437
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Performance analysis of photodetectors based on 2D materials and heterostructures

ORCID Icon

References

  • Mahulikar, S. P.; Sonawane, H. R.; Rao, G. A. Infrared Signature Studies of Aerospace Vehicles. Prog. Aerosp. Sci. 2007, 43, 218–245. 10.1016/j.paerosci.2007.06.002
  • Mueller, T.; Xia, F.; Avouris, P. Graphene Photodetectors for High-Speed Optical Communications. Nat. Photon. 2010, 4, 297–301. 10.1038/nphoton.2010.40
  • Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imag. 2017, 3, 13. 10.3390/jimaging3020013
  • Lecoq, P.; Gundacker, S. SiPM Applications in Positron Emission Tomography: Toward Ultimate PET Time-of-Flight Resolution. Eur. Phys. J. Plus 2021, 136, 292. 10.1140/epjp/s13360–021–01183–8
  • Osornio-Rios, R. A.; Antonino-Daviu, J. A.; de Jesus Romero-Troncoso, R. Recent Industrial Applications of Infrared Thermography: A Review. IEEE Trans. Ind. Inf. 2019, 15, 615–625. 10.1109/TII.2018.2884738
  • Wang, C.; Zhang, X.; Hu, W. Organic Photodiodes and Phototransistors toward Infrared Detection: Materials, Devices, and Applications. Chem. Soc. Rev. 2020, 49, 653–670. 10.1039/c9cs00431a
  • Miao, J.; Liu, X.; Jo, K.; He, K.; Saxena, R.; Song, B.; Zhang, H.; He, J.; Han, M.-G.; Hu, W.; Jariwala, D. Gate-Tunable Semiconductor Heterojunctions from 2D/3D Van Der Waals Interfaces. Nano Lett. 2020, 20, 2907–2915. 10.1021/acs.nanolett.0c00741
  • Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A. J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667. 10.1126/science.1176706
  • Tan, H.; Fan, C.; Ma, L.; Zhang, X.; Fan, P.; Yang, Y.; Hu, W.; Zhou, H.; Zhuang, X.; Zhu, X.; Pan, A. Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance near-Infrared Photodetectors. Nanomicro. Lett. 2016, 8, 29–35. 10.1007/s40820–015–0058–0
  • Rogalski, A. HgCdTe Infrared Detector Material: History, Status and Outlook. Rep. Prog. Phys. 2005, 68, 2267–2336. 10.1088/0034–4885/68/10/R01
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. 10.1038/nnano.2010.279
  • Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S.; Castellanos-Gomez, A. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett. 2014, 14, 3347–3352. 10.1021/nl5008085
  • Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. 10.1038/nnano.2010.172
  • Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J. High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity. Nature 2015, 520, 656–660. 10.1038/nature14417
  • Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311–1314. 10.1126/science.1235547
  • Wu, S.; Buckley, S.; Schaibley, J. R.; Feng, L.; Yan, J.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A.; Xu, X. Monolayer Semiconductor Nanocavity Lasers with Ultralow Thresholds. Nature 2015, 520, 69–72. 10.1038/nature14290
  • Xie, L. Two-Dimensional Transition Metal Dichalcogenide Alloys: Preparation, Characterization and Applications. Nanoscale 2015, 7, 18392–18401. 10.1039/c5nr05712d
  • Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. 10.1021/nl903868w
  • Zhou, X.; Hu, X.; Jin, B.; Yu, J.; Liu, K.; Li, H.; Zhai, T. Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Adv. Sci. (Weinh) 2018, 5, 1800478. 10.1002/advs.201800478
  • Ornelas, C. D.; Bowman, A.; Walmsley, T. S.; Wang, T.; Andrews, K.; Zhou, Z.; Xu, Y.-Q. Ultrafast Photocurrent Response and High Detectivity in Two-Dimensional MoSe2-Based Heterojunctions. ACS Appl. Mater. Interfaces. 2020, 12, 46476–46482. 10.1021/acsami.0c12155
  • Xiang, D.; Liu, T.; Wang, J.; Wang, P.; Wang, L.; Zheng, Y.; Wang, Y.; Gao, J.; Ang, K.; Eda, G.; et al. Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor. Adv. Opt. Mater. 2019, 7, 1901115. 10.1002/adom.201901115
  • Xue, H.; Dai, Y.; Kim, W.; Wang, Y.; Bai, X.; Qi, M.; Halonen, K.; Lipsanen, H.; Sun, Z. High Photoresponsivity and Broadband Photodetection with a Band-Engineered WSe2/SnSe2 Heterostructure. Nanoscale 2019, 11, 3240–3247. 10.1039/c8nr09248f
  • Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; de Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U.; Ferrari, A. C. On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. Nano Lett. 2016, 16, 3005–3013. 10.1021/acs.nanolett.5b05216
  • Li, J.; Xi, X.; Lin, S.; Ma, Z.; Li, X.; Zhao, L. Ultrahigh Sensitivity Graphene/Nanoporous GaN Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces. 2020, 12, 11965–11971. 10.1021/acsami.9b22651
  • Kannan, H.; Stavro, J.; Mukherjee, A.; Léveillé, S.; Kisslinger, K.; Guan, L.; Zhao, W.; Sahu, A.; Goldan, A. H. Ultralow Dark Currents in Avalanche Amorphous Selenium Photodetectors Using Solution-Processed Quantum Dot Blocking Layer. ACS Photon. 2020, 7, 1367–1374. 10.1021/acsphotonics.9b01651
  • Yang, Y.; Yang, X.; Zou, X.; Wu, S.; Wan, D.; Cao, A.; Liao, L.; Yuan, Q.; Duan, X. Ultrafine Graphene Nanomesh with Large on/off Ratio for High‐Performance Flexible Biosensors. Adv. Funct. Mater. 2017, 27, 1604096.
  • Horiuchi, N. Integrated Optical Antenna. Nat. Photon. 2020, 14, 134–134. 10.1038/s41566–020–0594–0
  • Xu, Z.; Tang, L.; Zhang, S.; Li, J.; Liu, B.; Zhao, S.; Yu, C.; Wei, G. 2D MoS2/CuPc Heterojunction Based Highly Sensitive Photodetectors through Ultrafast Charge Transfer. Mater. Today Phys. 2020, 15, 100273. 10.1016/j.mtphys.2020.100273
  • Dan, M.; Hu, G.; Li, L.; Zhang, Y. High Performance Piezotronic Logic Nanodevices Based on GaN/InN/GaN Topological Insulator. Nano Energy 2018, 50, 544–551. 10.1016/j.nanoen.2018.06.007
  • Ulaganathan, R. K.; Sankar, R.; Lin, C. y.; Murugesan, R. C.; Tang, K.; Chou, F. c., High‐Performance Flexible Broadband Photodetectors Based on 2D Hafnium Selenosulfide Nanosheets. Adv. Electron. Mater. 2020, 6, 1900794.
  • Lim, S. Q.; Lew, C.-K.; Chow, P. K.; Warrender, J. M.; Williams, J.; Johnson, B. Toward Understanding and Optimizing Au-Hyperdoped Si Infrared Photodetectors. APL Mater. 2020, 8, 061109.
  • Cusati, T.; Fiori, G.; Gahoi, A.; Passi, V.; Lemme, M. C.; Fortunelli, A.; Iannaccone, G. Electrical Properties of Graphene-Metal Contacts. Sci. Rep. 2017, 7, 5109. 10.1038/s41598–017–05069–7
  • Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Self‐Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020, 8, 1900765. 10.1002/adom.201900765
  • Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. 10.1039/c5cs00507h
  • Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780–793. 10.1038/nnano.2014.215
  • Mak, K. F.; Shan, J. Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides. Nat. Photon. 2016, 10, 216–226. 10.1038/nphoton.2015.282
  • Kim, J.; Bayram, C.; Park, H.; Cheng, C.-W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of Direct Van Der Waals Epitaxy of Single-Crystalline Films on Epitaxial Graphene. Nat. Commun. 2014, 5, 4836. 10.1038/ncomms5836
  • Wang, Q.; Xu, K.; Wang, Z.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X.; Wang, F.; Cheng, Z.; He, J. Van Der Waals Epitaxial Ultrathin Two-Dimensional Nonlayered Semiconductor for Highly Efficient Flexible Optoelectronic Devices. Nano Lett. 2015, 15, 1183–1189. 10.1021/nl504258m
  • Zheng, W.; Feng, W.; Zhang, X.; Chen, X.; Liu, G.; Qiu, Y.; Hasan, T.; Tan, P.; Hu, P. A. Anisotropic Growth of Nonlayered CdS on MoS2 Monolayer for Functional Vertical Heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654. 10.1002/adfm.201504775
  • Woods, J. F. Investigation of the Photoconductive Effect in Lead Sulfide Films Using Hall and Resistivity Measurements. Phys. Rev. 1957, 106, 235–240. 10.1103/PhysRev.106.235
  • Zitter, R. Role of Traps in the Photoelectromagnetic and Photoconductive Effects. Phys. Rev. 1958, 112, 852–855. 10.1103/PhysRev.112.852
  • Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B.; H.; Ren, T.-L.; Bao, Z. Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using PN Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Lett. 2014, 14, 3702–3708. 10.1021/nl500443j
  • Shimatani, M.; Ogawa, S.; Fujisawa, D.; Okuda, S.; Kanai, Y.; Ono, T.; Matsumoto, K. Photocurrent Enhancement of Graphene Phototransistors Using p–n Junction Formed by Conventional Photolithography Process. Jpn. J. Appl. Phys. 2016, 55, 110307. 10.7567/JJAP.55.110307
  • Cai, X.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G. S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S.; Yan, J.; Gaskill, D. K.; et al. Sensitive Room-Temperature Terahertz Detection via the Photothermoelectric Effect in Graphene. Nat. Nanotechnol. 2014, 9, 814–819. 10.1038/nnano.2014.182
  • Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection. Nano Lett. 2014, 14, 3749–3754. 10.1021/nl500602n
  • Ogawa, S.; Shimatani, M.; Fukushima, S.; Okuda, S.; Matsumoto, K. Graphene on Metal-Insulator-Metal-Based Plasmonic Metamaterials at Infrared Wavelengths. Opt. Express. 2018, 26, 5665–5674. 10.1364/OE.26.005665
  • Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Mueller, T. Microcavity-Integrated Graphene Photodetector. Nano Lett. 2012, 12, 2773–2777. 10.1021/nl204512x
  • Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. v.; Avouris, P.; Krupke, R. Light–Matter Interaction in a Microcavity-Controlled Graphene Transistor. Nat. Commun. 2012, 3, 906. 10.1038/ncomms1911
  • Liu, C.-H.; Chang, Y.-C.; Norris, T. B.; Zhong, Z. Graphene Photodetectors with Ultra-Broadband and High Responsivity at Room Temperature. Nat. Nanotechnol. 2014, 9, 273–278. 10.1038/nnano.2014.31
  • Zhang, B. Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J. Broadband High Photoresponse from Pure Monolayer Graphene Photodetector. Nat. Commun. 2013, 4, 1811. 10.1038/ncomms2830
  • Freitag, M.; Low, T.; Martin-Moreno, L.; Zhu, W.; Guinea, F.; Avouris, P. Substrate-Sensitive Mid-Infrared Photoresponse in Graphene. ACS Nano. 2014, 8, 8350–8356. 10.1021/nn502822z
  • Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25, 676–677. 10.1063/1.1721711
  • Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Photocurrent Generation with Two-Dimensional Van Der Waals Semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. 10.1039/c5cs00106d
  • Lu, X.; Sun, L.; Jiang, P.; Bao, X. Progress of Photodetectors Based on the Photothermoelectric Effect. Adv. Mater. 2019, 31, e1902044. 10.1002/adma.201902044
  • Freitag, M.; Low, T.; Xia, F.; Avouris, P. Photoconductivity of Biased Graphene. Nat. Photon. 2013, 7, 53–59. 10.1038/nphoton.2012.314
  • Chen, L.; Wang, B.; Dong, J.; Gao, F.; Zheng, H.; He, M.; Wang, X. Insights into the Pyro-Phototronic Effect in p-Si/n-ZnO Nanowires Heterojunction toward High-Performance near-Infrared Photosensing. Nano Energy 2020, 78, 105260. 10.1016/j.nanoen.2020.105260
  • Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
  • Xie, M.; Dunn, S.; Le Boulbar, E.; Bowen, C. R. Pyroelectric Energy Harvesting for Water Splitting. Int. J. Hydrogen Energy 2017, 42, 23437–23445. 10.1016/j.ijhydene.2017.02.086
  • Ringe, E.; Zhang, J.; Langille, M. R.; Sohn, K.; Cobley, C.; Au, L.; Xia, Y.; Mirkin, C. A.; Huang, J.; Marks, L. D. Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes. MRS Online Proceedings Library (OPL) 1208, 1002, 2009. 10.1557/PROC-1208-O10-02.
  • Chen, Y.; Ming, H. Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor. Photon. Sens. 2012, 2, 37–49. 10.1007/s13320–011–0051–2
  • Lesuffleur, A.; Im, H.; Lindquist, N. C.; Oh, S.-H. Periodic Nanohole Arrays with Shape-Enhanced Plasmon Resonance as Real-Time Biosensors. Appl. Phys. Lett. 2007, 90, 243110.
  • Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photon. 2014, 8, 95–103. 10.1038/nphoton.2013.238
  • Gogurla, N.; Sinha, A. K.; Santra, S.; Manna, S.; Ray, S. K. Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices. Sci. Rep. 2014, 4, 6483. 10.1038/srep06483
  • Fang, H.; Hu, W. Photogating in Low Dimensional Photodetectors. Adv. Sci. (Weinh) 2017, 4, 1700323. 10.1002/advs.201700323
  • Tamalampudi, S. R.; Lu, Y.-Y.; Kumar U, R.; Sankar, R.; Liao, C.-D.; Moorthy B, K.; Cheng, C.-H.; Chou, F. C.; Chen, Y.-T. High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response. Nano Lett. 2014, 14, 2800–2806. 10.1021/nl500817g
  • Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett. 2007, 7, 2711–2717. 10.1021/nl071168m
  • Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; et al. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater. 2015, 27, 6575–6581. 10.1002/adma.201503340
  • Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High‐Gain Phototransistors Based on a CVD MoS2 Monolayer. Adv. Mater. 2013, 25, 3456–3461. 10.1002/adma.201301244
  • Bie, Y.-Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K.; et al. A MoTe2-Based Light-Emitting Diode and Photodetector for Silicon Photonic Integrated Circuits. Nat. Nanotechnol. 2017, 12, 1124–1129. 10.1038/nnano.2017.209
  • Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of Photoconductivity in Atomically Thin MoS2. Nano Lett. 2014, 14, 6165–6170. 10.1021/nl502339q
  • Tian, W.; Zhou, H.; Li, L. Hybrid Organic–Inorganic Perovskite Photodetectors. Small 2017, 13, 1702107. 10.1002/smll.201702107
  • Yang, J.; Bao, C.; Ning, W.; Wu, B.; Ji, F.; Yan, Z.; Tao, Y.; Liu, J. M.; Sum, T. C.; Bai, S. Stable, High‐Sensitivity and Fast‐Response Photodetectors Based on Lead‐Free Cs2AgBiBr6 Double Perovskite Films. Adv. Opt. Mater. 2019, 7, 1801732.
