174
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review

ORCID Icon, , , ORCID Icon, , , , & show all

References

  • Abbaspour-Aghdam, S., A. Hazrati, S. Abdolmohammadi-Vahid, S. Tahmasebi, J. Mohseni, H. Valizadeh, M. Nadiri, H. Mikaeili, A. Sadeghi, M. Yousefi, et al. 2022. Immunomodulatory role of nanocurcumin in COVID-19 patients with dropped natural killer cells frequency and function. European Journal of Pharmacology 933:175267. doi: 10.1016/j.ejphar.2022.175267.
  • Abdul Wahab, S. M., K. Husain, I. Jantan, L. Arshad, A. Haque, N. Mohd Fauzi, M. A. Nafiah, and S. Das. 2023. Immunosuppressive effects of Annona muricata L. leaf extract on cellular and humoral immune responses in male Wistar rats. Current Pharmaceutical Biotechnology 24 (11):1465–77.
  • Ahmad Nazri, K. A., Q. Haji Mohd Saad, N. Mohd Fauzi, F. Buang, I. Jantan, and Z. Jubri. 2021. Gynura procumbens ethanol extract improves vascular dysfunction by suppressing inflammation in postmenopausal rats fed a high-fat diet. Pharmaceutical Biology 59 (1):1203–15. doi: 10.1080/13880209.2021.1970199.
  • Ahmadi, R., S. Salari, M. D. Sharifi, H. Reihani, M. B. Rostamiani, M. Behmadi, Z. Taherzadeh, S. Eslami, S. M. Rezayat, M. R. Jaafari, et al. 2021. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Science & Nutrition 9 (8):4068–75. doi: 10.1002/fsn3.2226.
  • Ahmed, A. K. K., and M. Elkazzaz. 2021. Natural phytochemicals, phenformin, and docosahexaenoic acid (DHA) as a novel inhibitors of IL-6 and ACE2 receptors, a therapeutic strategy for targeting COVID-19 cell entry and cytokine storm. An in silico approach. ScienceOpen Preprints. doi: 10.21203/rs.3.rs-918251/v1
  • Akhtar, N. M. Y., I. Jantan, L. Arshad, and M. A. Haque. 2019. Standardized ethanol extract, essential oil and zerumbone of Zingiber zerumbet rhizome suppress phagocytic activity of human neutrophils. BMC Complementary and Alternative Medicine 19 (1):331. doi: 10.1186/s12906-019-2748-5.
  • Ali Reza, A. S. M., M. S. Nasrin, M. A. Hossen, M. A. Rahman, I. Jantan, M. A. Haque, and E. Sobarzo-Sánchez. 2023. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Critical Reviews in Food Science and Nutrition 63 (22):5546–76. doi: 10.1080/10408398.2021.2021138.
  • Al-Rekabi, M. D., S. H. Ali, H. Al-Basaisi, F. Hashim, A. H. Hussein, and H. K. Abbas. 2015. Immunomodulatory effects of quercetin in patient with active rheumatoid arthritis. British Journal of Medical and Health Research 2:23–34.
  • Alrasheid, A. A., M. Y. Babiker, and T. A. Awad. 2021. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacology 9 (1):10. doi: 10.1007/s40203-020-00073-8.
  • Arab, F. L., A. Hoseinzadeh, F. S. Mohammadi, A. Rajabian, A. Faridzadeh, and M. Mahmoudi. 2024. Immunoregulatory effects of nanocurcumin in inflammatory milieu: Focus on COVID-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 171:116131. doi: 10.1016/j.biopha.2024.116131.
  • Asadirad, A., R. Nashibi, A. Khodadadi, A. A. Ghadiri, M. Sadeghi, A. Aminian, and S. Dehnavi. 2022. Antiinflammatory potential of nano-curcumin as an alternative therapeutic agent for the treatment of mild-to-moderate hospitalized COVID-19 patients in a placebo-controlled clinical trial. Phytotherapy Research: PTR 36 (2):1023–31. doi: 10.1002/ptr.7375.
  • Awad, A. S., H. A. Elariny, and A. S. Sallam. 2020. The possible protective effect of colchicine against liver damage induced by renal ischemia–reperfusion injury: Role of Nrf2 and NLRP3 inflammasome. Canadian Journal of Physiology and Pharmacology 98 (12):849–54. doi: 10.1139/cjpp-2020-0230.
  • Bachmetov, L., M. Gal-Tanamy, A. Shapira, M. Vorobeychik, T. Giterman-Galam, P. Sathiyamoorthy, A. Golan-Goldhirsh, I. Benhar, R. Tur-Kaspa, and R. Zemel. 2012. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. Journal of Viral Hepatitis 19 (2): E 81–e88. doi: 10.1111/j.1365-2893.2011.01507.x.
  • Banerjee, A., S. J. Czinn, R. J. Reiter, and T. G. Blanchard. 2020. Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for COVID-19. Life Sciences 255:117842. doi: 10.1016/j.lfs.2020.117842.
  • Baranwal, M., Y. Gupta, P. Dey, and S. Majaw. 2021. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytotherapy Research: PTR 35 (11):6148–69. doi: 10.1002/ptr.7222.
