chemistry 64 (43):8179–90. doi: 10.1021/acs.jafc.6b03625.
  • Park, J. E., J. Kim, E. Purevdorj, Y. J. Son, C. W. Nho, and G. Yoo. 2021. Effects of long light exposure and drought stress on plant growth and glucosinolate production in pak choi (Brassica rapa subsp. chinensis). Food Chemistry 340:128167. doi: 10.1016/j.foodchem.2020.128167.
  • Park, W. T., J. K. Kim, S. Park, S. W. Lee, X. Li, Y. B. Kim, M. R. Uddin, N. I. Park, S. J. Kim, and S. U. Park. 2012. Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). Journal of Agricultural and Food Chemistry 60 (33):8111–6. doi: 10.1021/jf301667j.
  • Pierre, P. S., J. J. Jansen, C. A. Hordijk, N. M. van Dam, A. M. Cortesero, and S. Dugravot. 2011. Differences in volatile profiles of turnip plants subjected to single and dual herbivory above- and belowground. Journal of Chemical Ecology 37 (4):368–77. doi: 10.1007/s10886-011-9934-3.
  • Pollner, G., and P. Schieberle. 2016. Characterization of the key odorants in commercial cold-pressed oils from unpeeled and peeled rapeseeds by the sensomics approach. Journal of Agricultural and Food Chemistry 64 (3):627–36. doi: 10.1021/acs.jafc.5b05321.
  • Púčiková, V., S. Rohn, and F. S. Hanschen. 2023. Glucosinolate accumulation and hydrolysis in leafy Brassica vegetables are influenced by leaf age. Journal of Agricultural and Food Chemistry 71 (30):11466–75. doi: 10.1021/acs.jafc.3c01997.
  • Qin, H., G. J. King, P. Borpatragohain, and J. Zou. 2023. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. Plant Communications 4 (4):100565. doi: 10.1016/j.xplc.2023.100565.
  • Rajkumar, G., S. Shanmugam, M. D. S. Galvâo, R. D. D. Sandes, M. T. S. L. Neta, N. Narain, and A. S. Mujumdar. 2017. Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT 80:501–9. doi: 10.1016/j.lwt.2017.03.020.
  • Renz, M., M. Dekker, S. Rohn, and F. S. Hanschen. 2023. Plant matrix concentration and redox status influence thermal glucosinolate stability and formation of nitriles in selected Brassica vegetable broths. Food Chemistry 404 (Pt A):134594. doi: 10.1016/j.foodchem.2022.134594.
  • Renz, M., S. Rohn, and F. S. Hanschen. 2023. Thermal degradation and oxidation of glucosinolates in model systems and Brassica vegetable broth is mediated by redox-active compounds. Food Chemistry 431:137108. doi: 10.1016/j.foodchem.2023.137108.
  • Rungapamestry, V., A. J. Duncan, Z. Fuller, and V. Ratcliffe. 2006. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. Journal of Agricultural and Food Chemistry 54 (20):7628–34. doi: 10.1021/jf0607314.
  • Sharma, A., P. K. Rai, and S. Prasad. 2018. GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchemical Journal 138:488–93. doi: 10.1016/j.microc.2018.01.015.
  • Singh, J., G. K. Jayaprakasha, and B. S. Patil. 2017. Rapid and efficient desulfonation method for the analysis of glucosinolates by high-resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 65 (50):11100–8. doi: 10.1021/acs.jafc.7b04662.
  • Sotelo, T., P. Velasco, P. Soengas, V. M. Rodríguez, and M. E. Cartea. 2016. Modification of leaf glucosinolate contents in Brassica oleracea by divergent selection and effect on expression of genes controlling glucosinolate pathway. Frontiers in Plant Science 7:1012. doi: 10.3389/fpls.2016.01012.
  • Sun, J., Y. F. Wang, X. Y. Pang, S. H. Tian, Q. B. Hu, X. F. Li, J. Liu, J. Wang, and Y. J. Lu. 2021. The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables. Food Chemistry 360:130007. doi: 10.1016/j.foodchem.2021.130007.