  • García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-Processed Semiconductors for Next-Generation Photodetectors. Nat. Rev. Mater. 2017, 2, 1–17. 10.1038/natrevmats.2016.100
  • Piotrowski, J. Uncooled Operation of IR Photodetectors. Opto-Electron. Rev. 2004, 12, 111–122.
  • Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. 10.1103/RevModPhys.81.109
  • Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D.; et al. Electronic Properties of Graphene. Phys Stat Solidi (b) 2007, 244, 4106–4111. 10.1002/pssb.200776208
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I.; Dubonos, S.; Firsov, a Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. 10.1038/nature04233
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Journals. 2007, 183–191.
  • Nayak, P. K. Two-Dimensional Materials for Photodetector. BoD–Books on Demand; IntechOpen Book: Rijeka, Croatia, 2018, p. 21.
  • Xia, F.; Mueller, T.; Lin, Y-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. 10.1038/nnano.2009.292
  • Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. NatPhoton. 2014, 8, 899–907. 10.1038/nphoton.2014.271
  • Bao, Q.; Hoh, H.; Zhang, Y. Graphene Photonics, Optoelectronics, and Plasmonics. Taylor and Francis Group: Singapore, 2017, p. 101–124.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896
  • Bointon, T. H.; Barnes, M. D.; Russo, S.; Craciun, M. F. High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition. Adv. Mater. 2015, 27, 4200–4206. 10.1002/adma.201501600
  • Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. 10.1038/nnano.2008.215
  • Bointon, T. H.; Khrapach, I.; Yakimova, R.; Shytov, A. V.; Craciun, M. F.; Russo, S. Approaching Magnetic Ordering in Graphene Materials by FeCl3 Intercalation. Nano Lett. 2014, 14, 1751–1755. 10.1021/nl4040779
  • Gabor, N. M.; Song, J. C.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. Science 2011, 334, 648–652. 10.1126/science.1211384
  • Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F.; Gatti, F.; Koppens, F. H. Hybrid Graphene–Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363–368. 10.1038/nnano.2012.60
  • Park, J.; Ahn, Y.; Ruiz-Vargas, C. Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Lett. 2009, 9, 1742–1746. 10.1021/nl8029493
  • Echtermeyer, T. J.; Nene, P. S.; Trushin, M.; Gorbachev, R. V.; Eiden, A. L.; Milana, S.; Sun, Z.; Schliemann, J.; Lidorikis, E.; Novoselov, K. S.; Ferrari, A. C. Photothermoelectric and Photoelectric Contributions to Light Detection in Metal–Graphene–Metal Photodetectors. Nano Lett. 2014, 14, 3733–3742. 10.1021/nl5004762
  • Gan, X.; Shiue, R. J.; Gao, Y.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-Integrated Ultrafast Graphene Photodetector with High Responsivity. Nat. Photon. 2013, 7, 883–887. 10.1038/nphoton.2013.253
  • Sevak Singh, R.; Nalla, V.; Chen, W.; Ji, W.; Wee, A. T. Photoresponse in Epitaxial Graphene with Asymmetric Metal Contacts. Appl. Phys. Lett. 2012, 100, 093116.
  • Yoo, T. J.; Kim, Y. J.; Lee, S. K.; Kang, C. G.; Chang, K. E.; Hwang, H. J.; Revannath, N.; Lee, B. H. Zero-Bias Operation of CVD Graphene Photodetector with Asymmetric Metal Contacts. ACS Photon. 2018, 5, 365–370. 10.1021/acsphotonics.7b01405
  • Sze, S. M.; Li, Y.; Ng, K. K. Physics of Semiconductor Devices; New York: John wiley & sons, 1981.
  • Shiue, R.-J.; Gan, X.; Gao, Y.; Li, L.; Yao, X.; Szep, A.; Walker, D. Jr; Hone, J.; Englund, D. Enhanced Photodetection in Graphene-Integrated Photonic Crystal Cavity. Appl. Phys. Lett. 2013, 103, 241109.
  • Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-Compatible Graphene Photodetector Covering All Optical Communication Bands. Nat. Photon. 2013, 7, 892–896. 10.1038/nphoton.2013.240
  • Fang, Z.; Wang, Y.; Liu, Z.; Schlather, A.; Ajayan, P. M.; Koppens, F. H.; Nordlander, P.; Halas, N. J. Plasmon-Induced Doping of Graphene. ACS Nano. 2012, 6, 10222–10228. 10.1021/nn304028b
  • Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano. 2010, 4, 5617–5626. 10.1021/nn1010842
  • Maier, S. Plasmonics: Fundamentals and Applications; New York Inc: Springer Science & Business Media, 1981. 10.1007/0-387-37825-1
  • Echtermeyer, T.; Milana, S.; Sassi, U.; Eiden, A.; Wu, M.; Lidorikis, E.; Ferrari, A. Surface Plasmon Polariton Graphene Photodetectors. Nano Lett. 2016, 16, 8–20. 10.1021/acs.nanolett.5b02051
  • Xie, C.; Mak, C.; Tao, X.; Yan, F. Photodetectors Based on Two‐Dimensional Layered Materials beyond Graphene. Adv. Funct. Mater. 2017, 27, 1603886.
  • Wang, X.; Cheng, Z.; Xu, K.; Tsang, H. K.; Xu, J.-B. High-Responsivity Graphene/Silicon-Heterostructure Waveguide Photodetectors. Nat. Photon. 2013, 7, 888–891. 10.1038/nphoton.2013.241
  • Son, J. G.; Son, M.; Moon, K. J.; Lee, B. H.; Myoung, J. M.; Strano, M. S.; Ham, M. H.; Ross, C. A. Sub‐10 nm Graphene Nanoribbon Array Field‐Effect Transistors Fabricated by Block Copolymer Lithography. Adv. Mater. 2013, 25, 4723–4728. 10.1002/adma.201300813
  • Zhang, F.; Chen, X.; Zuo, Z.; Qin, X.; Xu, X.; Zhao, X. High Performance Metal-Graphene-Metal Photodetector Employing Epitaxial Graphene on SiC (0001) Surface. J. Mater. Sci.: Mater. Electron 2018, 29, 5180–5185.
  • Song, Y.; Li, X.; Mackin, C.; Zhang, X.; Fang, W.; Palacios, T.; Zhu, H.; Kong, J. Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Lett. 2015, 15, 2104–2110. 10.1021/nl505011f
  • Card, H.; Rhoderick, E. Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes. J. Phys. D: Appl. Phys. 1971, 4, 1589–1601. 10.1088/0022–3727/4/10/319
  • Wang, L.-W.; Xie, L.-S.; Xu, P.-X.; Xia, K. First-Principles Study of Magnon-Phonon Interactions in Gadolinium Iron Garnet. Phys. Rev. B 2020, 101, 165137. 10.1103/PhysRevB.101.165137
  • Ji, P.; Yang, S.; Wang, Y.; Li, K.; Wang, Y.; Suo, H.; Woldu, Y. T.; Wang, X.; Wang, F.; Zhang, L.; Jiang, Z. High-Performance Photodetector Based on an Interface Engineering-Assisted Graphene/Silicon Schottky Junction. Microsyst. Nanoeng. 2022, 8, 9. 10.1038/s41378–021–00332–4
  • De Sanctis, A.; Mehew, J. D.; Craciun, M. F.; Russo, S. Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance. Materials 2018, 11, 1762. 10.3390/ma11091762
  • Chen, X.; Lu, X.; Deng, B.; Sinai, O.; Shao, Y.; Li, C.; Yuan, S.; Tran, V.; Watanabe, K.; Taniguchi, T.; et al. Widely Tunable Black Phosphorus Mid-Infrared Photodetector. Nat. Commun. 2017, 8, 1672. 10.1038/s41467–017–01978–3
  • Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S.-J.; Wang, H.; et al. Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Lett. 2016, 16, 4648–4655. 10.1021/acs.nanolett.6b01977
  • Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10, 517–521. 10.1038/nnano.2015.71
  • Chang, T.-Y.; Chen, P.-L.; Yan, J.-H.; Li, W.-Q.; Zhang, Y.-Y.; Luo, D.-I.; Li, J.-X.; Huang, K.-P.; Liu, C.-H. Ultra-Broadband, High Speed, and High-Quantum-Efficiency Photodetectors Based on Black Phosphorus. ACS Appl. Mater. Interfaces. 2019, 12, 1201–1209. 10.1021/acsami.9b13472
  • Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. 10.1038/nnano.2014.35
  • Tan, W. C.; Cai, Y.; Ng, R. J.; Huang, L.; Feng, X.; Zhang, G.; Zhang, Y. W.; Nijhuis, C. A.; Liu, X.; Ang, K. W. Few‐Layer Black Phosphorus Carbide Field‐Effect Transistor via Carbon Doping. Adv Mater. 2017, 29, 1700503. 10.1002/adma.201700503
  • Liu, Y.; Qiu, Z.; Carvalho, A.; Bao, Y.; Xu, H.; Tan, S. J.; Liu, W.; Castro Neto, A.; Loh, K. P.; Lu, J. Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Lett. 2017, 17, 1970–1977. 10.1021/acs.nanolett.6b05381
  • Rogalski, A.; Kopytko, M.; Martyniuk, P. 2D Material Infrared and Terahertz Detectors: Status and Outlook. Opto-Electron. Rev. 2020, 28, 107–154.
  • Liu, B.; Köpf, M.; Abbas, A. N.; Wang, X.; Guo, Q.; Jia, Y.; Xia, F.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F.; et al. Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv. Mater. 2015, 27, 4423–4429. 10.1002/adma.201501758
  • Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P.; et al. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano. 2015, 9, 8070–8077. 10.1021/acsnano.5b01922
  • Wang, J.; Rousseau, A.; Eizner, E.; Phaneuf-L’Heureux, A.-L.; Schue, L.; Francoeur, S.; Kéna-Cohen, S. Spectral Responsivity and Photoconductive Gain in Thin Film Black Phosphorus Photodetectors. ACS Photon. 2019, 6, 3092–3099. 10.1021/acsphotonics.9b00951
  • Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. ACS Nano. 2017, 11, 11724–11731. 10.1021/acsnano.7b07028
  • Yan, W.; Shresha, V. R.; Jeangros, Q.; Azar, N. S.; Balendhran, S.; Ballif, C.; Crozier, K.; Bullock, J. Spectrally Selective Mid-Wave Infrared Detection Using Fabry-Pérot Cavity Enhanced Black Phosphorus 2D Photodiodes. ACS Nano. 2020, 14, 13645–13651. 10.1021/acsnano.0c05751
  • Tian, R.; Gu, L.; Ji, Y.; Li, C.; Chen, Y.; Hu, S.; Li, Z.; Gan, X.; Zhao, J. Black Phosphorus Photodetector Enhanced by a Planar Photonic Crystal Cavity. ACS Photon. 2021, 8, 3104–3110. 10.1021/acsphotonics.1c01168
  • Ma, Y.; Dong, B.; Wei, J.; Chang, Y.; Huang, L.; Ang, K. W.; Lee, C. High‐Responsivity Mid‐Infrared Black Phosphorus Slow Light Waveguide Photodetector. Adv. Opt. Mater. 2020, 8, 2000337. 10.1002/adom.202000337
  • Lien, M. R.; Wang, N.; Wu, J.; Soibel, A.; Gunapala, S. D.; Wang, H.; Povinelli, M. L. Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector. Nano Lett. 2022, 22, 8704–8710. 10.1021/acs.nanolett.2c03469
  • Gong, F.; Wu, F.; Long, M.; Chen, F.; Su, M.; Yang, Z.; Shi, J. Black Phosphorus Infrared Photodetectors with Fast Response and High Photoresponsivity. Physica Status Solidi (RRL) Rapid Res. Lett. 2018, 12, 1800310.
  • Xu, Y.; Liu, C.; Guo, C.; Yu, Q.; Guo, W.; Lu, W.; Chen, X.; Wang, L.; Zhang, K. High Performance near Infrared Photodetector Based on in-Plane Black Phosphorus pn Homojunction. Nano Energy 2020, 70, 104518. 10.1016/j.nanoen.2020.104518
  • Huang, M.; Wang, M.; Chen, C.; Ma, Z.; Li, X.; Han, J.; Wu, Y. Broadband Black‐Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016, 28, 3481–3485. 10.1002/adma.201506352
  • Rouvière, M.; Vivien, L.; Le Roux, X.; Mangeney, J.; Crozat, P.; Hoarau, C.; Cassan, E.; Pascal, D.; Laval, S.; Fédéli, J.-M. Ultrahigh Speed Germanium-on-Silicon-on-Insulator Photodetectors for 1.31 and 1.55 μ m Operation. Appl. Phys. Lett. 2005, 87, 231109.
  • Dai, D.; Yin, Y.; Yu, L.; Wu, H.; Liang, D.; Wang, Z.; Liu, L. Silicon-plus Photonics. Front. Optoelectron. 2016, 9, 436–449. 10.1007/s12200–016–0629–9
  • Lin, H.; Luo, Z.; Gu, T.; Kimerling, L. C.; Wada, K.; Agarwal, A.; Hu, J. Mid-Infrared Integrated Photonics on Silicon: A Perspective. Nanophotonics 2017, 7, 393–420. 10.1515/nanoph-2017–0085
  • Soref, R. Enabling 2 μm Communications. Nat. Photon. 2015, 9, 358–359. 10.1038/nphoton.2015.87
  • Ding, Y.; Cheng, Z.; Zhu, X.; Yvind, K.; Dong, J.; Galili, M.; Hu, H.; Mortensen, N. A.; Xiao, S.; Oxenløwe, L. K. Ultra-Compact Integrated Graphene Plasmonic Photodetector with Bandwidth above 110 GHz. Nanophotonics 2020, 9, 317–325. 10.1515/nanoph-2019–0167
  • Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y.; et al. High-Performance Silicon − Graphene Hybrid Plasmonic Waveguide Photodetectors beyond 1.55 μm. Light. Sci. Appl. 2020, 9, 29. 10.1038/s41377–020–0263–6
  • Schuler, S.; Muench, J. E.; Ruocco, A.; Balci, O.; Thourhout, D. v.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I.; et al. High-Responsivity Graphene Photodetectors Integrated on Silicon Microring Resonators. Nat. Commun. 2021, 12, 3733. 10.1038/s41467–021–23436-x
  • Shiue, R.-J.; Gao, Y.; Wang, Y.; Peng, C.; Robertson, A. D.; Efetov, D. K.; Assefa, S.; Koppens, F. H.; Hone, J.; Englund, D. High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Lett. 2015, 15, 7288–7293. 10.1021/acs.nanolett.5b02368
  • Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-Integrated Black Phosphorus Photodetector with High Responsivity and Low Dark Current. Nat. Photon. 2015, 9, 247–252. 10.1038/nphoton.2015.23
  • Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size. ACS Photon. 2018, 6, 154–161. 10.1021/acsphotonics.8b01234
  • Yin, Y.; Cao, R.; Guo, J.; Liu, C.; Li, J.; Feng, X.; Wang, H.; Du, W.; Qadir, A.; Zhang, H.; et al. High‐Speed and High‐Responsivity Hybrid Silicon/Black‐Phosphorus Waveguide Photodetectors at 2 µm. Laser Photon.Rev. 2019, 13, 1900032. 10.1002/lpor.201900032
  • Huang, L.; Dong, B.; Guo, X.; Chang, Y.; Chen, N.; Huang, X.; Liao, W.; Zhu, C.; Wang, H.; Lee, C.; Ang, K.-W. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano. 2018, 13, 913–921. 10.1021/acsnano.8b08758
  • Lee, T. I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y. S.; Myoung, J. M.; Wang, Z. L. High‐Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Adv. Mater. 2013, 25, 2920–2925. 10.1002/adma.201300657
  • Coscia, U.; Ambrosone, G.; Palomba, M.; Binetti, S.; Le Donne, A.; Siliqi, D.; Carotenuto, G. Photoconductivity of Tellurium-Poly (Methyl Methacrylate) in the Ultraviolet–Visible-near Infrared Range. Appl. Surf. Sci. 2018, 457, 229–234. 10.1016/j.apsusc.2018.06.221
  • Zhang, G.; Fang, H.; Yang, H.; Jauregui, L. A.; Chen, Y. P.; Wu, Y. Design Principle of Telluride-Based Nanowire Heterostructures for Potential Thermoelectric Applications. Nano Lett. 2012, 12, 3627–3633. 10.1021/nl301327d
  • Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; et al. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental Study. Phys. Rev. Lett. 2017, 119, 106101. 10.1103/PhysRevLett.119.106101
  • Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W. A. III;, Kim, M. J.; Xu, X.; et al. Field-Effect Transistors Made from Solution-Grown Two-Dimensional Tellurene. Nat. Electron. 2018, 1, 228–236. 10.1038/s41928–018–0058–4
  • Wang, C.; Zhou, X.; Qiao, J.; Zhou, L.; Kong, X.; Pan, Y.; Cheng, Z.; Chai, Y.; Ji, W. Charge-Governed Phase Manipulation of Few-Layer Tellurium. Nanoscale 2018, 10, 22263–22269. 10.1039/c8nr07501h
  • Qiao, J.; Pan, Y.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-Layer Tellurium: One-Dimensional-like Layered Elementary Semiconductor with Striking Physical Properties. Sci. Bull. (Beijing) 2018, 63, 159–168. 10.1016/j.scib.2018.01.010
  • Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P. D. One-Dimensional Van Der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17, 3965–3973. 10.1021/acs.nanolett.7b01717
  • Zhu, Z.; Cai, C.; Niu, C.; Wang, C.; Sun, Q.; Han, X.; Guo, Z.; Jia, Y. Tellurene-a monolayer of tellurium from first-principles prediction. arXiv preprint arXiv:1605.03253 [Preprint]. 2016. 10.48550/arXiv.1605.03253.
  • Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid‐Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833.
  • Peng, J.; Pan, Y.; Yu, Z.; Wu, J.; Wu, J.; Zhou, Y.; Guo, Y.; Wu, X.; Wu, C.; Xie, Y. Two‐Dimensional Tellurium Nanosheets Exhibiting an Anomalous Switchable Photoresponse with Thickness Dependence. Angew. Chem. Int. Ed. Engl. 2018, 57, 13533–13537. 10.1002/anie.201808050
  • Amani, M.; Tan, C.; Zhang, G.; Zhao, C.; Bullock, J.; Song, X.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; et al. Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano. 2018, 12, 7253–7263. 10.1021/acsnano.8b03424
  • Tong, L.; Huang, X.; Wang, P.; Ye, L.; Peng, M.; An, L.; Sun, Q.; Zhang, Y.; Yang, G.; Li, Z.; et al. Stable Mid-Infrared Polarization Imaging Based on Quasi-2D Tellurium at Room Temperature. Nat. Commun. 2020, 11, 2308. 10.1038/s41467–020–16125–8
  • Shen, C.; Liu, Y.; Wu, J.; Xu, C.; Cui, D.; Li, Z.; Liu, Q.; Li, Y.; Wang, Y.; Cao, X.; et al. Tellurene Photodetector with High Gain and Wide Bandwidth. ACS Nano. 2019, 14, 303–310. 10.1021/acsnano.9b04507
  • Zhang, X.; Jiang, J.; Suleiman, A. A.; Jin, B.; Hu, X.; Zhou, X.; Zhai, T. Hydrogen‐Assisted Growth of Ultrathin Te Flakes with Giant Gate‐Dependent Photoresponse. Adv. Funct. Mater. 2019, 29, 1906585.
  • Zhou, G.; Addou, R.; Wang, Q.; Honari, S.; Cormier, C. R.; Cheng, L.; Yue, R.; Smyth, C. M.; Laturia, A.; Kim, J.; et al. High‐Mobility Helical Tellurium Field‐Effect Transistors Enabled by Transfer‐Free, Low‐Temperature Direct Growth. Adv. Mater. 2018, 30, e1803109. 10.1002/adma.201803109
  • Xu, H.; Guo, C.; Zhang, J.; Guo, W.; Kuo, C.-N.; Lue, C. S.; Hu, W.; Wang, L.; Chen, G.; Politano, A.; et al. PtTe2‐Based Type‐II Dirac Semimetal and Its Van Der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small 2019, 15, e1903362. 10.1002/smll.201903362
  • Zeng, L.; Wu, D.; Jie, J.; Ren, X.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van Der Waals Epitaxial Growth of Mosaic‐like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm. Adv. Mater. 2020, 32, e2004412. 10.1002/adma.202004412
  • Tong, X.-W.; Lin, Y.-N.; Huang, R.; Zhang, Z.-X.; Fu, C.; Wu, D.; Luo, L.-B.; Li, Z.-J.; Liang, F.-X.; Zhang, W. Direct Tellurization of Pt to Synthesize 2D PtTe2 for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS Appl. Mater. Interfaces. 2020, 12, 53921–53931. 10.1021/acsami.0c14996
  • Service, R. F. Perovskite Solar Cells Gear up to Go Commercial. Science 2016, 354, 1214–1215. 10.1126/science.354.6317.1214
  • Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The Emergence of Perovskite Solar Cells. Nat. Photon. 2014, 8, 506–514. 10.1038/nphoton.2014.134
  • Lin, Y.; Lin, G.; Sun, B.; Guo, X. Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Adv. Funct. Mater. 2018, 28, 1705589.
  • Wu, D.; Xu, Y.; Zhou, H.; Feng, X.; Zhang, J.; Pan, X.; Gao, Z.; Wang, R.; Ma, G.; Tao, L.; et al. Ultrasensitive, Flexible Perovskite Nanowire Photodetectors with Long‐Term Stability Exceeding 5000 h. InfoMat 2022, 4, e12320. 10.1002/inf2.12320
  • Lee, Y. H.; Song, I.; Kim, S. H.; Park, J. H.; Park, S. O.; Lee, J. H.; Won, Y.; Cho, K.; Kwak, S. K.; Oh, J. H. Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity. Adv. Mater. 2020, 32, e2002357. 10.1002/adma.202002357
  • Xu, Z.; Li, L.; Dong, X.; Lu, D.; Wang, R.; Yin, W.-J.; Liu, Y. CsPbI3-Based Phase-Stable 2D Ruddlesden–Popper Perovskites for Efficient Solar Cells. Nano Lett. 2022, 22, 2874–2880. 10.1021/acs.nanolett.2c00002
  • Guo, Q.; Yu, R.; Li, C.; Yuan, S.; Deng, B.; García de Abajo, F. J.; Xia, F. Efficient Electrical Detection of Mid-Infrared Graphene Plasmons at Room Temperature. Nat. Mater. 2018, 17, 986–992. 10.1038/s41563–018–0157–7
  • Chen, Z.; Li, X.; Wang, J.; Tao, L.; Long, M.; Liang, S.-J.; Ang, L. K.; Shu, C.; Tsang, H. K.; Xu, J.-B. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity. ACS Nano. 2017, 11, 430–437. 10.1021/acsnano.6b06172
  • Fang, X.; Bando, Y.; Liao, M.; Gautam, U. K.; Zhi, C.; Dierre, B.; Liu, B.; Zhai, T.; Sekiguchi, T.; Koide, Y.; Golberg, D. Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors. Adv. Mater. 2009, 21, 2034–2039. 10.1002/adma.200802441
  • Lähnemann, J.; Den Hertog, M.; Hille, P.; de la Mata, M.; Fournier, T.; Schörmann, J.; Arbiol, J.; Eickhoff, M.; Monroy, E. UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices. Nano Lett. 2016, 16, 3260–3267. 10.1021/acs.nanolett.6b00806
  • Wang, Z.; Yu, R.; Pan, C.; Li, Z.; Yang, J.; Yi, F.; Wang, Z. L. Light-Induced Pyroelectric Effect as an Effective Approach for Ultrafast Ultraviolet Nanosensing. Nat. Commun. 2015, 6, 8401. 10.1038/ncomms9401
  • Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene‐β‐Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application. Adv. Mater. 2016, 28, 10725–10731. 10.1002/adma.201604049
  • Suess, R. J.; Leong, E.; Garrett, J. L.; Zhou, T.; Salem, R.; Munday, J. N.; Murphy, T. E.; Mittendorff, M. Mid-Infrared Time-Resolved Photoconduction in Black Phosphorus. 2D Mater. 2016, 3, 041006. 10.1088/2053–1583/3/4/041006
  • Huang, L.; Tan, W. C.; Wang, L.; Dong, B.; Lee, C.; Ang, K.-W. Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power. ACS Appl. Mater. Interfaces. 2017, 9, 36130–36136. 10.1021/acsami.7b09713
  • Yang, X.; Yang, J.; Ullah, M. I.; Xia, Y.; Liang, G.; Wang, S.; Zhang, J.; Hsu, H.-Y.; Song, H.; Tang, J. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy. ACS Appl. Mater. Interfaces. 2020, 12, 42217–42225. 10.1021/acsami.0c08135
  • Chen, W.; Liang, R.; Zhang, S.; Zhao, L.; Liu, Y.; Cheng, W.; Wang, J.; Xu, J. Ultrasensitive near-Infrared Photodetectors Based on MoTe2 Transistors with Tunable Photoresponse Time. Jpn. J. Appl. Phys. 2019, 58, 072004. 10.7567/1347–4065/ab266a
  • Xie, Y.; Zhang, B.; Wang, S.; Wang, D.; Wang, A.; Wang, Z.; Yu, H.; Zhang, H.; Chen, Y.; Zhao, M. Ultrabroadband MoS2 Photodetector with Spectral Response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972.
  • Xie, Y.; Liang, F.; Wang, D.; Chi, S.; Yu, H.; Lin, Z.; Zhang, H.; Chen, Y.; Wang, J.; Wu, Y. Room‐Temperature Ultrabroadband Photodetection with MoS2 by Electronic‐Structure Engineering Strategy. Adv. Mater. 2018, 30, 1804858.
  • Lai, J.; Liu, X.; Ma, J.; Wang, Q.; Zhang, K.; Ren, X.; Liu, Y.; Gu, Q.; Zhuo, X.; Lu, W. Anisotropic Broadband Photoresponse of Layered Type‐II Weyl Semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.
  • Zhou, W.; Chen, J.; Gao, H.; Hu, T.; Ruan, S.; Stroppa, A.; Ren, W. Anomalous and Polarization‐Sensitive Photoresponse of Td‐WTe2 from Visible to Infrared Light. Adv. Mater. 2019, 31, 1804629.
  • Kim, J.; Heo, K.; Kang, D. H.; Shin, C.; Lee, S.; Yu, H. Y.; Park, J. H. Rhenium Diselenide (ReSe2) near‐Infrared Photodetector: Performance Enhancement by Selective p‐Doping Technique. Adv. Sci. 2019, 6, 1901255.
  • Ali, M. H.; Kang, D.-H.; Park, J.-H. Rhenium Diselenide (ReSe2) Infrared Photodetector Enhanced by (3-Aminopropyl) Trimethoxysilane (APTMS) Treatment. Org. Electron. 2018, 53, 14–19. 10.1016/j.orgel.2017.11.006
  • Jo, S.-H.; Park, H.-Y.; Kang, D.-H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J.; et al. Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3‐Aminopropyl) Triethoxysilane and Triphenylphosphine Treatment. Adv. Mater. 2016, 28, 6711–6718. 10.1002/adma.201601248
  • Wang, D.; Shi, P.; Xing, R.; Wu, Z.; Wei, L.; Chen, Y.; Ren, H.; Yu, C.; Li, F. Self-Powered ZnO/SrCoOx Flexible Ultraviolet Detectors Processed at Room Temperature. Mater. Des. 2021, 203, 109616. 10.1016/j.matdes.2021.109616
  • Wang, T.; Andrews, K.; Bowman, A.; Hong, T.; Koehler, M.; Yan, J.; Mandrus, D.; Zhou, Z.; Xu, Y.-Q. High-Performance WSe2 Phototransistors with 2D/2D Ohmic Contacts. Nano Lett. 2018, 18, 2766–2771. 10.1021/acs.nanolett.7b04205
  • Zhou, X.; Hu, X.; Zhou, S.; Song, H.; Zhang, Q.; Pi, L.; Li, L.; Li, H.; Lü, J.; Zhai, T. Tunneling Diode Based on WSe2/SnS2 Heterostructure Incorporating High Detectivity and Responsivity. Adv. Mater. 2018, 30, 1703286.
  • Chen, Y.; Su, L.; Jiang, M.; Fang, X. Switch Type PANI/ZnO Core-Shell Microwire Heterojunction for UV Photodetection. J. Mater. Sci. Technol. 2022, 105, 259–265. 10.1016/j.jmst.2021.07.031
  • Zhang, Y.; Hu, M.; Wang, Z. Enhanced Performances of p-si/n-ZnO Self-Powered Photodetector by Interface State Modification and Pyro-Phototronic Effect. Nano Energy 2020, 71, 104630. 10.1016/j.nanoen.2020.104630
  • Dong, J.; Wang, Z.; Wang, X.; Wang, Z. L. Temperature Dependence of the Pyro-Phototronic Effect in Self-Powered p-Si/n-ZnO Nanowires Heterojuncted Ultraviolet Sensors. Nano Today 2019, 29, 100798. 10.1016/j.nantod.2019.100798
  • Liu, Y.; Niu, S.; Yang, Q.; Klein, B. D.; Zhou, Y. S.; Wang, Z. L. Theoretical Study of Piezo‐Phototronic Nano‐LEDs. Adv. Mater. 2014, 26, 7209–7216. 10.1002/adma.201402328
  • Abebe, B.; Murthy, H. A. Insights into ZnO-Based Doped Porous Nanocrystal Frameworks. RSC Adv. 2022, 12, 5816–5833. 10.1039/d1ra09152b
  • Panwar, V.; Nandi, S.; Majumder, M.; Misra, A. Self-Powered ZnO Based Pyro-Phototronic Photodetectors: Impact of Heterointerfaces and Parametric Studies. J. Mater. Chem. C 2022, 10, 12487–12510. 10.1039/D2TC02030K
  • Veeralingam, S.; Yadav, P.; Badhulika, S. An Fe-Doped ZnO/BiVO4 Heterostructure-Based Large Area, Flexible, High-Performance Broadband Photodetector with an Ultrahigh Quantum Yield. Nanoscale 2020, 12, 9152–9161. 10.1039/c9nr10776b
  • Wang, Z.; Wang, H.; Liu, B.; Qiu, W.; Zhang, J.; Ran, S.; Huang, H.; Xu, J.; Han, H.; Chen, D.; Shen, G. Transferable and Flexible Nanorod-Assembled TiO2 Cloths for Dye-Sensitized Solar Cells, Photodetectors, and Photocatalysts. ACS Nano. 2011, 5, 8412–8419. 10.1021/nn203315k
  • Boruah, B. D.; Majji, S. N.; Nandi, S.; Misra, A. Doping Controlled Pyro-Phototronic Effect in Self-Powered Zinc Oxide Photodetector for Enhancement of Photoresponse. Nanoscale 2018, 10, 3451–3459. 10.1039/c7nr08125a
  • Wang, X.; Liu, K.; Chen, X.; Li, B.; Jiang, M.; Zhang, Z.; Zhao, H.; Shen, D. Highly Wavelength-Selective Enhancement of Responsivity in Ag Nanoparticle-Modified ZnO UV Photodetector. ACS Appl. Mater. Interfaces. 2017, 9, 5574–5579. 10.1021/acsami.6b14430
  • Lu, J.; Xu, C.; Dai, J.; Li, J.; Wang, Y.; Lin, Y.; Li, P. Improved UV Photoresponse of ZnO Nanorod Arrays by Resonant Coupling with Surface Plasmons of Al Nanoparticles. Nanoscale 2015, 7, 3396–3403. 10.1039/c4nr07114j
  • Tian, C.; Jiang, D.; Li, B.; Lin, J.; Zhao, Y.; Yuan, W.; Zhao, J.; Liang, Q.; Gao, S.; Hou, J.; Qin, J. Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons. ACS Appl. Mater. Interfaces. 2014, 6, 2162–2166. 10.1021/am405292p
  • Lv, Q.; Yan, F.; Wei, X.; Wang, K. High‐Performance, Self‐Driven Photodetector Based on Graphene Sandwiched GaSe/WS2 Heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.