  • Benarba, B., and A. Pandiella. 2020. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology 11:1189. doi: 10.3389/fphar.2020.01189.
  • Bernini, R., and F. Velotti. 2021. Natural polyphenols as immunomodulators to rescue immune response homeostasis: Quercetin as a research model against severe COVID-19. Molecules (Basel, Switzerland) 26 (19):5803. doi: 10.3390/molecules26195803.
  • Cao, Z., Y. Fang, Y. Lu, D. Tan, C. Du, Y. Li, Q. Ma, J. Yu, M. Chen, C. Zhou, et al. 2017. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. Journal of Pineal Research 62 (3):e12389. doi: 10.1111/jpi.12389.
  • Cao, H., T. T. Chai, X. Wang, M. F. B. Morais-Braga, J. H. Yang, F. C. Wong, R. Wang, H. Yao, J. Cao, L. Cornara, et al. 2017. Phytochemicals from fern species: Potential for medicine applications. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 16 (3):379–440. doi: 10.1007/s11101-016-9488-7.
  • Cao, C. 2020. Investigation on mechanism and active components of Shufeng Jiedu Capsule in treatment of COVID-19 based on network pharmacology and molecular docking. Chinese Traditional and Herbal Drugs 24:2283–96.
  • Catanzaro, M., F. Fagiani, M. Racchi, E. Corsini, S. Govoni, and C. Lanni. 2020. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduction and Targeted Therapy 5 (1):84. doi: 10.1038/s41392-020-0191-1.
  • Chekalina, N., Y. Burmak, Y. Petrov, Z. Borisova, Y. Manusha, Y. Kazakov, and I. Kaidashev. 2018. Quercetin reduces the transcriptional activity of NF-κB in stable coronary artery disease. Indian Heart Journal 70 (5):593–7. doi: 10.1016/j.ihj.2018.04.006.
  • Cheng, D., and Y. Li. 2020. Clinical effectiveness and case analysis in 54 NCP patients treated with lanhuaqingwen granules. World Journal of Traditional Chinese Medicine 15:150–4.
  • Dai, Y., W. Qiang, Y. Gui, X. Tan, T. Pei, K. Lin, S. Cai, L. Sun, G. Ning, J. Wang, et al. 2021. A large-scale transcriptional study reveals inhibition of COVID-19 related cytokine storm by traditional Chinese medicines. Science Bulletin 66 (9):884–8. doi: 10.1016/j.scib.2021.01.005.
  • de Souza Andrade, M. M., V. N. C. Leal, I. G. Fernandes, S. C. Gozzi-Silva, D. R. Beserra, E. A. Oliveira, F. M. E. Teixeira, T. M. Yendo, M. d G. T. Sousa, W. R. Teodoro, et al. 2022. Resveratrol downmodulates neutrophil extracellular trap (NET) generation by neutrophils in patients with severe COVID-19. Antioxidants 11 (9):1690. doi: 10.3390/antiox11091690.
  • Della-Torre, E., F. Della-Torre, M. Kusanovic, R. Scotti, G. A. Ramirez, L. Dagna, and M. Tresoldi. 2020. Treating COVID-19 with colchicine in community healthcare setting. Clinical Immunology (Orlando, Fla.) 217:108490. doi: 10.1016/j.clim.2020.108490.
  • Deng, X., X. Yu, and J. Pei. 2020. Regulation of interferon production as a potential strategy for COVID-19 treatment. eprint arXiv 200300751 doi: 10.48550/arXiv.2003.00751
  • Derosa, G., P. Maffioli, A. D’Angelo, and F. Di Pierro. 2021. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy Research: PTR 35 (3):1230–6. doi: 10.1002/ptr.6887.
  • Ding, Y., L. Chen, W. Wu, J. Yang, Z. Yang, and S. Liu. 2017. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes and Infection 19 (12):605–15. doi: 10.1016/j.micinf.2017.08.009.
  • Enmozhi, S. K., K. Raja, I. Sebastine, and J. Joseph. 2021. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure & Dynamics 39 (9):3092–8. doi: 10.1080/07391102.2020.1760136.
  • Entzminger, K. C., J. K. Fleming, P. D. Entzminger, L. Y. Espinosa, A. Samadi, Y. Hiramoto, C. Okumura, and T. Maruyama. 2023. Rapid engineering of SARS-CoV-2 therapeutic antibodies to increase breadth of neutralization including BQ.1.1, CA.3.1, CH.1.1, XBB.1.16, and XBB.1.5. Antibody Therapeutics 6 (2):108–18. doi: 10.1093/abt/tbad006.
  • Farahani, M., Z. Niknam, L. M. Amirabad, N. Amiri-Dashatan, M. Koushki, M. Nemati, F. D. Pouya, M. Rezaei-Tavirani, Y. Rasmi, and L. Tayebi. 2022. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 145:112420. doi: 10.1016/j.biopha.2021.112420.