  • Tabart, J., J. Pincemail, C. Kevers, J. O. Defraigne, and J. Dommes. 2018. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. European Food Research and Technology 244 (12):2085–94. doi: 10.1007/s00217-018-3126-0.
  • Thomas, M., A. Badr, Y. Desjardins, A. Gosselin, and P. Angers. 2018. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chemistry 245:1204–11. doi: 10.1016/j.foodchem.2017.11.021.
  • Valette, L., X. Fernandez, S. Poulain, L. Lizzani-Cuvelier, and A. M. Loiseau. 2006. Chemical composition of the volatile extracts from Brassica oleracea L. var. botrytis ‘Romanesco’ cauliflower seeds. Flavour and Fragrance Journal 21 (1):107–10. doi: 10.1002/ffj.1530.
  • Van Gemert, L. J. 2011. Compilations of odour threshold values in air, water and other media ; Second enlarged and revised edition. Netherlands: Oliemans, Punter & Partners.
  • Verheggen, F. J., E. Haubruge, C. M. De Moraes, and M. C. Mescher. 2013. Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores. Arthropod-Plant Interactions 7 (5):567–77. doi: 10.1007/s11829-013-9272-1.
  • Vrca, I., J. Šćurla, N. Kević, F. Burčul, V. Č. Čulić, I. Bočina, I. Blažević, A. Bratanić, and T. Bilušić. 2021. Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. European Food Research and Technology 248 (2):567–76. doi: 10.1007/s00217-021-03903-x.
  • Wang, J., F. J. Barba, H. B. Frandsen, S. Sørensen, K. Olsen, J. C. Sørensen, and V. Orlien. 2016. The impact of high pressure on glucosinolate profile and myrosinase activity in seedlings from Brussels sprouts. Innovative Food Science & Emerging Technologies 38:342–8. doi: 10.1016/j.ifset.2016.06.020.
  • Wang, J., F. J. Barba, J. C. Sørensen, H. B. Frandsen, S. Sørensen, K. Olsen, and V. Orlien. 2018. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts. Food Chemistry 245:1212–7. doi: 10.1016/j.foodchem.2017.11.018.
  • Wang, J. S., H. F. Yu, Z. Q. Zhao, X. G. Sheng, Y. H. Shen, and H. H. Gu. 2019. Natural variation of glucosinolates and their breakdown products in broccoli (Brassica oleracea var. italica) seeds. Journal of Agricultural and Food Chemistry 67 (45):12528–37. doi: 10.1021/acs.jafc.9b06533.
  • Wang, L. L., H. Jiang, Y. J. Qiu, Y. Y. Dong, H. I. Hamouda, M. A. Balah, and X. Z. Mao. 2022. Biochemical characterization of a novel myrosinase rmyr from Rahnella inusitata for high-level preparation of sulforaphene and sulforaphane. Journal of Agricultural and Food Chemistry 70 (7):2303–11. doi: 10.1021/acs.jafc.1c07646.
  • Wang, M. Z., J. Zhang, J. Chen, B. Y. Jing, L. Y. Zhang, and X. Z. Yu. 2019. Characterization of differences in flavor in virgin rapeseed oils by using gas chromatography–mass spectrometry, electronic nose, and sensory analysis. European Journal of Lipid Science and Technology 122 (3):1900205. doi: 10.1002/ejlt.201900205.
  • Wang, Y. P., Q. B. Wang, H. H. Sun, Z. Y. Zhang, H. H. Qian, X. Z. Zhao, H. J. He, and L. Zhang. 2022. Glucosinolate profiles in different organs of 111 radish accessions and candidate Genes involved in converting glucobrassicin to 4-hydroxyglucobrassicin. Journal of Agricultural and Food Chemistry 70 (2):488–97. doi: 10.1021/acs.jafc.1c05107.
  • Wei, F., M. Yang, Q. Zhou, C. Zheng, J. H. Peng, C. S. Liu, F. H. Huang, and H. Chen. 2012. Varietal and processing effects on the volatile profile of rapeseed oils. LWT – Food Science and Technology 48 (2):323–9. doi: 10.1016/j.lwt.2012.04.007.