  • Li, Q.; Meng, J.; Huang, J.; Li, Z. Plasmon‐Induced Pyro‐Phototronic Effect Enhancement in Self‐Powered UV–Vis Detection with a ZnO/CuO p–n Junction Device. Adv. Funct. Mater. 2022, 32, 2108903.
  • Podder, S.; Bora, J.; Thakur, S.; Gogoi, D.; Basumatary, B.; Borah, S. M.; Adhikary, N. C.; Pal, A. R. Interband Transition in Plasmonic Titanium Nitride and Its Contribution towards ZnO Based Pyro-Phototronic Application. Mater. Chem. Phys. 2022, 275, 125290. 10.1016/j.matchemphys.2021.125290
  • Matenoglou, G.; Lekka, C. E.; Koutsokeras, L. E.; Karras, G.; Kosmidis, C.; Evangelakis, G. A.; Patsalas, P. Structure and Electronic Properties of Conducting, Ternary TixTa1−xN Films. J. Appl. Phys. 2009, 105, 103714.
  • Ma, J.; Fang, C.; Chen, C.; Jin, L.; Wang, J.; Wang, S.; Tang, J.; Li, D. Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence. ACS Nano. 2019, 13, 3659–3665. 10.1021/acsnano.9b00302
  • Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. 10.1038/nature12385
  • Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-Dimensional Van Der Waals Heterostructures. Nat. Mater. 2017, 16, 170–181. 10.1038/nmat4703
  • Guan, X.; Yu, X.; Periyanagounder, D.; Benzigar, M. R.; Huang, J. K.; Lin, C. H.; Kim, J.; Singh, S.; Hu, L.; Liu, G. Recent Progress in Short‐to Long‐Wave Infrared Photodetection Using 2D Materials and Heterostructures. Adv. Opt. Mater. 2021, 9, 2001708.
  • Herzinger, C.; Johs, B.; McGahan, W.; Woollam, J. A.; Paulson, W. Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation. J. Appl. Phys. 1998, 83, 3323–3336. 10.1063/1.367101
  • Gan, X.; Mak, K. F.; Gao, Y.; You, Y.; Hatami, F.; Hone, J.; Heinz, T. F.; Englund, D. Strong Enhancement of Light–Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Lett. 2012, 12, 5626–5631. 10.1021/nl302746n
  • Chen, Q.; Song, Z.; Zhang, D.; Sun, H.; Fan, W. Effect of Size on the Electronic Structure and Optical Properties of Cubic CsPbBr 3 Quantum Dots. IEEE J. Quant. Electron. 2020, 56, 1–7. 10.1109/JQE.2019.2949639
  • Bar, R.; Manna, S.; Ray, S. K. Size Dependent Photoresponse Characteristics of Crystalline Ge Quantum Dots Based Photodetectors. Opt. Mater. 2016, 60, 501–505. 10.1016/j.optmat.2016.08.045
  • Zhang, M. K.; Liu, W. D.; Gong, Y. P.; Liu, Q.; Chen, Z. G. Graphene/Quantum Dot Heterostructure Photodetectors: From Material to Performance. Adv. Opt. Mater. 2022, 10, 2201889. 10.1002/adom.202201889
  • McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J.; Levina, L.; Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nature Mater. 2005, 4, 138–142.
  • Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution‐Processed Heterojunction Solar Cells Based on p‐Type PbS Quantum Dots and n‐Type Bi2S3 Nanocrystals. Adv. Mater. 2011, 23, 3712–3717. 10.1002/adma.201101399
  • Mattevi, C.; Kim, H.; Chhowalla, M. A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324–3334. 10.1039/C0JM02126A
  • Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P. Chemical Doping and Electron − Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2009, 9, 388–392. 10.1021/nl803214a
  • Sun, Z.; Liu, Z.; Li, J.; Tai, G. a.; Lau, S. P.; Yan, F. Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878–5883. 10.1002/adma.201202220
  • Zhang, D.; Gan, L.; Cao, Y.; Wang, Q.; Qi, L.; Guo, X. Understanding Charge Transfer at Pbs‐Decorated Graphene Surfaces toward a Tunable Photosensor. Adv. Mater. 2012, 24, 2715–2720. 10.1002/adma.201104597
  • Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive Solution-Cast Quantum Dot Photodetectors. Nature 2006, 442, 180–183. 10.1038/nature04855
  • Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband Image Sensor Array Based on Graphene–CMOS Integration. Nat. Photon. 2017, 11, 366–371. 10.1038/nphoton.2017.75
  • Zheng, L.; Zhou, W.; Ning, Z.; Wang, G.; Cheng, X.; Hu, W.; Zhou, W.; Liu, Z.; Yang, S.; Xu, K.; et al. Ambipolar Graphene–Quantum Dot Phototransistors with CMOS Compatibility. Adv. Opt. Mater. 2018, 6, 1800985. 10.1002/adom.201800985
  • Jeong, H.; Song, J. H.; Jeong, S.; Chang, W. S. Graphene/PbS Quantum Dot Hybrid Structure for Application in near-Infrared Photodetectors. Sci. Rep. 2020, 10, 12475. 10.1038/s41598–020–69302–6
  • Du, L.; Luo, X.; Zhao, F.; Lv, W.; Zhang, J.; Peng, Y.; Tang, Y.; Wang, Y. Toward Facile Broadband High Photoresponse of Fullerene Based Phototransistor from the Ultraviolet to the near-Infrared Region. Carbon 2016, 96, 685–694. 10.1016/j.carbon.2015.10.005
  • Luo, X.; Du, L.; Lv, W.; Sun, L.; Li, Y.; Peng, Y.; Zhao, F.; Zhang, J.; Tang, Y.; Wang, Y. Charge-Transport Interfacial Modification Enhanced Ultraviolet (UV)/near-UV Phototransistor with High Sensitivity and Fast Response Speed. Synth. Met. 2015, 210, 230–235. 10.1016/j.synthmet.2015.10.007
  • Ojeda-Aristizabal, C.; Santos, E. J. G.; Onishi, S.; Yan, A.; Rasool, H. I.; Kahn, S.; Lv, Y.; Latzke, D. W.; Velasco, J.; Crommie, M. F.; et al. Molecular Arrangement and Charge Transfer in C60/Graphene Heterostructures. ACS Nano. 2017, 11, 4686–4693. 10.1021/acsnano.7b00551
  • Jnawali, G.; Rao, Y.; Beck, J. H.; Petrone, N.; Kymissis, I.; Hone, J.; Heinz, T. F. Observation of Ground-and Excited-State Charge Transfer at the C60/Graphene Interface. ACS Nano. 2015, 9, 7175–7185. 10.1021/acsnano.5b01896
  • Qin, S.; Chen, X.; Du, Q.; Nie, Z.; Wang, X.; Lu, H.; Wang, X.; Liu, K.; Xu, Y.; Shi, Y.; et al. Sensitive and Robust Ultraviolet Photodetector Array Based on Self-Assembled Graphene/C60 Hybrid Films. ACS Appl. Mater. Interfaces. 2018, 10, 38326–38333. 10.1021/acsami.8b11596
  • Chen, X.; Yang, C.; Sun, H.; Ning, S.; Zhou, H.; Zhang, H.; Wang, S.; Feng, G.; Zhou, S. Enhanced Photoresponsivity in Carbon Quantum Dots-Coupled Graphene/Silicon Schottky-Junction Photodetector. Laser Phys. Lett. 2019, 16, 076201. 10.1088/1612–202X/ab2040
  • Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S. Highly Efficient Luminescent Solar Concentrators Based on Earth-Abundant Indirect-Bandgap Silicon Quantum Dots. Nat. Photon. 2017, 11, 177–185. 10.1038/nphoton.2017.5
  • Hori, Y.; Kano, S.; Sugimoto, H.; Imakita, K.; Fujii, M. Size-Dependence of Acceptor and Donor Levels of Boron and Phosphorus Codoped Colloidal Silicon Nanocrystals. Nano Lett. 2016, 16, 2615–2620. 10.1021/acs.nanolett.6b00225
  • Zhou, S.; Pi, X.; Ni, Z.; Ding, Y.; Jiang, Y.; Jin, C.; Delerue, C.; Yang, D.; Nozaki, T. Comparative Study on the Localized Surface Plasmon Resonance of Boron-and Phosphorus-Doped Silicon Nanocrystals. ACS Nano. 2015, 9, 378–386. 10.1021/nn505416r
  • Kramer, N. J.; Schramke, K. S.; Kortshagen, U. R. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. Nano Lett. 2015, 15, 5597–5603. 10.1021/acs.nanolett.5b02287
  • Shi, S.-F.; Xu, X.; Ralph, D.; McEuen, P. Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors. Nano Lett. 2011, 11, 1814–1818. 10.1021/nl200522t
  • Ni, Z.; Pi, X.; Zhou, S.; Nozaki, T.; Grandidier, B.; Yang, D. Size‐Dependent Structures and Optical Absorption of Boron‐Hyperdoped Silicon Nanocrystals. Adv. Opt. Mater. 2016, 4, 700–707. 10.1002/adom.201500706
  • Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J.; et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano. 2017, 11, 9854–9862. 10.1021/acsnano.7b03569
  • Wu, D.; Yan, K.; Zhou, Y.; Wang, H.; Lin, L.; Peng, H.; Liu, Z. Plasmon-Enhanced Photothermoelectric Conversion in Chemical Vapor Deposited Graphene p–n Junctions. J. Am. Chem. Soc. 2013, 135, 10926–10929. 10.1021/ja404890n
  • Yu, X.; Li, Y.; Hu, X.; Zhang, D.; Tao, Y.; Liu, Z.; He, Y.; Haque, M. A.; Liu, Z.; Wu, T.; Wang, Q. J. Narrow Bandgap Oxide Nanoparticles Coupled with Graphene for High Performance Mid-Infrared Photodetection. Nat. Commun. 2018, 9, 4299. 10.1038/s41467–018–06776-z
  • Mittiga, A.; Salza, E.; Sarto, F.; Tucci, M.; Vasanthi, R. Heterojunction Solar Cell with 2% Efficiency Based on a Cu2O Substrate. Appl. Phys. Lett. 2006, 88, 163502.
  • Siripala, W.; Ivanovskaya, A.; Jaramillo, T. F.; Baeck, S.-H.; McFarland, E. W. A Cu2O/TiO2 Heterojunction Thin Film Cathode for Photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 2003, 77, 229–237. 10.1016/S0927–0248(02)00343–4
  • Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Kondo, J. N.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chem. Commun. 1998, 1998, 357–358. 10.1039/a707440i
  • Zhou, F.; Li, Z.; Shenoy, G. J.; Li, L.; Liu, H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano. 2013, 7, 6939–6947. 10.1021/nn402150t
  • Yin, X.; Li, Y.; Ke, F.; Lin, C.; Zhao, H.; Gan, L.; Luo, Z.; Zhao, R.; Heinz, T. F.; Hu, Z. Evolution of the Raman Spectrum of Graphene Grown on Copper upon Oxidation of the Substrate. Nano Res. 2014, 7, 1613–1622. 10.1007/s12274–014–0521–0
  • Liu, Q.; Tian, H.; Li, J.; Hu, A.; He, X.; Sui, M.; Guo, X. Hybrid Graphene/Cu2O Quantum Dot Photodetectors with Ultrahigh Responsivity. Adv. Opt. Mater. 2019, 7, 1900455.
  • Zheng, Z.; Yao, J.; Zhu, L.; Jiang, W.; Wang, B.; Yang, G.; Li, J. Tin Dioxide Quantum Dots Coupled with Graphene for High-Performance Bulk-Silicon Schottky Photodetector. Mater. Horiz. 2018, 5, 727–737. 10.1039/C8MH00500A
  • Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hoh, H. Y.; et al. Broadband Photodetectors Based on Graphene–Bi2Te3 Heterostructure. ACS Nano. 2015, 9, 1886–1894. 10.1021/nn506920z
  • Lhuillier, E.; Keuleyan, S.; Rekemeyer, P.; Guyot-Sionnest, P. Thermal Properties of Mid-Infrared Colloidal Quantum Dot Detectors. J. Appl. Phys. 2011, 110, 033110.
  • Keuleyan, S. E.; Guyot-Sionnest, P.; Delerue, C.; Allan, G. Mercury Telluride Colloidal Quantum Dots: Electronic Structure, Size-Dependent Spectra, and Photocurrent Detection up to 12 μm. ACS Nano. 2014, 8, 8676–8682. 10.1021/nn503805h
  • Lhuillier, E.; Keuleyan, S.; Liu, H.; Guyot-Sionnest, P. Colloidal HgTe Material for Low-Cost Detection into the MWIR. Journal Elect. Mater. 2012, 41, 2725–2729. 10.1007/s11664–012–2006–9
  • Jana, M. K.; Chithaiah, P.; Murali, B.; Krupanidhi, S.; Biswas, K.; Rao, C. Near Infrared Detectors Based on HgSe and HgCdSe Quantum Dots Generated at the Liquid–Liquid Interface. J. Mater. Chem. C 2013, 1, 6184–6187. 10.1039/c3tc31344a
  • Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-Infrared HgTe Colloidal Quantum Dot Photodetectors. Nat. Photon. 2011, 5, 489–493. 10.1038/nphoton.2011.142
  • Goubet, N.; Jagtap, A.; Livache, C.; Martinez, B.; Portalès, H.; Xu, X. Z.; Lobo, R. P.; Dubertret, B.; Lhuillier, E. Terahertz HgTe Nanocrystals: Beyond Confinement. J. Am. Chem. Soc. 2018, 140, 5033–5036. 10.1021/jacs.8b02039
  • Chen, M.; Lan, X.; Tang, X.; Wang, Y.; Hudson, M. H.; Talapin, D. V.; Guyot-Sionnest, P. High Carrier Mobility in HgTe Quantum Dot Solids Improves mid-IR Photodetectors. ACS Photonics 2019, 6, 2358–2365. 10.1021/acsphotonics.9b01050
  • Tang, X.; Ackerman, M. M.; Shen, G.; Guyot‐Sionnest, P. Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity. Small 2019, 15, e1804920. 10.1002/smll.201804920
  • Ackerman, M. M.; Tang, X.; Guyot-Sionnest, P. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. ACS Nano. 2018, 12, 7264–7271. 10.1021/acsnano.8b03425
  • Tang, X.; Ackerman, M. M.; Chen, M.; Guyot-Sionnest, P. Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nat. Photon. 2019, 13, 277–282. 10.1038/s41566–019–0362–1
  • Huo, N.; Gupta, S.; Konstantatos, G. MoS2–HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm. Adv. Mater. 2017, 29, 1606576. 10.1002/adma.201606576
  • Tang, X.; Wu, G. F.; Lai, K. W. C. Twisted Graphene-Assisted Photocarrier Transfer from HgSe Colloidal Quantum Dots into Silicon with Enhanced Collection and Transport Efficiency. Appl. Phys. Lett. 2017, 110, 241104.