  • Gautam, S., and L. Hens. 2020. COVID-19: Impact by and on the environment, health and economy. Environment, Development and Sustainability 22 (6):4953–4. doi: 10.1007/s10668-020-00818-7.
  • Ghazalee, N. S., I. Jantan, L. Arshad, and M. A. Haque. 2019. Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats. Phytotherapy Research: PTR 33 (4):929–38. doi: 10.1002/ptr.6285.
  • Giovinazzo, G., C. Gerardi, C. Uberti-Foppa, and L. Lopalco. 2020. Can natural polyphenols help in reducing cytokine storm in COVID-19 patients? Molecules (Basel, Switzerland) 25 (24):5888. doi: 10.3390/molecules25245888.
  • Gour, A., D. Manhas, S. Bag, B. Gorain, and U. Nandi. 2021. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytotherapy Research: PTR 35 (8):4258–83. doi: 10.1002/ptr.7092.
  • Gu, Y. Y., M. Zhang, H. Cen, Y. F. Wu, Z. Lu, F. Lu, X. S. Liu, and H. Y. Lan. 2021. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PloS One 16 (1):e0245209. doi: 10.1371/journal.pone.0245209.
  • Gyebi, G. A., O. M. Ogunyemi, I. M. Ibrahim, S. O. Afolabi, and J. O. Adebayo. 2021. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective. Computers in Biology and Medicine 134:104406. doi: 10.1016/j.compbiomed.2021.104406.
  • Han, L. W. 2020. Network pharmacologic molecular mechanism of Shenmai Injection in treatment of COVID-19 combined with coronary heart disease. Chinese Journal of Natural Medicine 24:2334–44.
  • Haque, M. A., I. Jantan, and H. Harikrishnan. 2018. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. International Immunopharmacology 55:312–22. doi: 10.1016/j.intimp.2018.01.001.
  • Haque, M. A., I. Jantan, H. Harikrishnan, and S. Ghazalee. 2019. Standardized extract of Zingiber zerumbet suppresses LPS-induced pro-inflammatory responses through NF-κB, MAPK and PI3K-Akt signaling pathways in U937 macrophages. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 54:195–205. doi: 10.1016/j.phymed.2018.09.183.
  • Harikrishnan, H., I. Jantan, A. Alagan, and M. A. Haque. 2020. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: Potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology 28 (1):1–18. doi: 10.1007/s10787-019-00671-9.
  • Harikrishnan, H., I. Jantan, M. A. Haque, and E. Kumolosasi. 2018a. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complementary and Alternative Medicine 18 (1):224. doi: 10.1186/s12906-018-2289-3.
  • Harikrishnan, H., I. Jantan, M. A. Haque, and E. Kumolosasi. 2018b. Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways. Phytotherapy Research: PTR 32 (12):2510–9. doi: 10.1002/ptr.6190.
  • Harikrishnan, H., I. Jantan, M. A. Haque, and E. Kumolosasi. 2018c. Anti-inflammatory effects of hypophyllanthin and niranthin through downregulation of NF-κB/MAPKs/PI3K-Akt signaling pathways. Inflammation 41 (3):984–95. doi: 10.1007/s10753-018-0752-4.
  • He, T., C. Duan, X. Li, and J. Zhang. 2020. Potential mechanism of Xuebijing injection in treatment of coronavirus pneumonia based on network pharmacology and molecular docking. Chinese Journal of Modern Applied Pharmacy 37:398–405.
  • Hong-Zhi, D. U., H. Xiao-Ying, M. Yu-Huan, B. S. Huang, and L. Da-Hui. 2020. Traditional Chinese Medicine: An effective treatment for 2019 novel coronavirus pneumonia (NCP). Chinese Journal of Natural Medicines 18 (3):206–10. doi: 10.1016/S1875-5364(20)30022-4.
  • Hossain, M. A., M. Sohel, T. Sultana, M. I. Hasan, M. S. Khan, K. K. Kibria, S. H. Mahmud, and M. H. Rahman. 2023. Study of kaempferol in treatment of COVID-19 combined with Chikungunya co-infection by network pharmacology and molecular coupling technology. Informatics in Medicine Unlocked 40:101289. doi: 10.1016/j.imu.2023.101289.
  • Hsu, R. J., W. C. Yu, G. R. Peng, C. H. Ye, S. Y. Hu, P. C. T. Chong, K. Y. Yap, J. Y. C. Lee, W.-C. Lin, and S.-H. Yu. 2022. The role of cytokines and chemokines in severe acute respiratory syndrome coronavirus 2 infections. Frontiers in Immunology 13:832394. doi: 10.3389/fimmu.2022.832394.
  • Huang, Y. F., C. Bai, F. He, Y. Xie, and H. Zhou. 2020. Review on the potential action mechanisms of Chinese medicines in treating coronavirus disease 2019 (COVID-19). Pharmacological Research 158:104939. doi: 10.1016/j.phrs.2020.104939.
  • Ilangkovan, M., I. Jantan, and S. N. A. Bukhari. 2016a. Phyllanthin from Phyllanthus amarus inhibits cellular and humoral immune responses in Balb/C mice. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 23 (12):1441–50. doi: 10.1016/j.phymed.2016.08.002.