  • Wei, L. Y., C. H. Liu, L. Wang, J. J. Wang, Y. M. Xia, Y. J. Wang, and L. Zheng. 2021. High-pressure processing combined with microwave heating: A potential approach to affect the quality and enhance sulforaphane production in broccoli florets. ACS Food Science & Technology 1 (7):1169–79. doi: 10.1021/acsfoodscitech.1c00081.
  • Wei, S. H., X. M. Xiao, L. J. Wei, L. S. Li, G. C. Li, F. H. Liu, J. M. Xie, J. H. Yu, and Y. Zhong. 2020. Development and comprehensive HS-SPME/GC–MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chemistry 340:128166. doi: 10.1016/j.foodchem.2020.128166.
  • Wieczorek, M. N., N. Drabińska, and H. H. Jeleń. 2023. Thermal processing-induced changes in volatilome and metabolome of Brussels sprouts: Focus on glucosinolate metabolism. European Food Research and Technology 249 (8):2165–74. doi: 10.1007/s00217-023-04276-z.
  • Wieczorek, M. N., A. Dunkel, A. Szwengiel, K. Czaczyk, A. Drożdżyńska, R. Zawirska Wojtasiak, and H. H. Jeleń. 2022. The relation between phytochemical composition and sensory traits of selected Brassica vegetables. LWT 156:113028. doi: 10.1016/j.lwt.2021.113028.
  • Wieczorek, M. N., and H. H. Jeleń. 2019. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules (Basel, Switzerland) 24 (3):391. doi: 10.3390/molecules24030391.
  • Wieczorek, M. N., M. Majcher, and H. Jeleń. 2020. Comparison of three extraction techniques for the determination of volatile flavor components in broccoli. Foods (Basel, Switzerland) 9 (4):398. doi: 10.3390/foods9040398.
  • Wieczorek, M. N., M. A. Majcher, and H. H. Jeleń. 2021. Identification of aroma compounds in raw and cooked broccoli. Flavour and Fragrance Journal 36 (5):576–83. doi: 10.1002/ffj.3669.
  • Wu, X., H. Huang, H. Childs, Y. Wu, L. Yu, and P. R. Pehrsson. 2021. Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annual Review of Food Science and Technology 12 (1):485–511. doi: 10.1146/annurev-food-070620-025744.
  • Xu, B. G., M. Zhang, B. Bhandari, X. F. Cheng, and M. N. Islam. 2015. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrasonics Sonochemistry 27:316–24. doi: 10.1016/j.ultsonch.2015.04.014.
  • Xue, Y. L., H. T. Han, C. J. Liu, Q. Gao, J. H. Li, J. H. Zhang, D. J. Li, and C. Q. Liu. 2020. Multivariate analyses of the volatile components in fresh and dried turnip (Brassica rapa L.) chips via HS-SPME–GC–MS. Journal of Food Science and Technology 57 (9):3390–9. doi: 10.1007/s13197-020-04372-y.
  • Yang, Y. Y., P. Yu, J. Y. Sun, Y. M. Jia, C. Y. Wan, Q. Zhou, and F. H. Huang. 2022. Investigation of volatile thiol contributions to rapeseed oil by odor active value measurement and perceptual interactions. Food Chemistry 373 (Pt B):131607. doi: 10.1016/j.foodchem.2021.131607.
  • Yi, G. E., A. H. Robin, K. Yang, J. I. Park, J. G. Kang, T. J. Yang, and I. S. Nou. 2015. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules (Basel, Switzerland) 20 (7):13089–111. doi: 10.3390/molecules200713089.
  • Yu, P., Y. Y. Yang, J. Y. Sun, X. Jia, C. Zheng, Q. Zhou, and F. H. Huang. 2022. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC-SCD and UPLC-MS/MS. Food Chemistry 367:130741. doi: 10.1016/j.foodchem.2021.130741.
  • Zeng, W., H. Tao, Y. Li, J. Wang, C. Xia, S. Li, M. Wang, Q. Wang, and H. Miao. 2021. The flavor of Chinese kale sprouts is affected by genotypic variation of glucosinolates and their breakdown products. Food Chemistry 359:129824. doi: 10.1016/j.foodchem.2021.129824.