  • Noumbé, U. N.; Gréboval, C.; Livache, C.; Chu, A.; Majjad, H.; Parra López, L. E.; Mouafo, L. D. N.; Doudin, B.; Berciaud, S.; Chaste, J.; et al. Reconfigurable 2D/0D p–n Graphene/HgTe Nanocrystal Heterostructure for Infrared Detection. ACS Nano. 2020, 14, 4567–4576. 10.1021/acsnano.0c00103
  • Morales-Acevedo, A. Thin Film CdS/CdTe Solar Cells: Research Perspectives. Sol. Energy 2006, 80, 675–681. 10.1016/j.solener.2005.10.008
  • Kashiwaba, Y.; Isojima, K.; Ohta, K. Improvement in the Efficiency of Cu-Doped CdS/Non-Doped CdS Photovoltaic Cells Fabricated by an All-Vacuum Process. Sol. Energy Mater. Sol. Cells 2003, 75, 253–259. 10.1016/S0927–0248(02)00167–8
  • Zhang, Y.; Zhang, F.; Wang, H.; Wang, L.; Wang, F.; Lin, Q.; Shen, H.; Li, L. S. High-Efficiency CdSe/CdS Nanorod–Based Red Light–Emitting Diodes. Opt. Express. 2019, 27, 7935–7944. 10.1364/OE.27.007935
  • Yang, K.; Yang, Z.; Zhang, C.; Gu, Y.; Wei, J.; Li, Z.; Ma, C.; Yang, X.; Song, K.; Li, Y.; et al. Recent Advances in CdS-Based Photocatalysts for CO2 Photocatalytic Conversion. Chem. Eng. J. 2021, 418, 129344. 10.1016/j.cej.2021.129344
  • Galstyan, V. “Quantum Dots: Perspectives in Next-Generation Chemical Gas Sensors”‒a Review. Anal. Chim. Acta. 2021, 1152, 238192. 10.1016/j.aca.2020.12.067
  • Chan, Y.; Dahua, Z.; Jun, Y.; Linlong, T.; Chongqian, L.; Jun, S. Fabrication of Hybrid Graphene/CdS Quantum Dots Film with the Flexible Photo-Detecting Performance. Phys. E 2020, 124, 114216. 10.1016/j.physe.2020.114216
  • Tian, W.; Zhai, T.; Zhang, C.; Li, S.-L.; Wang, X.; Liu, F.; Liu, D.; Cai, X.; Tsukagoshi, K.; Golberg, D.; Bando, Y. Low‐Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnO‐SnO2 Heterojunction Nanofibers. Adv. Mater. 2013, 25, 4625–4630. 10.1002/adma.201301828
  • Park, S.; An, S.; Mun, Y.; Lee, C. UV-Enhanced NO2 Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanowires at Room Temperature. ACS Appl. Mater. Interfaces. 2013, 5, 4285–4292. 10.1021/am400500a
  • Mukherjee, S.; Bhattacharya, D.; Patra, S.; Paul, S.; Mitra, R. K.; Mahadevan, P.; Pal, A. N.; Ray, S. K. High-Responsivity Gate-Tunable Ultraviolet–Visible Broadband Phototransistor Based on Graphene–WS2 Mixed-Dimensional (2D-0D) Heterostructure. ACS Appl. Mater. Interfaces. 2022, 14, 5775–5784. 10.1021/acsami.1c18999
  • Kumar, A.; Ahluwalia, P. Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-Initio Theory: New Direct Band Gap Semiconductors. Eur. Phys. J. B 2012, 85, 1–7. 10.1140/epjb/e2012–30070-x
  • Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. 10.1103/PhysRevLett.105.136805
  • Sharma, A.; Senguttuvan, T.; Ojha, V.; Husale, S. Novel Synthesis of Topological Insulator Based Nanostructures (Bi2Te3) Demonstrating High Performance Photodetection. Sci. Rep. 2019, 9, 3804. 10.1038/s41598–019–40394-z
  • Xiu, F.-X.; Zhao, T.-T. Topological Insulator Nanostructures and Devices. Chin. Phys. B 2013, 22, 096104. 10.1088/1674–1056/22/9/096104
  • Dang, W.; Peng, H.; Li, H.; Wang, P.; Liu, Z. Epitaxial Heterostructures of Ultrathin Topological Insulator Nanoplate and Graphene. Nano Lett. 2010, 10, 2870–2876. 10.1021/nl100938e
  • Gao, G.; Gao, W.; Cannuccia, E.; Taha-Tijerina, J.; Balicas, L.; Mathkar, A.; Narayanan, T. N.; Liu, Z.; Gupta, B. K.; Peng, J.; et al. Artificially Stacked Atomic Layers: Toward New Van Der Waals Solids. Nano Lett. 2012, 12, 3518–3525. 10.1021/nl301061b
  • Borges, Z. V.; Poffo, C. M.; de Lima, J. C.; de Souza, S. M.; Trichês, D. M.; Nogueira, T. P. O.; Manzato, L.; de Biasi, R. S. Study of Structural, Optical and Thermal Properties of Nanostructured SnSe2 Prepared by Mechanical Alloying. Mater. Chem. Phys. 2016, 169, 47–54. 10.1016/j.matchemphys.2015.11.026
  • Solati, E.; Dejam, L.; Dorranian, D. Effect of Laser Pulse Energy and Wavelength on the Structure, Morphology and Optical Properties of ZnO Nanoparticles. Opt. Laser Technol. 2014, 58, 26–32. 10.1016/j.optlastec.2013.10.031
  • Li, X.; Li, L.; Zhao, H.; Ruan, S.; Zhang, W.; Yan, P.; Sun, Z.; Liang, H.; Tao, K. SnSe2 Quantum Dots: Facile Fabrication and Application in Highly Responsive UV-Detectors. Nanomaterials 2019, 9, 1324. 10.3390/nano9091324
  • Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. Solution Synthesis of Large-Scale, High-Sensitivity ZnO/Si Hierarchical Nanoheterostructure Photodetectors. J. Am. Chem. Soc. 2010, 132, 15465–15467. 10.1021/ja1038424
  • Rothschild, A.; Komem, Y. The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors. J. Appl. Phys. 2004, 95, 6374–6380. 10.1063/1.1728314
  • Shao, D.; Sun, X.; Xie, M.; Sun, H.; Lu, F.; George, S. M.; Lian, J.; Sawyer, S. ZnO Quantum Dots-Graphene Composite for Efficient Ultraviolet Sensing. Mater. Lett. 2013, 112, 165–168. 10.1016/j.matlet.2013.09.031
  • Liu, Q.; Gong, M.; Cook, B.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Transfer-Free and Printable Graphene/ZnO-Nanoparticle Nanohybrid Photodetectors with High Performance. J. Mater. Chem. C 2017, 5, 6427–6432. 10.1039/C7TC01032J
  • Nie, B.; Hu, J.-G.; Luo, L.-B.; Xie, C.; Zeng, L.-H.; Lv, P.; Li, F.-Z.; Jie, J.-S.; Feng, M.; Wu, C.-Y.; et al. Monolayer Graphene Film on ZnO Nanorod Array for High‐Performance Schottky Junction Ultraviolet Photodetectors. Small 2013, 9, 2872–2879. 10.1002/smll.201203188
  • Kumar, M.; Noh, Y.; Polat, K.; Okyay, A. K.; Lee, D. Metal–Semiconductor–Metal UV Photodetector Based on Ga Doped ZnO/Graphene Interface. Solid State Commun. 2015, 224, 37–40. 10.1016/j.ssc.2015.10.007
  • Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G. Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors. Adv. Mater. 2015, 27, 176–180. 10.1002/adma.201402471
  • Nalwa, H. S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10, 30529–30602. 10.1039/d0ra03183f
  • Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. 10.1038/nnano.2013.100
  • Ni, P.; Bugallo, A. D. L.; Yang, X.; Arreola, V. M. A.; Salazar, M. F.; Strupiechonski, E.; Alloing, B.; Shan, C.; Genevet, P. Hybrid MoS2-Gap-Mode Metasurface Photodetectors. J. Phys. D: Appl. Phys. 2019, 52, 374001. 10.1088/1361–6463/ab2aba
  • Ni, P.; De Luna Bugallo, A.; Arellano Arreola, V. M.; Salazar, M. F.; Strupiechonski, E.; Brändli, V.; Sawant, R.; Alloing, B.; Genevet, P. Gate-Tunable Emission of Exciton–Plasmon Polaritons in Hybrid MoS2-Gap-Mode Metasurfaces. ACS Photon. 2019, 6, 1594–1601. 10.1021/acsphotonics.9b00433
  • Sundaram, R.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.; Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2. Nano Lett. 2013, 13, 1416–1421. 10.1021/nl400516a
  • Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670. 10.1021/nl401544y
  • Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. High Electron Mobility and Quantum Oscillations in Non-Encapsulated Ultrathin Semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534. 10.1038/nnano.2017.43
  • Chen, C.; Wang, M.; Wu, J.; Fu, H.; Yang, H.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X.; et al. Electronic Structures and Unusually Robust Bandgap in an Ultrahigh-Mobility Layered Oxide Semiconductor, Bi2O2Se. Sci. Adv. 2018, 4, eaat8355. 10.1126/sciadv.aat8355
  • Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Ultrafast and Highly Sensitive Infrared Photodetectors Based on Two-Dimensional Oxyselenide Crystals. Nat. Commun. 2018, 9, 1–7. 10.1038/s41467–018–05874–2
  • Luo, P.; Zhuge, F.; Wang, F.; Lian, L.; Liu, K.; Zhang, J.; Zhai, T. PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection beyond 2 μm. ACS Nano. 2019, 13, 9028–9037. 10.1021/acsnano.9b03124
  • Kolli, C. S. R.; Selamneni, V.; A Muñiz Martínez, B.; Fest Carreno, A.; Emanuel Sanchez, D.; Terrones, M.; Strupiechonski, E.; De Luna Bugallo, A.; Sahatiya, P. Broadband, Ultra-High-Responsive Monolayer MoS2/SnS2 Quantum-Dot-Based Mixed-Dimensional Photodetector. ACS Appl. Mater. Interfaces. 2022, 14, 15415–15425. 10.1021/acsami.2c02624
  • Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S. T. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. 10.1002/adfm.201500216
  • Zhou, X.; Zhou, N.; Li, C.; Song, H.; Zhang, Q.; Hu, X.; Gan, L.; Li, H.; Lü, J.; Luo, J.; et al. Vertical Heterostructures Based on SnSe2/MoS2 for High Performance Photodetectors. 2D Mater. 2017, 4, 025048. 10.1088/2053–1583/aa6422
  • Gong, M.; Liu, Q.; Cook, B.; Kattel, B.; Wang, T.; Chan, W.-L.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Z. All-Printable ZnO Quantum Dots/Graphene Van Der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light. ACS Nano. 2017, 11, 4114–4123. 10.1021/acsnano.7b00805
  • Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. Van Der Waals Heterostructures for Spintronics and Opto-Spintronics. Nat. Nanotechnol. 2021, 16, 856–868. 10.1038/s41565–021–00936-x
  • Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. Massive Dirac Fermions and Hofstadter Butterfly in a Van Der Waals Heterostructure. Science 2013, 340, 1427–1430. 10.1126/science.1237240
  • Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. 10.1038/nature26160
  • Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K.-Q.; Nagler, P.; Holler, J.; Schüller, C.; Lupton, J. M.; Korn, T.; et al. Ultrafast Transition between Exciton Phases in Van Der Waals Heterostructures. Nat. Mater. 2019, 18, 691–696. 10.1038/s41563–019–0337–0
  • Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in Atomically Thin Transition Metal Dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. 10.1103/RevModPhys.90.021001
  • Rivera, P.; Yu, H.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. Interlayer Valley Excitons in Heterobilayers of Transition Metal Dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015. 10.1038/s41565–018–0193–0
  • Zheng, Z. Q.; Zhu, L. F.; Wang, B. In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission. Nanosc. Res. Lett. 2015, 10, 1–14.
  • Vabbina, P.; Choudhary, N.; Chowdhury, A.-A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction. ACS Appl. Mater. Interfaces. 2015, 7, 15206–15213. 10.1021/acsami.5b00887
  • Yu, W.; Li, S.; Zhang, Y.; Ma, W.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. Near‐Infrared Photodetectors Based on MoTe2/Graphene Heterostructure with High Responsivity and Flexibility. Small 2017, 13, 1700268. 10.1002/smll.201700268
  • Tang, C.; Zhang, Z.; Lai, S.; Tan, Q.; Gao, W. b Magnetic Proximity Effect in Graphene/CrBr3 Van Der Waals Heterostructures. Adv. Mater. 2020, 32, 1908498.