  • Ilangkovan, M., I. Jantan, M. A. Mesaik, and S. N. A. Bukhari. 2016b. Inhibitory effects of the standardized extract of Phyllanthus amarus on cellular and humoral immune responses in Balb/C mice. Phytotherapy Research: PTR 30 (8):1330–8. doi: 10.1002/ptr.5633.
  • Imran, M., H. K. Thabet, S. I. Alaqel, A. R. Alzahrani, A. Abida, M. K. Alshammari, M. Kamal, A. Diwan, S. M. B. Asdaq, and S. Alshehri. 2022. The therapeutic and prophylactic potential of quercetin against COVID-19: An outlook on the clinical studies, inventive compositions, and patent literature. Antioxidants 11 (5):876. doi: 10.3390/antiox11050876.
  • Ismail, E. N., I. Jantan, S. Vidyadaran, J. A. Jamal, and N. Azmi. 2020. Phyllanthus amarus prevents LPS-mediated BV2 microglial activation via MyD88 and NF-κB signaling pathways. BMC Complementary Medicine and Therapies 20 (1):202. doi: 10.1186/s12906-020-02961-0.
  • Jantan, I., L. Arshad, A. W. Septama, M. A. Haque, Z. A. Mohamed-Hussein, and N. T. Govender. 2023. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytotherapy Research: PTR 37 (3):1036–56. doi: 10.1002/ptr.7671.
  • Jantan, I., M. A. Haque, L. Arshad, H. Harikrishnan, A. W. Septama, and Z.-A. Mohamed Hussein. 2021. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. The Journal of Nutritional Biochemistry 93:108634. doi: 10.1016/j.jnutbio.2021.108634.
  • Jantan, I., M. A. Haque, M. Ilangkovan, and L. Arshad. 2019a. Zerumbone from Zingiber zerumbet inhibits innate and adaptive immune responses in Balb/C mice. International Immunopharmacology 73:552–9. doi: 10.1016/j.intimp.2019.05.035.
  • Jantan, I., M. A. Haque, M. Ilangkovan, and L. Arshad. 2019b. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Frontiers in Pharmacology 10:878. doi: 10.3389/fphar.2019.00878.
  • Jiang, Y., T. Zhao, X. Zhou, Y. Xiang, P. Gutierrez-Castrellon, and X. Ma. 2022. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm 3 (3):e154. doi: 10.1002/mco2.154.
  • Jiang, Y., Y. Z. Xie, C. W. Peng, K. N. Yao, X. Y. Lin, S. F. Zhan, H. F. Zhuang, H. T. Huang, X. H. Liu, X. F. Huang, et al. 2022. Modeling kaempferol as a potential pharmacological agent for COVID-19/PF co-occurrence based on bioinformatics and system pharmacological tools. Frontiers in Pharmacology 13:865097. doi: 10.3389/fphar.2022.865097.
  • Jiménez, D., and M. Torres Arias. 2022. Immunouniverse of SARS-CoV-2. Immunological Medicine 45 (4):186–224. doi: 10.1080/25785826.2022.2066251.
  • Kageyama, Y., K. Aida, K. Kawauchi, M. Morimoto, T. Ebisui, T. Akiyama, and T. Nakamura. 2022. Jinhua Qinggan granule, a Chinese herbal medicine against COVID‑19, induces rapid changes in the neutrophil/lymphocyte ratio and plasma levels of IL‑6 and IFN‑γ: An open‑label, single‑arm pilot study. World Academy of Science Journal 4:1–8.
  • Khan, A., S. Iqtadar, S. U. Mumtaz, M. Heinrich, D. A. Pascual-Figal, S. Livingstone, and S. Abaidullah. 2022. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19 - Results from a pilot open-label, randomized controlled trial. Frontiers in Pharmacology 13:898062. doi: 10.3389/fphar.2022.898062.
  • Kim, E.-H., B. W. Lee, B. Ryu, H. M. Cho, S.-M. Kim, S.-G. Jang, M. A. B. Casel, R. Rollon, J.-S. Yoo, H. Poo, et al. 2022. Inhibition of a broad range of SARS-CoV-2 variants by antiviral phytochemicals in hACE2 mice. Antiviral Research 204:105371. doi: 10.1016/j.antiviral.2022.105371.
  • Kim, G. D., S. E. Lee, T. H. Kim, Y. H. Jin, Y. S. Park, and C. S. Park. 2012. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts. Journal of Pineal Research 52 (3):356–64. doi: 10.1111/j.1600-079X.2011.00950.x.
  • Kong, Y., L. L. Lin, Y. Chen, S. Lai, H. W. Wu, and J. Chen. 2020. Mechanism of XueBiJing injection on treatment of coronavirus disease 2019 based on network pharmacology. Modernization of Traditional Chinese Medicine and Materia Materia-World Science and Technology 22 (3):552–60.
  • Kong, Y., H. Wu, Y. Chen, S. Lai, Z. Yang, and J. Chen. 2020. A study on the mechanism of the treatment of novel coronavirus pneumonia (COVID-19) by Tanreqing injection based on network pharmacology and molecular docking. Chinese Herbal Medicine 51 (7):1785–94.