  • Zhang, J., X. Zhou, and M. Fu. 2016. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene. Food Chemistry 192:541–7. doi: 10.1016/j.foodchem.2015.07.051.
  • Zhang, L. Y., J. Chen, X. Z. Zhao, Y. M. Wang, and X. Z. Yu. 2022. Influence of roasting on the thermal degradation pathway in the glucosinolates of fragrant rapeseed oil: Implications to flavour profiles. Food Chemistry: X 16:100503. doi: 10.1016/j.fochx.2022.100503.
  • Zhang, X. R., H. Guan, Q. Zhao, H. S. Gong, D. C. Wang, P. Wang, H. M. Li, and W. L. Liu. 2023. Effect of thermal treatment on the flavor quality of Chinese spicy cabbage. Food Control 144:109338. doi: 10.1016/j.foodcont.2022.109338.
  • Zhang, Y. F., H. L. Lv, B. B. Yang, P. X. Zheng, H. Zhang, X. G. Wang, M. Granvogl, and Q. Z. Jin. 2022. Characterization of thermally induced flavor compounds from the glucosinolate progoitrin in different matrices via GC-TOF-MS. Journal of Agricultural and Food Chemistry 70 (4):1232–40. doi: 10.1021/acs.jafc.1c04415.
  • Zhang, Y. F., F. Stöppelmann, L. Zhu, J. Q. Liang, M. Rigling, X. G. Wang, Q. Z. Jin, and Y. Y. Zhang. 2023. A comparative study on flavor trapping techniques from the viewpoint of odorants of hot-pressed rapeseed oil. Food Chemistry 426:136617. doi: 10.1016/j.foodchem.2023.136617.
  • Zhang, Y. F., Y. Q. Wu, S. R. Chen, B. B. Yang, H. Zhang, X. G. Wang, M. Granvogl, and Q. Z. Jin. 2021. Flavor of rapeseed oil: An overview of odorants, analytical techniques, and impact of treatment. Comprehensive Reviews in Food Science and Food Safety 20 (4):3983–4018. doi: 10.1111/1541-4337.12780.
  • Zhang, Y. F., C. Zhen, B. X. Zhao, S. M. Zhou, Y. R. Jiang, X. G. Wang, Q. Z. Jin, and Y. Y. Zhang. 2023. Comparative characterization of key odorants and aroma profiles of fragrant rapeseed oil under different roasting conditions. Food Research International (Ottawa, Ont.) 163:112195. doi: 10.1016/j.foodres.2022.112195.
  • Zheng, C., Y. N. Yang, F. Wei, X. Lv, Z. R. Xia, M. Qi, and Q. Zhou. 2023. Widely targeted metabolomics reveal the glucosinolate profile and odor-active compounds in flowering Chinese cabbage powder. Food Research International (Ottawa, Ont.) 172:113121. doi: 10.1016/j.foodres.2023.113121.
  • Zhou, B., W. Huang, X. Feng, Q. Liu, S. A. Ibrahim, and Y. Liu. 2022. Identification and quantification of intact glucosinolates at different vegetative growth periods in Chinese cabbage cultivars by UHPLC-Q-TOF-MS. Food Chemistry 393:133414. doi: 10.1016/j.foodchem.2022.133414.
  • Zhou, Q., X. Jia, Y. Z. Yao, B. Wang, C. Q. Wei, M. Zhang, and F. Huang. 2019. Characterization of the aroma-active compounds in commercial fragrant rapeseed oils via monolithic material sorptive extraction. Journal of Agricultural and Food Chemistry 67 (41):11454–63. doi: 10.1021/acs.jafc.9b05691.
  • Zhou, Q., H. Tang, X. Jia, C. Zheng, F. H. Huang, and M. Zhang. 2018. Distribution of glucosinolate and pungent odors in rapeseed oils from raw and microwaved seeds. International Journal of Food Properties 21 (1):2296–308. doi: 10.1080/10942912.2018.1514632.
  • Zhou, Q., C. Zheng, F. Wei, and Y. N. Yang. 2023. Flavor precursors identification and thermal degradation mechanisms of glucoerucin in fragrant rapeseed oil. Food Chemistry 435:137484. doi: 10.1016/j.foodchem.2023.137484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.