  • Stein, M.; Lammers, C.; Drexler, M.; Fuchs, C.; Stolz, W.; Koch, M. Enhanced Absorption by Linewidth Narrowing in Optically Excited Type-II Semiconductor Heterostructures. Phys. Rev. Lett. 2018, 121, 017401. 10.1103/PhysRevLett.121.017401
  • Massicotte, M.; Schmidt, P.; Vialla, F.; Watanabe, K.; Taniguchi, T.; Tielrooij, K.-J.; Koppens, F. H. Photo-Thermionic Effect in Vertical Graphene Heterostructures. Nat. Commun. 2016, 7, 12174. 10.1038/ncomms12174
  • Na, J.; Joo, M.-K.; Shin, M.; Huh, J.; Kim, J.-S.; Piao, M.; Jin, J.-E.; Jang, H.-K.; Choi, H. J.; Shim, J. H.; Kim, G.-T. Low-Frequency Noise in Multilayer MoS2 Field-Effect Transistors: The Effect of High-k Passivation. Nanoscale 2014, 6, 433–441. 10.1039/c3nr04218a
  • Kufer, D.; Konstantatos, G. Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 2015, 15, 7307–7313. 10.1021/acs.nanolett.5b02559
  • Czerniak-Łosiewicz, K.; Gertych, A. P.; Świniarski, M.; Judek, J.; Zdrojek, M. Time Dependence of Photocurrent in Chemical Vapor Deposition MoS2 Monolayer—Intrinsic Properties and Environmental Effects. J. Phys. Chem. C 2020, 124, 18741–18746. 10.1021/acs.jpcc.0c04452
  • Zhang, W.; Chuu, C.-P.; Huang, J.-K.; Chen, C.-H.; Tsai, M.-L.; Chang, Y.-H.; Liang, C.-T.; Chen, Y.-Z.; Chueh, Y.-L.; He, J.-H.; et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin graphene-MoS2 Heterostructures. Sci. Rep. 2014, 4, 3826. 10.1038/srep03826
  • Chen, C.; Feng, Z.; Feng, Y.; Yue, Y.; Qin, C.; Zhang, D.; Feng, W. Large-Scale Synthesis of a Uniform Film of Bilayer MoS2 on Graphene for 2D Heterostructure Phototransistors. ACS Appl. Mater. Interfaces. 2016, 8, 19004–19011. 10.1021/acsami.6b00751
  • Hoang, A. T.; Katiyar, A. K.; Shin, H.; Mishra, N.; Forti, S.; Coletti, C.; Ahn, J.-H. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal–Organic Vapor-Phase Epitaxy and Their Application in Photodetectors. ACS Appl. Mater. Interfaces. 2020, 12, 44335–44344. 10.1021/acsami.0c12894
  • Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J. High Responsivity and Gate Tunable Graphene‐MoS2 Hybrid Phototransistor. Small 2014, 10, 2300–2306. 10.1002/smll.201303670
  • Deng, W.; Chen, Y.; You, C.; Liu, B.; Yang, Y.; Shen, G.; Li, S.; Sun, L.; Zhang, Y.; Yan, H. High Detectivity from a Lateral Graphene–MoS2 Schottky Photodetector Grown by Chemical Vapor Deposition. Adv. Electron. Mater. 2018, 4, 1800069.
  • Beckmann, Y.; Grundmann, A.; Daniel, L.; Abdelbaky, M.; McAleese, C.; Wang, X.; Conran, B.; Pasko, S.; Krotkus, S.; Heuken, M.; et al. Role of Surface Adsorbates on the Photoresponse of (MO) CVD-Grown Graphene–MoS2 Heterostructure Photodetectors. ACS Appl. Mater. Interfaces. 2022, 14, 35184–35193. 10.1021/acsami.2c06047
  • Li, X.; Wu, J.; Mao, N.; Zhang, J.; Lei, Z.; Liu, Z.; Xu, H. A Self-Powered Graphene–MoS2 Hybrid Phototransistor with Fast Response Rate and High on–off Ratio. Carbon 2015, 92, 126–132. 10.1016/j.carbon.2015.03.064
  • Kim, J.; Park, S.; Jang, H.; Koirala, N.; Lee, J.-B.; Kim, U. J.; Lee, H.-S.; Roh, Y.-G.; Lee, H.; Sim, S.; et al. Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photodetection Based on Graphene–Bi2Se3 Heterostructure. ACS Photon. 2017, 4, 482–488. 10.1021/acsphotonics.6b00972
  • Chen, Z.; Biscaras, J.; Shukla, A. A High Performance Graphene/Few-Layer InSe Photo-Detector. Nanoscale 2015, 7, 5981–5986. 10.1039/c5nr00400d
  • Heremans, J. P.; Cava, R. J.; Samarth, N. Tetradymites as Thermoelectrics and Topological Insulators. Nat. Rev. Mater. 2017, 2, 1–21. 10.1038/natrevmats.2017.49
  • Cao, Y.; Waugh, J. A.; Zhang, X.-W.; Luo, J.-W.; Wang, Q.; Reber, T. J.; Mo, S. K.; Xu, Z.; Yang, A.; Schneeloch, J.; et al. Mapping the Orbital Wavefunction of the Surface States in Three-Dimensional Topological Insulators. Nat.Phys. 2013, 9, 499–504. 10.1038/nphys2685
  • Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H.; Yu, W. J. Tuning Carrier Tunneling in Van Der Waals Heterostructures for Ultrahigh Detectivity. Nano Lett. 2017, 17, 453–459. 10.1021/acs.nanolett.6b04449
  • Cui, X.; Lee, G.-H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C.-H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F.; et al. Multi-Terminal Transport Measurements of MoS2 Using a Van Der Waals Heterostructure Device Platform. Nat. Nanotechnol. 2015, 10, 534–540. 10.1038/nnano.2015.70
  • Fukushima, S.; Fukamachi, S.; Shimatani, M.; Kawahara, K.; Ago, H.; Ogawa, S. Graphene-Based Deep-Ultraviolet Photodetectors with Ultrahigh Responsivity Using Chemical Vapor Deposition of Hexagonal Boron Nitride to Achieve Photogating. Opt. Mater. Express 2022, 12, 2090–2101. 10.1364/OME.457545
  • Liu, Y.; Shivananju, B. N.; Wang, Y.; Zhang, Y.; Yu, W.; Xiao, S.; Sun, T.; Ma, W.; Mu, H.; Lin, S.; et al. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Appl. Mater. Interfaces. 2017, 9, 36137–36145. 10.1021/acsami.7b09889
  • Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A.-L.; Tang, N. Y.-W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14, 826–832. 10.1038/nmat4299
  • Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Lett. 2010, 10, 4128–4133. 10.1021/nl102355e
  • Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J.; et al. Van Der Waals Epitaxy of MoS2 Layers Using Graphene as Growth Templates. Nano Lett. 2012, 12, 2784–2791. 10.1021/nl204562j
  • Zhang, J.; Huang, Y.; Tan, Z.; Li, T.; Zhang, Y.; Jia, K.; Lin, L.; Sun, L.; Chen, X.; Li, Z. Low‐Temperature Heteroepitaxy of 2D PbI2/Graphene for Large‐Area Flexible Photodetectors. Adv. Mater. 2018, 30, 1803194.
  • Wen, Y.; Yin, L.; He, P.; Wang, Z.; Zhang, X.; Wang, Q.; Shifa, T. A.; Xu, K.; Wang, F.; Zhan, X.; et al. Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS–MoS2 Heterostructures with Edge Contacts. Nano Lett. 2016, 16, 6437–6444. 10.1021/acs.nanolett.6b02881
  • Wen, Y.; He, P.; Wang, Q.; Yao, Y.; Zhang, Y.; Hussain, S.; Wang, Z.; Cheng, R.; Yin, L.; Getaye Sendeku, M.; et al. Gapless Van Der Waals Heterostructures for Infrared Optoelectronic Devices. ACS Nano. 2019, 13, 14519–14528. 10.1021/acsnano.9b08375
  • Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S.-Y. Ultrasensitive Phototransistor Based on WSe2–MoS2 Van Der Waals Heterojunction. Nano Lett. 2020, 20, 5741–5748. 10.1021/acs.nanolett.0c01460
  • Feng, W.; Jin, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M.; et al. A Fast and Zero-Biased Photodetector Based on GaTe–InSe Vertical 2D p–n Heterojunction. 2D Mater. 2018, 5, 025008. 10.1088/2053–1583/aaa721
  • Gao, W.; Zheng, Z.; Li, Y.; Zhao, Y.; Xu, L.; Deng, H.; Li, J. High Performance Tin Diselenide Photodetectors Dependent on Thickness: A Vertical Graphene Sandwiched Device and Interfacial Mechanism. Nanoscale 2019, 11, 13309–13317. 10.1039/c9nr01966a
  • Du, Y.; Yin, Z.; Rui, X.; Zeng, Z.; Wu, X.-J.; Liu, J.; Zhu, Y.; Zhu, J.; Huang, X.; Yan, Q.; Zhang, H. A Facile, Relative Green, and Inexpensive Synthetic Approach toward Large-Scale Production of SnS 2 Nanoplates for High-Performance Lithium-Ion Batteries. Nanoscale 2013, 5, 1456–1459. 10.1039/c2nr33458e
  • Cui, B.; Han, J.; Xing, Y.; Lv, W.; Lei, T.; Ma, H.; Zeng, Z.; Zhang, B. Ultrahigh Photoresponsive Photodetector Based on Graphene/SnS2 Van Der Waals Heterostructure. Phys. Stat. Soli. (a) 2021, 218, 2100228. 10.1002/pssa.202100228
  • Wang, Z.; Safdar, M.; Mirza, M.; Xu, K.; Wang, Q.; Huang, Y.; Wang, F.; Zhan, X.; He, J. High-Performance Flexible Photodetectors Based on GaTe Nanosheets. Nanoscale 2015, 7, 7252–7258. 10.1039/c4nr07313d
  • Zhou, Y.; Nie, Y.; Liu, Y.; Yan, K.; Hong, J.; Jin, C.; Zhou, Y.; Yin, J.; Liu, Z.; Peng, H. Epitaxy and Photoresponse of Two-Dimensional GaSe Crystals on Flexible Transparent Mica Sheets. ACS Nano. 2014, 8, 1485–1490. 10.1021/nn405529r
  • Yamamoto, A.; Syouji, A.; Goto, T.; Kulatov, E.; Ohno, K.; Kawazoe, Y.; Uchida, K.; Miura, N. Excitons and Band Structure of Highly Anisotropic GaTe Single Crystals. Phys. Rev. B 2001, 64, 035210. 10.1103/PhysRevB.64.035210
  • Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S.; et al. High Electron Mobility, Quantum Hall Effect and Anomalous Optical Response in Atomically Thin InSe. Nat. Nanotechnol. 2017, 12, 223–227. 10.1038/nnano.2016.242
  • Sucharitakul, S.; Goble, N. J.; Kumar, U. R.; Sankar, R.; Bogorad, Z. A.; Chou, F.-C.; Chen, Y.-T.; Gao, X. P. Intrinsic Electron Mobility Exceeding 103 cm2/(V s) in Multilayer InSe FETs. Nano Lett. 2015, 15, 3815–3819. 10.1021/acs.nanolett.5b00493
  • Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J. C.; Jiang, C.; Liu, Q.; Tongay, S. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p–n vdW Heterostructure. ACS Appl. Mater. Interfaces. 2016, 8, 2533–2539. 10.1021/acsami.5b10001
  • Wang, F.; Wang, Z.; Xu, K.; Wang, F.; Wang, Q.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 Van Der Waals p–n Junctions with Novel Optoelectronic Performance. Nano Lett. 2015, 15, 7558–7566. 10.1021/acs.nanolett.5b03291
  • Capozzi, V.; Montagna, M. Optical Spectroscopy of Extrinsic Recombinations in Gallium Selenide. Phys. Rev. B Condens. Matter. 1989, 40, 3182–3190. 10.1103/physrevb.40.3182
  • Yan, F.; Zhao, L.; Patanè, A.; Hu, P.; Wei, X.; Luo, W.; Zhang, D.; Lv, Q.; Feng, Q.; Shen, C.; et al. Fast, Multicolor Photodetection with Graphene-Contacted p-GaSe/n-InSe Van Der Waals Heterostructures. Nanotechnology 2017, 28, 27LT01. 10.1088/1361–6528/aa749e
  • Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano. 2012, 6, 5988–5994. 10.1021/nn300889c
  • Tan, H.; Fan, Y.; Zhou, Y.; Chen, Q.; Xu, W.; Warner, J. H. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 with Graphene Electrodes. ACS Nano. 2016, 10, 7866–7873. 10.1021/acsnano.6b03722
  • Kuc, A.; Zibouche, N.; Heine, T. Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide T S 2. Phys. Rev. B 2011, 83, 245213. 10.1103/PhysRevB.83.245213
  • Shelke, N. T.; Karche, B. Hydrothermal Synthesis of WS2/RGO Sheet and Their Application in UV Photodetector. J. Alloys Compd. 2015, 653, 298–303. 10.1016/j.jallcom.2015.08.255
  • Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Sophia, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano. 2016, 10, 573–580. 10.1021/acsnano.5b05596
  • Deng, Y.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X.; Ye, P. D. Black Phosphorus–Monolayer MoS2 Van Der Waals Heterojunction p–n Diode. ACS Nano. 2014, 8, 8292–8299. 10.1021/nn5027388
  • Ye, L.; Li, H.; Chen, Z.; Xu, J. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photon. 2016, 3, 692–699. 10.1021/acsphotonics.6b00079
  • Lin, Y.-C.; Komsa, H.-P.; Yeh, C.-H.; Björkman, T.; Liang, Z.-Y.; Ho, C.-H.; Huang, Y.-S.; Chiu, P.-W.; Krasheninnikov, A. V.; Suenaga, K. Single-Layer ReS2: Two-Dimensional Semiconductor with Tunable in-Plane Anisotropy. ACS Nano. 2015, 9, 11249–11257. 10.1021/acsnano.5b04851
  • Zhang, E.; Jin, Y.; Yuan, X.; Wang, W.; Zhang, C.; Tang, L.; Liu, S.; Zhou, P.; Hu, W.; Xiu, F. ReS2‐Based Field‐Effect Transistors and Photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082. 10.1002/adfm.201500969
  • Liu, F.; Zheng, S.; He, X.; Chaturvedi, A.; He, J.; Chow, W. L.; Mion, T. R.; Wang, X.; Zhou, J.; Fu, Q.; et al. Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177. 10.1002/adfm.201504546
  • Kang, B.; Kim, Y.; Yoo, W. J.; Lee, C. Ultrahigh Photoresponsive Device Based on ReS2/Graphene Heterostructure. Small 2018, 14, e1802593. 10.1002/smll.201802593
  • Cai, S.-L.; He, Z.-H.; Li, X.-L.; Zhang, K.; Zheng, S.-R.; Fan, J.; Liu, Y.; Zhang, W.-G. An Unprecedented 2D Covalent Organic Framework with an Htb Net Topology. Chem. Commun. (Camb) 2019, 55, 13454–13457. 10.1039/c9cc06780a