  • Kode, J., J. Maharana, A. A. Dar, S. Mukherjee, N. Gadewal, D. K. Sigalapalli, S. Kumar, D. Panda, S. Ghosh, S. S. Keshry, et al. 2023. 6-shogaol exhibits anti-viral and anti-inflammatory activity in Covid-19-associated inflammation by regulating nlrp3 inflammasomes. ACS Omega 8 (2):2618–28. doi: 10.1021/acsomega.2c07138.
  • Kumar, A., R. K. Narayan, P. Prasoon, C. Kumari, G. Kaur, S. Kumar, M. Kulandhasamy, K. Sesham, V. Pareek, M. A. Faiq, et al. 2021. COVID-19 mechanisms in the human body – What we know so far. Frontiers in Immunology 12:693938. doi: 10.3389/fimmu.2021.693938.
  • Leung, Y. Y., B. Haaland, J. L. Huebner, S. B. S. Wong, M. Tjai, C. Wang, B. Chowbay, J. Thumboo, B. Chakraborty, M. H. Tan, et al. 2018. Colchicine lack of effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): A randomized controlled trial. Osteoarthritis and Cartilage 26 (5):631–40. doi: 10.1016/j.joca.2018.01.026.
  • Li, S., C. S. Cheng, C. Zhang, G. Y. Tang, H. Y. Tan, H. Y. Chen, N. Wang, A. Y. K. Lai, and Y. Feng. 2021. Edible and herbal plants for the prevention and management of COVID-19. Frontiers in Pharmacology 12:656103. doi: 10.3389/fphar.2021.656103.
  • Li, Y., S. He, J. Tang, N. Ding, X. Chu, L. Cheng, X. Ding, T. Liang, S. Feng, S. U. Rahman, et al. 2017. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW 264.7 cells through suppression of NF-κB/MAPK signaling pathway. Evidence-Based Complementary and Alternative Medicine: ECAM 2017:8248142. doi: 10.1155/2017/8248142.
  • Ling, X.-Y. 2020. Exploring material basis and mechanism of Lianhua Qingwen Prescription against coronavirus based on network pharmacology. Chinese Traditional and Herbal Drugs 24:1723–30.
  • Little, P. 2020. Non-steroidal anti-inflammatory drugs and COVID-19. BMJ (Clinical Research ed.) 368: M 1185. doi: 10.1136/bmj.m1185.
  • Liu, M., Q. Wang, W. Xu, J. Wu, X. Xu, H. Yang, and X. Li. 2023. Natural products for treating cytokine storm–related diseases: Therapeutic effects and mechanisms. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 167:115555. doi: 10.1016/j.biopha.2023.115555.
  • Lowery, S. A., A. Sariol, and S. Perlman. 2021. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host & Microbe 29 (7):1052–62. doi: 10.1016/j.chom.2021.05.004.
  • Lu, J., Y. Ma, J. Wu, H. Huang, X. Wang, Z. Chen, J. Chen, H. He, and C. Huang. 2019. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 117:109078. doi: 10.1016/j.biopha.2019.109078.
  • Ma, Q., W. Pan, R. Li, B. Liu, C. Li, Y. Xie, Z. Wang, J. Zhao, H. Jiang, J. Huang, et al. 2020. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacological Research 158:104850. doi: 10.1016/j.phrs.2020.104850.
  • Malik, A., A. Naz, S. Ahmad, M. Hafeez, F. M. Awan, T. H. Jafar, A. Zahid, A. Ikram, B. Rauff, and M. Hassan. 2021. Inhibitory potential of phytochemicals on interleukin-6-mediated T-cell reduction in COVID-19 patients: A computational approach. Bioinformatics and Biology Insights 15:11779322211021430. doi: 10.1177/11779322211021430.
  • Mao, Y., Y. Su, P. Xue, L. Li, and S. Zhu. 2020. Discussion on the mechanism of Jinhua Qinggan Granule in the treatment of novel coronavirus pneumonia. Journal of Chinese Medicinal Materials 11:2843–9.
  • Martínez, G. J., D. S. Celermajer, and S. Patel. 2018. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis 273:157–271. doi: 10.1016/j.atherosclerosis.2018.03.043.
  • Min, K. J., J. H. Jang, and T. K. Kwon. 2012. Inhibitory effects of melatonin on the lipopolysaccharide-induced CC chemokine expression in BV2 murine microglial cells are mediated by suppression of Akt-induced NF-κB and STAT/GAS activity. Journal of Pineal Research 52 (3):296–304. doi: 10.1111/j.1600-079X.2011.00943.x.
  • Mohammad, T. A. M. 2023. Combining nano-curcumin with catechin improves COVID-19-infected patient’s inflammatory conditions. Human Immunology 84 (9):471–83.
  • Niu, W.-H., F. Wu, W.-Y. Cao, Z.-G. Wu, Y.-C. Chao, F. Peng, and C. Liang. 2021. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Bioscience Report 41 (1):BSR20202583.
  • Pandey, P., J. S. Rane, A. Chatterjee, A. Kumar, R. Khan, A. Prakash, and S. Ray. 2021. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure & Dynamics 39 (16):6306–16. doi: 10.1080/07391102.2020.1796811.
  • Panigrahi, D. 2021. Molecular docking analysis of the phytochemicals from Tinospora cordifolia as potential inhibitor against multi targeted SARS-CoV-2 & cytokine storm. Journal of Computational Biophysics and Chemistry 20 (06):559–80. doi: 10.1142/S2737416521500277.
  • Parums, D. V. 2022. Current status of oral antiviral drug treatments for SARS-CoV-2 infection in non-hospitalized patients. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 28:e935952-935951. doi: 10.12659/MSM.935952.
  • Peter, A. E., B. Sandeep, B. G. Rao, and V. L. Kalpana. 2020. Calming the storm: Natural immunosuppressants as adjuvants to target the cytokine storm in COVID-19. Frontiers in Pharmacology 11:583777. doi: 10.3389/fphar.2020.583777.
  • Prasher, P., M. Sharma, and R. Gunupuru. 2021. Targeting cyclooxygenase enzyme for the adjuvant COVID-19 therapy. Drug Development Research 82 (4):469–73. doi: 10.1002/ddr.21794.
  • Qu, X. K. 2020. Observation on clinical effect of Shufeng Jiedu Capsule combined with arbidol hydrochloride capsule in treatment of COVID-19. Chinese Traditional and Herbal Drugs 24:1167–70.
  • Rahman, S., M. J. Hossain, Z. Nahar, M. Shahriar, M. A. Bhuiyan, and M. R. Islam. 2022. Emerging SARS-CoV-2 variants and subvariants: Challenges and opportunities in the context of COVID-19 pandemic. Environmental Health Insights 16:11786302221129396. doi: 10.1177/11786302221129396.
  • Rajapaksha, H., B. T. Perera, J. Meepage, R. T. Perera, and C. Dissanayake. 2020. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. European Journal of Chemistry 11 (4):351–63. doi: 10.5155/eurjchem.11.4.351-363.2043.
  • Rehan, M., F. Ahmed, S. M. Howladar, M. Y. Refai, H. M. Baeissa, T. A. Zughaibi, K. M. Kedwa, and M. S. Jamal. 2021. A computational approach identified andrographolide as a potential drug for suppressing COVID-19-induced cytokine storm. Frontiers in Immunology 12:648250. doi: 10.3389/fimmu.2021.648250.
  • Reiter, R. J., R. Sharma, Q. Ma, A. Dominquez-Rodriguez, P. E. Marik, and P. Abreu-Gonzalez. 2020. Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: A mechanistic analysis. Medicine in Drug Discovery 6:100044. doi: 10.1016/j.medidd.2020.100044.
  • Ren, Y., M. C. Yao, X. Q. Huo, Y. Gu, W. X. Zhu, Y. J. Qiao, and Y. L. Zhang. 2020. Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway. China Journal of Chinese Materia Medica 45:1225–31.
  • Richardson, P. J., and J. Stebbing. 2022. Baricitinib as the treatment of choice for hospitalised individuals with COVID-19. EClinicalMedicine 49:101493. doi: 10.1016/j.eclinm.2022.101493.
  • Rizky, W. C., M. C. Jihwaprani, A. Kindi, A. N. M. Ansori, and M. Mushtaq. 2020. The pharmacological mechanism of quercetin as adjuvant therapy of COVID-19. Traditional Medicine Research 22:1–9.
  • Rondanelli, M., S. Perna, C. Gasparri, G. Petrangolini, P. Allegrini, A. Cavioni, M. A. Faliva, F. Mansueto, Z. Patelli, G. Peroni, et al. 2022. Promising effects of 3-month period of quercetin phytosome® supplementation in the prevention of symptomatic COVID-19 disease in healthcare workers: A pilot study. Life 12 (1):66. doi: 10.3390/life12010066.
  • Runfeng, L., H. Yunlong, H. Jicheng, P. Weiqi, M. Qinhai, S. Yongxia, L. Chufang, Z. Jin, J. Zhenhua, J. Haiming, et al. 2020. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research 174:105907. doi: 10.1016/j.phrs.2021.105907.
  • Sadeghizadeh, M., E. Asadollahi, B. Jahangiri, M. Yadollahzadeh, M. Mohajeri, M. Afsharpad, F. Najafi, N. Rezaie, M. Eskandari, M. Tavakoli-Ardakani, et al. 2023. Promising clinical outcomes of nano-curcumin treatment as an adjunct therapy in hospitalized COVID-19 patients: A randomized, double-blinded, placebo-controlled trial. Phytotherapy Research: PTR 37 (8):3631–44. doi: 10.1002/ptr.7844.
  • Sapra, L., A. Bhardwaj, Z. Azam, D. Madhry, B. Verma, S. Rathore, and R. K. Srivastava. 2021. Phytotherapy for treatment of cytokine storm in COVID-19. Frontiers in Bioscience 26:51–75.