  • Liang, R.-R.; Xu, S.-Q.; Zhang, L.; A, R.-H.; Chen, P.; Cui, F.-Z.; Qi, Q.-Y.; Sun, J.; Zhao, X. Rational Design of Crystalline Two-Dimensional Frameworks with Highly Complicated Topological Structures. Nat. Commun. 2019, 10, 4609. 10.1038/s41467–019–12596–6
  • Diercks, C. S.; Yaghi, O. M. The Atom, the Molecule, and the Covalent Organic Framework. Science 2017, 355, eaal1585. 10.1126/science.aal1585
  • Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T. Spectrally Switchable Photodetection with near-Infrared-Absorbing Covalent Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 12035–12042. 10.1021/jacs.7b06599
  • Jin, S.; Supur, M.; Addicoat, M.; Furukawa, K.; Chen, L.; Nakamura, T.; Fukuzumi, S.; Irle, S.; Jiang, D. Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. J. Am. Chem. Soc. 2015, 137, 7817–7827. 10.1021/jacs.5b03553
  • Medina, D. D.; Sick, T.; Bein, T. Photoactive and Conducting Covalent Organic Frameworks. Adv. Energy Mater. 2017, 7, 1700387. 10.1002/aenm.201700387
  • Xiong, Y.; Liao, Q.; Huang, Z.; Huang, X.; Ke, C.; Zhu, H.; Dong, C.; Wang, H.; Xi, K.; Zhan, P.; et al. Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene. Adv. Mater. 2020, 32, e1907242. 10.1002/adma.201907242
  • Kumar, M.; Patel, M.; Kim, J.; Lim, D. Enhanced Broadband Photoresponse of a Self-Powered Photodetector Based on Vertically Grown SnS Layers via the Pyro-Phototronic Effect. Nanoscale 2017, 9, 19201–19208. 10.1039/c7nr07120e
  • Wang, Y.; Zhu, Y.; Gu, H.; Wang, X. Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric near–Infrared Photodetectors via the Plasmonic Effect. ACS Appl. Mater. Interfaces. 2021, 13, 57750–57758. 10.1021/acsami.1c14319
  • Wang, Z.; Yu, R.; Wang, X.; Wu, W.; Wang, Z. L. Ultrafast Response p‐Si/n‐ZnO Heterojunction Ultraviolet Detector Based on Pyro‐Phototronic Effect. Adv. Mater. 2016, 28, 6880–6886. 10.1002/adma.201600884
  • Podder, S.; Basumatary, B.; Gogoi, D.; Bora, J.; Pal, A. R. Pyro-Phototronic Application in the Au/ZnO Interface for the Fabrication of a Highly Responsive Ultrafast UV Photodetector. Appl. Surf. Sci. 2021, 537, 147893. 10.1016/j.apsusc.2020.147893
  • Zhu, Y.; Wang, B.; Deng, C.; Wang, Y.; Wang, X. Photothermal-Pyroelectric-Plasmonic Coupling for High Performance and Tunable Band-Selective Photodetector. Nano Energy 2021, 83, 105801. 10.1016/j.nanoen.2021.105801
  • Meng, J.; Li, Q.; Huang, J.; Pan, C.; Li, Z. Self-Powered Photodetector for Ultralow Power Density UV Sensing. Nano Today 2022, 43, 101399. 10.1016/j.nantod.2022.101399
  • Peng, W.; Yu, R.; Wang, X.; Wang, Z.; Zou, H.; He, Y.; Wang, Z. L. Temperature Dependence of Pyro-Phototronic Effect on Self-Powered ZnO/Perovskite Heterostructured Photodetectors. Nano Res. 2016, 9, 3695–3704. 10.1007/s12274–016–1240–5
  • Zheng, W.; Dong, Y.; Li, T.; Chen, J.; Chen, X.; Dai, Y.; He, G. MgO Blocking Layer Induced Highly UV Responsive TiO2 Nanoparticles Based Self-Powered Photodetectors. J. Alloys Compd. 2021, 869, 159299. 10.1016/j.jallcom.2021.159299
  • Zhang, D.-Y.; Ge, C.-W.; Wang, J.-Z.; Zhang, T.-F.; Wu, Y.-C.; Liang, F.-X. Single-Layer graphene-TiO2 Nanotubes Array Heterojunction for Ultraviolet Photodetector Application. Appl. Surf. Sci. 2016, 387, 1162–1168. 10.1016/j.apsusc.2016.07.041
  • Cao, R.; Xu, J.; Shi, S.; Chen, J.; Liu, D.; Bu, Y.; Zhang, X.; Yin, S.; Li, L. High-Performance Self-Powered Ultraviolet Photodetectors Based on Mixed-Dimensional Heterostructure Arrays Formed from NiO Nanosheets and TiO 2 Nanorods. J. Mater. Chem. C 2020, 8, 9646–9654. 10.1039/D0TC01956A
  • Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F. Achieving EQE of 16,700% in P3HT: PC71BM Based Photodetectors by Trap-Assisted Photomultiplication. Sci. Rep. 2015, 5, 9181. 10.1038/srep09181
  • Reddy, B. K. S.; Veeralingam, S.; Borse, P. H.; Badhulika, S. A Flexible, Rapid Response, Hybrid Inorganic–Organic SnSe2–PEDOT: PSS Bulk Heterojunction Based High-Performance Broadband Photodetector. Mater. Chem. Front. 2022, 6, 341–351. 10.1039/D1QM01232K
  • Sun, Y.; Song, W.; Gao, F.; Wang, X.; Luo, X.; Guo, J.; Zhang, B.; Shi, J.; Cheng, C.; Liu, Q.; Li, S. In Situ Conformal Coating of Polyaniline on Gan Microwires for Ultrafast, Self-Driven Heterojunction Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces. 2020, 12, 13473–13480. 10.1021/acsami.9b21796
  • Teng, F.; Hu, K.; Ouyang, W.; Fang, X. Photoelectric Detectors Based on Inorganic p‐Type Semiconductor Materials. Adv. Mater. 2018, 30, e1706262. 10.1002/adma.201706262
  • Zhang, H.; Abdiryim, T.; Jamal, R.; Li, J.; Liu, H.; Kadir, A.; Zou, D.; Che, Y.; Serkjan, N. Self-Powered TiO2 NRs UV Photodetectors: Heterojunction with PTTh and Enhanced Responsivity by Au Nanoparticles. J. Alloys Compd. 2022, 899, 163279. 10.1016/j.jallcom.2021.163279
  • Kumar, M.; Park, J.-Y.; Seo, H. High-Performance and Self-Powered Alternating Current Ultraviolet Photodetector for Digital Communication. ACS Appl. Mater. Interfaces. 2021, 13, 12241–12249. 10.1021/acsami.1c00698
  • Ouyang, B.; He, W.; Wu, L.; Zhao, L.-D.; Yang, Y. Thermo-Phototronic Effect in p-Type Na-Doped SnS Single Crystals for Enhanced Self-Powered Photodetectors. Nano Energy 2021, 88, 106268. 10.1016/j.nanoen.2021.106268
  • Chen, J.; Xu, J.; Shi, S.; Cao, R.; Liu, D.; Bu, Y.; Yang, P.; Xu, J.; Zhang, X.; Li, L. Novel Self-Powered Photodetector with Binary Photoswitching Based on SnSx/TiO2 Heterojunctions. ACS Appl. Mater. Interfaces. 2020, 12, 23145–23154. 10.1021/acsami.0c05247
  • Huang, J.; Li, Q.; Lu, X.; Meng, J.; Li, Z. LSPR‐Enhanced Pyro‐Phototronic Effect for UV Detection with an Ag–ZnO Schottky Junction Device. Adv. Mater. Interfaces 2022, 9, 2200327.
  • Hsiao, C.-C.; Huang, S.-W.; Chang, R.-C. Temperature Field Analysis for ZnO Thin-Film Pyroelectric Devices with Partially Covered Electrode. Sens. Mater. 2012, 24, 421–441. 10.18494/SAM.2012.782
  • Hsiao, C.-C.; Yu, S.-Y. Improved Response of ZnO Films for Pyroelectric Devices. Sensors (Basel) 2012, 12, 17007–17022. 10.3390/s121217007
  • Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High‐Performance Perovskite–Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41–46. 10.1002/adma.201402271
  • Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science 2014, 345, 295–298. 10.1126/science.1254763
  • Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nat. Photon. 2014, 8, 128–132. 10.1038/nphoton.2013.341
  • Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y.; Zhang, R. Planar Carbon Nanotube–Graphene Hybrid Films for High-Performance Broadband Photodetectors. Nat. Commun. 2015, 6, 8589. 10.1038/ncomms9589
  • Cao, J.; Zou, Y.; Gong, X.; Gou, P.; Qian, J.; Qian, R.; An, Z. Double-Layer Heterostructure of Graphene/Carbon Nanotube Films for Highly Efficient Broadband Photodetector. Appl. Phys. Lett. 2018, 113, 061112.
  • Mauser, K. W.; Kim, S.; Mitrovic, S.; Fleischman, D.; Pala, R.; Schwab, K.; Atwater, H. A. Resonant Thermoelectric Nanophotonics. Nat. Nanotechnol. 2017, 12, 770–775. 10.1038/nnano.2017.87
  • Yoo, T. J.; Kim, W. S.; Chang, K. E.; Kim, C.; Kwon, M. G.; Jo, J. Y.; Lee, B. H. High Gain and Broadband Absorption Graphene Photodetector Decorated with Bi2Te3 Nanowires. Nanomaterials 2021, 11, 755. 10.3390/nano11030755
  • Dai, M.; Wang, C.; Ye, M.; Zhu, S.; Han, S.; Sun, F.; Chen, W.; Jin, Y.; Chua, Y.; Wang, Q. J. High-Performance, Polarization-Sensitive, Long-Wave Infrared Photodetection via Photothermoelectric Effect with Asymmetric Van Der Waals Contacts. ACS Nano. 2022, 16, 295–305. 10.1021/acsnano.1c06286
  • Liu, W.; Wang, W.; Guan, Z.; Xu, H. A Plasmon Modulated Photothermoelectric Photodetector in Silicon Nanostripes. Nanoscale 2019, 11, 4918–4924. 10.1039/c8nr10222h
  • Long, M.; Wang, Y.; Wang, P.; Zhou, X.; Xia, H.; Luo, C.; Huang, S.; Zhang, G.; Yan, H.; Fan, Z.; et al. Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano. 2019, 13, 2511–2519. 10.1021/acsnano.8b09476
  • Sun, M.; Chou, J.-P.; Shi, L.; Gao, J.; Hu, A.; Tang, W.; Zhang, G. Few-Layer PdSe2 Sheets: Promising Thermoelectric Materials Driven by High Valley Convergence. ACS Omega. 2018, 3, 5971–5979. 10.1021/acsomega.8b00485
  • Liang, Q.; Wang, Q.; Zhang, Q.; Wei, J.; Lim, S. X.; Zhu, R.; Hu, J.; Wei, W.; Lee, C.; Sow, C. High‐Performance, Room Temperature, Ultra‐Broadband Photodetectors Based on Air‐Stable PdSe2. Adv. Mater. 2019, 31, 1807609.
  • Du, K-z.; Wang, X-z.; Liu, Y.; Hu, P.; Utama, M. I. B.; Gan, C. K.; Xiong, Q.; Kloc, C. Weak Van Der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. ACS Nano. 2016, 10, 1738–1743. 10.1021/acsnano.5b05927
  • Grasso, V.; Silipigni, L. Low-Dimensional Materials: The MPX3 Family, Physical Features and Potential Future Applications. Riv. Nuovo Cim. 2002, 25, 1–102. 10.1007/BF03548909
  • Aruchamy, A.; Berger, H.; Levy, F. Photoelectronic Properties of the p-Type Layered Trichalcogenophosphates FePS3 and FePSe3. J. Solid State Chem. 1988, 72, 316–323. 10.1016/0022–4596(88)90035–7
  • Xu, T.; Luo, M.; Shen, N.; Yu, Y.; Wang, Z.; Cui, Z.; Qin, J.; Liang, F.; Chen, Y.; Zhou, Y. Ternary 2D Layered Material FePSe3 and near‐Infrared Photodetector. Adv. Electron. Mater. 2021, 7, 2100207.
  • Long, M.; Shen, Z.; Wang, R.; Dong, Q.; Liu, Z.; Hu, X.; Hou, J.; Lu, Y.; Wang, F.; Zhao, D. Ultrasensitive Solar‐Blind Ultraviolet Photodetector Based on FePSe3/MoS2 Heterostructure Response to 10.6 µm. Adv. Funct. Mater. 2022, 32, 2204230.
  • Yang, Y.; Jeon, J.; Park, J.-H.; Jeong, M. S.; Lee, B. H.; Hwang, E.; Lee, S. Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano. 2019, 13, 8804–8810. 10.1021/acsnano.9b01941
  • Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. 10.1002/adma.201304138
  • Luo, W.; Cao, Y.; Hu, P.; Cai, K.; Feng, Q.; Yan, F.; Yan, T.; Zhang, X.; Wang, K. Gate Tuning of High‐Performance InSe‐Based Photodetectors Using Graphene Electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423. 10.1002/adom.201500190
  • Gao, S.; Wang, Z.; Wang, H.; Meng, F.; Wang, P.; Chen, S.; Zeng, Y.; Zhao, J.; Hu, H.; Cao, R. Graphene/MoS2/Graphene Vertical Heterostructure‐Based Broadband Photodetector with High Performance. Adv. Mater. Interfaces 2021, 8, 2001730.
  • Kallatt, S.; Nair, S.; Majumdar, K. Asymmetrically Encapsulated Vertical ITO/MoS2/Cu2O Photodetector with Ultrahigh Sensitivity. Small 2018, 14, 1702066. 10.1002/smll.201702066
  • Sun, F.; Hong, W.; He, X.; Jian, C.; Ju, Q.; Cai, Q.; Liu, W. Synthesis of Ultrathin Topological Insulator β‐Ag2Te and Ag2Te/WSe2‐Based High‐Performance Photodetector. Small 2022, 19, e2205353. 10.1002/smll.202205353
  • Lee, S.; In, J.; Yoo, Y.; Jo, Y.; Park, Y. C.; Kim, H-j.; Koo, H. C.; Kim, J.; Kim, B.; Wang, K. L. Single Crystalline β-Ag2Te Nanowire as a New Topological Insulator. Nano Lett. 2012, 12, 4194–4199. 10.1021/nl301763r
  • Leng, P.; Chen, F.; Cao, X.; Wang, Y.; Huang, C.; Sun, X.; Yang, Y.; Zhou, J.; Xie, X.; Li, Z.; et al. Gate-Tunable Surface States in Topological Insulator β-Ag2Te with High Mobility. Nano Lett. 2020, 20, 7004–7010. 10.1021/acs.nanolett.0c01676
  • Zhong, B.; Wang, X.; Bi, Y.; Kang, W.; Zhang, L. Simple Synthesis of Crooked Ag2Te Nanotubes and Their Photoelectrical Properties. New J. Chem. 2021, 45, 6100–6107. 10.1039/D1NJ00687H
  • Liu, Y.-W.; Ko, D.-K.; Oh, S. J.; Gordon, T. R.; Doan-Nguyen, V.; Paik, T.; Kang, Y.; Ye, X.; Jin, L.; Kagan, C. R.; Murray, C. B. Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices. Chem. Mater. 2011, 23, 4657–4659. 10.1021/cm2019795
  • Zhou, C.; Raju, S.; Li, B.; Chan, M.; Chai, Y.; Yang, C. Y. Self‐Driven Metal–Semiconductor–Metal WSe2 Photodetector with Asymmetric Contact Geometries. Adv. Funct. Mater. 2018, 28, 1802954.