  • Saxena, S. K. 2020. Coronavirus disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Singapore: Springer Nature.
  • Shen, F., Z. Fu, Y. Wu, G. Kuang, L. Li, K. Zhu, Y. Zhao, Y. Xia, W. Chen, and Y. Guo. 2020. The potential targets and mechanisms of Shufeng Jiedu Capsule for novel coronavirus pneumonia (COVID-19) based on network pharmacology and molecular docking. Guiding Journal of Traditional Chinese Medicine and Pharmacy 26:8–15.
  • Sheshe, S., A. Nazifi, A. Labbo, G. Khalid, A. Yahya, U. Muhammad, and A. M. Haruna. 2020. Mechanism of antiviral immune response and COVID-19 infection. Asian Journal of Immunology 3 (3):1–8.
  • Shi, X., J. Wei, M. Liu, X. Jin, H. Zhou, W. Zhu, D. Feng, H. Yang, and X. Lu. 2020. Study on the overall regulation of Xuebijing injection in treating corona virus disease 2019. Shanghai Journal of Traditional Chinese Medicine 54:1–7.
  • Shohan, M., R. Nashibi, M.-R. Mahmoudian-Sani, F. Abolnezhadian, M. Ghafourian, S. M. Alavi, A. Sharhani, and A. Khodadadi. 2022. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. European Journal of Pharmacology 914:174615. doi: 10.1016/j.ejphar.2021.174615.
  • Shojaei, M., S. Foshati, M. Abdi, G. Askari, V. N. Sukhorukov, M. Bagherniya, and A. Sahebkar. 2023. The effectiveness of nano-curcumin on patients with COVID-19: A systematic review of clinical trials. Phytotherapy Research: PTR 37 (4):1663–77. doi: 10.1002/ptr.7778.
  • Singh, H., N. Dahiya, M. Yadav, and N. Sehrawat. 2022. Emergence of SARS-CoV-2 new variants and their clinical significance. The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien Des Maladies Infectieuses et de la Microbiologie Medicale 2022:7336309–8. doi: 10.1155/2022/7336309.
  • Singh, M., H. Verma, N. Gera, R. Baddipadige, S. Choudhary, P. Bhandu, and O. Silakari. 2023. Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: A bioinformatics and structure-based drug designing approach. Journal of Biomolecular Structure & Dynamics. 1–19. doi: 10.1080/07391102.2023.2245039.
  • Soy, M., G. Keser, P. Atagündüz, F. Tabak, I. Atagündüz, and S. Kayhan. 2020. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatology 39 (7):2085–94. doi: 10.1007/s10067-020-05190-5.
  • Stebbing, J., A. Phelan, I. Griffin, C. Tucker, O. Oechsle, D. Smith, and P. Richardson. 2020. COVID-19: Combining antiviral and anti-inflammatory treatments. The Lancet. Infectious Diseases 20 (4):400–2. doi: 10.1016/S1473-3099(20)30132-8.
  • Sun, X., J. Tao, S. Xu, and B. Yuan. 2020. The molecular mechanism of treating COVID-19 with Huashi Baidu formula based on network pharmacology. Journal of Chinese Medicinal Materials 43:2050–5.
  • Sun, X., Y. Zhang, Y. Liu, and G. Wang. 2020. Study on mechanism of Reduning Injection in treating novel coronavirus pneumonia based on network pharmacology. Journal of Chinese Medicinal Materials 7:1797–8.
  • Sun, Y., Y. Zou, H. Wang, G. Cui, Z. Yu, and Z. Ren. 2022. Immune response induced by novel coronavirus infection. Frontiers in Cellular and Infection Microbiology 12:988604. doi: 10.3389/fcimb.2022.988604.
  • Sun, Y., Q. Tao, Y. Cao, T. Yang, L. Zhang, Y. Luo, and L. Wang. 2023. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytotherapy Research: PTR 37 (6):2290–304. doi: 10.1002/ptr.7740.
  • Tahmasebi, S., M. A. El-Esawi, Z. H. Mahmoud, A. Timoshin, H. Valizadeh, L. Roshangar, M. Varshoch, A. Vaez, S. Aslani, J. G. Navashenaq, et al. 2021. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. Journal of Cellular Physiology 236 (7):5325–38. doi: 10.1002/jcp.30233.
  • Thakur, M., K. Singh, and R. Khedkar. 2020. Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and preservative properties of phytochemicals, 341–61. doi: 10.1016/B978-0-12-818593-3.00011-7
  • Tan, J. N., K. Husain, Z. Jubri, K. M. Chan, I. Jantan, and N. M. Fauzi. 2022. Gynura procumbens (Lour.) Merr. extract attenuates monocyte adherence to endothelial cells through suppression of the NF-κB signaling pathway. Journal of Ethnopharmacology 294:115391. doi: 10.1016/j.jep.2022.115391.
  • Valizadeh, H., S. Abdolmohammadi-Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi, L. Roshangar, S. Aslani, A. Esmaeilzadeh, M. Ghaebi, et al. 2020. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 (Pt B):107088. doi: 10.1016/j.intimp.2020.107088.
  • Wang, J., M. Jiang, X. Chen, and L. J. Montaner. 2020. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. Journal of Leukocyte Biology 108 (1):17–41. doi: 10.1002/JLB.3COVR0520-272R.
  • Wang, L., Z. Yang, H. Zhang, H. Yu, K. Yang, B. Fu, and H. Yang. 2020. Study on the network pharmacology and preliminary evidence of Lianhua Qingwen in the treatment of novel coronavirus (2019-nCoV) pneumonia. Journal of Chinese Medicinal Materials 3:772–8.
  • Wang, Y., X. Li, J. H. Zhang, R. Xue, J. Y. Qian, X. H. Zhang, H. Zhang, Q. Q. Liu, X. H. Fan, Y. Y. Cheng, et al. 2020. Mechanism of Xuanfei Baidu Tang in treatment of COVID-19 based on network pharmacology. China Journal of Chinese Materia Medica 45:2249–56.
  • Wang, Y., J. Ma, S. Wang, Y. Zeng, C. Zhou, Y. Ru, L. Zhang, Z. Lu, M. Wu, and H. Li. 2020. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. European Review for Medical and Pharmacological Sciences 24:3360–84.
  • Wang, Y., and S. Perlman. 2022. COVID-19: Inflammatory profile. Annual Review of Medicine 73 (1):65–80. doi: 10.1146/annurev-med-042220-012417.
  • Wu, H., J. Wang, Y. Yang, T. Li, Y. Cao, Y. Qu, Y. Jin, C. Zhang, and Y. Sun. 2020. Preliminary exploration of the mechanism of Qingfei Paidu decoction against novel coronavirus pneumonia based on network pharmacology and molecular docking technology. Acta Pharmaceutica Sinica 55:374–83.
  • Xiao, Z., Q. Ye, X. Duan, and T. Xiang. 2021. Network pharmacology reveals that resveratrol can alleviate COVID-19-related hyperinflammation. Disease Markers 2021:4129993–12. doi: 10.1155/2021/4129993.
  • Xie, Z., F. Chen, W. A. Li, X. Geng, C. Li, X. Meng, Y. Feng, W. Liu, and F. Yu. 2017. A review of sleep disorders and melatonin. Neurological Research 39 (6):559–65. doi: 10.1080/01616412.2017.1315864.
  • Xu, T., C. He, and K. Yang. 2020. Network pharmacology-based study on material basis and mechanism of Qingfei Paidu decoction against COVID-19. Natural Product Research and Development 32 (6):901–8.
  • Xu, J., Y. Xue, W. Zhang, and G. Lu. 2020. Study on mechanism of Shufeng Jiedu Capsule in treating COVID-19 based on network pharmacology. Chinese Traditional and Herbal Drugs 51:2015–23.
  • Yang, R., H. Liu, C. Bai, Y. Wang, X. Zhang, R. Guo, S. Wu, J. Wang, E. Leung, H. Chang, et al. 2020. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacological Research 157:104820. doi: 10.1016/j.phrs.2020.104820.
  • Yang, Y., M. S. Islam, J. Wang, Y. Li, and X. Chen. 2020. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. International Journal of Biological Sciences 16 (10):1708–17. doi: 10.7150/ijbs.45538.
  • Yarmohammadi, A., M. Yarmohammadi, S. Fakhri, and H. Khan. 2021. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. European Journal of Pharmacology 890:173620. doi: 10.1016/j.ejphar.2020.173620.
  • Ye, C., M. Gao, W. Lin, K. Yu, P. Li, and G. Chen. 2020. Theoretical study of the anti-NCP molecular mechanism of traditional Chinese medicine Lianhua-Qingwen Formula (LQF). ChemRxiv.
  • Yuandani, I. Jantan, and K. Husain. 2019. Phyltetralin, 1, 7, 8-trihydroxy 2-naphtaldehyde, ethyl 8-hydroxy-8-methyl-tridecanoate and 1-triacontanol from Phyllanthus amarus Schumach. & Thonn. inhibit phagocytic activity of human leucocytes. Journal of Pharmacy and Pharmacology 71(9): 1451–1457. doi: 10.1111/jphp.13139.
  • Yue, Q., T. Liu, and Z. Cheng. 2020. Protective effect of colchicine on LPS-induced lung injury in rats via inhibition of P-38, ERK1/2, and JNK activation. Pharmacology 105 (11-12):639–44. doi: 10.1159/000504759.
  • Zhang, R., X. Wang, L. Ni, X. Di, B. Ma, S. Niu, C. Liu, and R. J. Reiter. 2020. COVID-19: Melatonin as a potential adjuvant treatment. Life Sciences 250:117583. doi: 10.1016/j.lfs.2020.117583.
  • Zhou, Q., V. Chen, C. P. Shannon, X.-S. Wei, X. Xiang, X. Wang, Z.-H. Wang, S. J. Tebbutt, T. R. Kollmann, and E. N. Fish. 2020. Interferon-α2b treatment for COVID-19. Frontiers in Immunology 11:1061. doi: 10.3389/fimmu.2020.01061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.