  • Luo, M.; Wu, F.; Long, M.; Chen, X. WSe2/Au Vertical Schottky Junction Photodetector with Low Dark Current and Fast Photoresponse. Nanotechnology 2018, 29, 444001. 10.1088/1361–6528/aada68
  • Gogoi, D.; Podder, S.; Bora, J.; Biswasi, S.; Pal, A. R. A Hybrid System for Plasmonic and Surface Polarization Induced Pyro-Phototronic Harvesting of Light. Opt. Mater. 2021, 122, 111733. 10.1016/j.optmat.2021.111733
  • Li, Y.; Zhang, Y.; Wu, B.; Pang, S.; Yuan, X.; Duan, C.; Huang, F.; Cao, Y. High‐Efficiency P3HT‐Based All‐Polymer Solar Cells with a Thermodynamically Miscible Polymer Acceptor. Solar RRL 2022, 6, 2200073. 10.1002/solr.202200073
  • Nandihalli, N. Thermoelectric Films and Periodic Structures and Spin Seebeck Effect Systems: Facets of Performance Optimization. Mater. Today Energy 2022, 25, 100965. 10.1016/j.mtener.2022.100965
  • Peng, W.; Wang, X.; Yu, R.; Dai, Y.; Zou, H.; Wang, A. C.; He, Y.; Wang, Z. L. Enhanced Performance of a Self‐Powered Organic/Inorganic Photodetector by Pyro‐Phototronic and Piezo‐Phototronic Effects. Adv. Mater. 2017, 29, 1606698. 10.1002/adma.201606698
  • Wu, Z.; Yao, W.; London, A. E.; Azoulay, J. D.; Ng, T. N. Temperature-Dependent Detectivity of near-Infrared Organic Bulk Heterojunction Photodiodes. ACS Appl. Mater. Interfaces. 2017, 9, 1654–1660. 10.1021/acsami.6b12162
  • Xiang, H.; Hu, Z.; Billot, L.; Aigouy, L.; Zhang, W.; McCulloch, I.; Chen, Z. Heavy-Metal-Free Flexible Hybrid Polymer-Nanocrystal Photodetectors Sensitive to 1.5 μm Wavelength. ACS Appl. Mater. Interfaces. 2019, 11, 42571–42579. 10.1021/acsami.9b14034
  • Kim, J. H.; Liess, A.; Stolte, M.; Krause, A. M.; Stepanenko, V.; Zhong, C.; Bialas, D.; Spano, F.; Würthner, F. An Efficient Narrowband near‐Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye. Adv. Mater. 2021, 33, e2100582. 10.1002/adma.202100582
  • Tang, Q.; Zhou, Z.; Chen, Z. Innovation and Discovery of Graphene‐like Materials via Density‐Functional Theory Computations. WIREs Comput. Mol. Sci. 2015, 5, 360–379. 10.1002/wcms.1224
  • Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. 10.1063/1.1564060
  • Strinati, G. Effects of Dynamical Screening on Resonances at Inner-Shell Thresholds in Semiconductors. Phys. Rev. B 1984, 29, 5718–5726. 10.1103/PhysRevB.29.5718
  • Liu, Y.; Duan, X.; Shin, H.-J.; Park, S.; Huang, Y.; Duan, X. Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591, 43–53. 10.1038/s41586–021–03339-z
  • Li, P.; Guo, H.; Duan, R.; Ru, G.; Qi, W. Excellent Optoelectronic Properties and Low Contact Resistance of Graphene/MoS2 Heterostructure Optoelectronic Devices: First-Principles Calculation and Experimental Verification. ACS Appl. Electron. Mater. 2023, 5, 1676–1687. 10.1021/acsaelm.2c01726
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865
  • Kresse, G.; Furthmüller, J. Efficiency of ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927–0256(96)00008–0
  • Lee, C. H.; Park, Y.; Youn, S.; Yeom, M. J.; Kum, H. S.; Chang, J.; Heo, J.; Yoo, G. Design of p‐WSe2/n‐Ge Heterojunctions for High‐Speed Broadband Photodetectors. Adv. Funct. Mater. 2022, 32, 2107992.
  • Shu, H. Structural Stability, Tunable Electronic and Optical Properties of Two-Dimensional WS2 and GaN Heterostructure: First-Principles Calculations. Mater. Sci. Eng. B 2020, 261, 114672. 10.1016/j.mseb.2020.114672
  • Gong, C.; Zhang, H.; Wang, W.; Colombo, L.; Wallace, R. M.; Cho, K. Band Alignment of Two-Dimensional Transition Metal Dichalcogenides: Application in Tunnel Field Effect Transistors. Appl. Phys. Lett. 2013, 103, 053513.
  • Yu, P.; Yu, X.; Lu, W.; Lin, H.; Sun, L.; Du, K.; Liu, F.; Fu, W.; Zeng, Q.; Shen, Z.; et al. Fast Photoresponse from 1T Tin Diselenide Atomic Layers. Adv. Funct. Mater. 2016, 26, 137–145. 10.1002/adfm.201503789
  • Kumar, A.; Banyai, D.; Ahluwalia, P.; Pandey, R.; Karna, S. P. Electronic Stability and Electron Transport Properties of Atomic Wires Anchored on the MoS 2 Monolayer. Phys. Chem. Chem. Phys. 2014, 16, 20157–20163. 10.1039/c4cp02128b
  • Kaur, S.; Kumar, A.; Srivastava, S.; Tankeshwar, K. Van Der Waals Heterostructures Based on Allotropes of Phosphorene and MoSe 2. Phys. Chem. Chem. Phys. 2017, 19, 22023–22032. 10.1039/c7cp03960c
  • Dai, X.; Wu, J.; Qian, Z.; Wang, H.; Jian, J.; Cao, Y.; Rummeli, M. H.; Yi, Q.; Liu, H.; Zou, G. Ultra-Smooth Glassy Graphene Thin Films for Flexible Transparent Circuits. Sci. Adv. 2016, 2, e1601574. 10.1126/sciadv.1601574
  • Xu, H.; Han, X.; Dai, X.; Liu, W.; Wu, J.; Zhu, J.; Kim, D.; Zou, G.; Sablon, K. A.; Sergeev, A. High Detectivity and Transparent Few‐Layer MoS2/Glassy‐Graphene Heterostructure Photodetectors. Adv. Mater. 2018, 30, 1706561.
  • Suzuki, Y.; Watanabe, K. Excitons in Two-Dimensional Atomic Layer Materials from Time-Dependent Density Functional Theory: Mono-Layer and bi-Layer Hexagonal Boron Nitride and Transition-Metal Dichalcogenides. Phys. Chem. Chem. Phys. 2020, 22, 2908–2916. 10.1039/c9cp06034k
  • Jamdagni, P.; Thakur, A.; Kumar, A.; Ahluwalia, P.; Pandey, R. Superior Mechanical and Electronic Properties of Novel 2D Allotropes of as and Sb Monolayers. J. Phys. Chem. C 2019, 123, 27214–27221. 10.1021/acs.jpcc.9b07348
  • Ketolainen, T.; Macháčová, N.; Karlický, F. Optical Gaps and Excitonic Properties of 2D Materials by Hybrid Time-Dependent Density Functional Theory: Evidences for Monolayers and Prospects for Van Der Waals Heterostructures. J. Chem. Theory Comput. 2020, 16, 5876–5883. 10.1021/acs.jctc.0c00387
  • Kumar, A.; Sachdeva, G.; Pandey, R.; Karna, S. P. Optical Absorbance in Multilayer Two-Dimensional Materials: Graphene and Antimonene. Appl. Phys. Lett. 2020, 116, 263102.
  • Jia, Y.; Wei, X.; Zhang, Z.; Liu, J.; Tian, Y.; Zhang, Y.; Guo, T.; Fan, J.; Ni, L.; Luan, L.; Duan, L. A Theoretical Design of Photodetectors Based on Two-Dimensional Sb/AlAs type-II Heterostructures. Cryst. Eng. Comm. 2021, 23, 1033–1042. 10.1039/D0CE01633K
  • Salpeter, E. E.; Bethe, H. A. A Relativistic Equation for Bound-State Problems. Phys. Rev. 1951, 84, 1232–1242. 10.1103/PhysRev.84.1232
  • Kolos, M.; Karlický, F. Accurate Many-Body Calculation of Electronic and Optical Band Gap of Bulk Hexagonal Boron Nitride. Phys. Chem. Chem. Phys. 2019, 21, 3999–4005. 10.1039/c8cp07328g
  • Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. 10.1063/1.2404663
  • Kou, L.; Ma, Y.; Tan, X.; Frauenheim, T.; Du, A.; Smith, S. Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide. J. Phys. Chem. C 2015, 119, 6918–6922. 10.1021/acs.jpcc.5b02096
  • Wang, G.; Pandey, R.; Karna, S. P. Atomically Thin Group V Elemental Films: Theoretical Investigations of Antimonene Allotropes. ACS Appl. Mater. Interfaces. 2015, 7, 11490–11496. 10.1021/acsami.5b02441
  • Soulard, C.; Rocquefelte, X.; Petit, P.-E.; Evain, M.; Jobic, S.; Itié, J.-P.; Munsch, P.; Koo, H.-J.; Whangbo, M.-H. Experimental and Theoretical Investigation on the Relative Stability of the PdS2-and Pyrite-Type Structures of PdSe2. Inorg. Chem. 2004, 43, 1943–1949. 10.1021/ic0352396
  • Kuklin, A. V.; Ågren, H. Quasiparticle Electronic Structure and Optical Spectra of Single-Layer and Bilayer PdSe 2: Proximity and Defect-Induced Band Gap Renormalization. Phys. Rev. B 2019, 99, 245114. 10.1103/PhysRevB.99.245114
  • Liu, X.; Zhou, H.; Yang, B.; Qu, Y.; Zhao, M. Strain-Modulated Electronic Structure and Infrared Light Adsorption in Palladium Diselenide Monolayer. Sci. Rep. 2017, 7, 39995. 10.1038/srep39995
  • Jakhar, M.; Singh, J.; Kumar, A.; Pandey, R. First-Principles Study of the Hexagonal T-Phase PdSe2 Monolayer and Its Application in Solar Cells. J. Phys. Chem. C 2020, 124, 26565–26571. 10.1021/acs.jpcc.0c05632
  • Jamdagni, P.; Thakur, A.; Kumar, A.; Ahluwalia, P.; Pandey, R. Two Dimensional Allotropes of Arsenene with a Wide Range of High and Anisotropic Carrier Mobility. Phys. Chem. Chem. Phys. 2018, 20, 29939–29950. 10.1039/c8cp06162a
  • Sun, M.; Re Fiorentin, M.; Schwingenschlögl, U.; Palummo, M. Excitons and Light-Emission in Semiconducting MoSi2X4 Two-Dimensional Materials. Npj 2D Mater. Appl. 2022, 6, 81.
  • Jamdagni, P.; Kumar, A.; Sharma, M.; Thakur, A.; Ahluwalia, P. Electronic Properties and STM Images of Vacancy Clusters and Chains in Functionalized Silicene and Germanene. Phys. E 2017, 85, 65–73. 10.1016/j.physe.2016.08.015
  • Johari, P.; Shenoy, V. B. Tunable Dielectric Properties of Transition Metal Dichalcogenides. ACS Nano. 2011, 5, 5903–5908. 10.1021/nn201698t
  • Lüder, J.; Puglia, C.; Ottosson, H.; Eriksson, O.; Sanyal, B.; Brena, B. Many-Body Effects and Excitonic Features in 2D Biphenylene Carbon. J. Chem. Phys. 2016, 144, 024702. 10.1063/1.4939273
  • Mohebpour, M. A.; Tagani, M. B. First-Principles Study on the Electronic and Optical Properties of AlSb Monolayer. Sci. Rep. 2023, 13, 9925. 10.1038/s41598–023–37081–5
  • Mustafa, H.; Irfan, M.; Sattar, A.; Amjad, R. J.; Latif, H.; Usman, A.; Ahmad, A.; Qin, S. First Principle Study of Multilayered Graphene/MoS2 Heterostructures for Photodetectors. Mater. Sci. Eng. B 2023, 289, 116205. 10.1016/j.mseb.2022.116205
  • Webber, D. H.; Brutchey, R. L. Alkahest for V2VI3 Chalcogenides: Dissolution of Nine Bulk Semiconductors in a Diamine-Dithiol Solvent Mixture. J. Am. Chem. Soc. 2013, 135, 15722–15725. 10.1021/ja4084336
  • Buckley, J. J.; McCarthy, C. L.; Del Pilar-Albaladejo, J.; Rasul, G.; Brutchey, R. L. Dissolution of Sn, SnO, and SnS in a Thiol–Amine Solvent Mixture: Insights into the Identity of the Molecular Solutes for Solution-Processed SnS. Inorg. Chem. 2016, 55, 3175–3180. 10.1021/acs.inorgchem.6b00243
  • Ma, Y.; Vartak, P. B.; Nagaraj, P.; Wang, R. Y. Thermoelectric Properties of Copper Chalcogenide Alloys Deposited via the Solution-Phase Using a Thiol–Amine Solvent Mixture. RSC Adv. 2016, 6, 99905–99913. 10.1039/C6RA15929J
  • Lin, Z.; He, Q.; Yin, A.; Xu, Y.; Wang, C.; Ding, M.; Cheng, H.-C.; Papandrea, B.; Huang, Y.; Duan, X. Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano. 2015, 9, 4398–4405. 10.1021/acsnano.5b00886
  • Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. 10.1021/acs.chemrev.0c00026
  • Chen, Z.-G.; Han, G.; Yang, L.; Cheng, L.; Zou, J. Nanostructured Thermoelectric Materials: Current Research and Future Challenge. Progr. Natur. Sci. Mater. Inter. 2012, 22, 535–549. 10.1016/j.pnsc.2012.11.011
  • Vieira, E. M.; Figueira, J.; Pires, A. L.; Grilo, J.; Silva, M. F.; Pereira, A. M.; Goncalves, L. M. Enhanced Thermoelectric Properties of Sb2Te3 and Bi2Te3 Films for Flexible Thermal Sensors. J. Alloys Compd. 2019, 774, 1102–1116. 10.1016/j.jallcom.2018.09.324
  • Shrekenhamer, D.; Xu, W.; Venkatesh, S.; Schurig, D.; Sonkusale, S.; Padilla, W. J. Experimental Realization of a Metamaterial Detector Focal Plane Array. Phys. Rev. Lett. 2012, 109, 177401. 10.1103/PhysRevLett.109.177401
  • Chen, K.; Adato, R.; Altug, H. Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy. ACS Nano. 2012, 6, 7998–8006. 10.1021/nn3026468
  • Lin, K.-T.; Chen, H.-L.; Lai, Y.-S.; Yu, C.-C. Silicon-Based Broadband Antenna for High Responsivity and Polarization-Insensitive Photodetection at Telecommunication Wavelengths. Nat. Commun. 2014, 5, 3288. 10.1038/ncomms4288
  • Casse, B.; Lu, W.; Huang, Y.; Gultepe, E.; Menon, L.; Sridhar, S. Super-Resolution Imaging Using a Three-Dimensional Metamaterials Nanolens. Appl. Phys. Lett. 2010, 96, 023114.
  • Liu, X.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared Spatial and Frequency Selective Metamaterial with near-Unity Absorbance. Phys. Rev. Lett. 2010, 104, 207403. 10.1103/PhysRevLett.104.207403
  • Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. 10.1103/PhysRevLett.100.207402
  • Maier, T.; Brückl, H. Wavelength-Tunable Microbolometers with Metamaterial Absorbers. Opt. Lett. 2009, 34, 3012–3014. 10.1364/OL.34.003012
  • Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared Perfect Absorber and Its Application as Plasmonic Sensor. Nano Lett. 2010, 10, 2342–2348. 10.1021/nl9041033
  • Hedayati, M. K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V. S. K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials. Adv. Mater. 2011, 23, 5410–5414. 10.1002/adma.201102646
  • Wu, C.; Neuner, B. III, John, J.; Milder, A.; Zollars, B.; Savoy, S.; Shvets, G. Metamaterial-Based Integrated Plasmonic Absorber/Emitter for Solar Thermo-Photovoltaic Systems. J. Opt. 2012, 14, 024005. 10.1088/2040–8978/14/2/024005
  • Chen, H.-T. Interference Theory of Metamaterial Perfect Absorbers. Opt. Express. 2012, 20, 7165–7172. 10.1364/OE.20.007165
  • Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A Perfect Absorber Made of a Graphene Micro-Ribbon Metamaterial. Opt. Express. 2012, 20, 28017–28024. 10.1364/OE.20.028017
  • Shrekenhamer, D.; Chen, W.-C.; Padilla, W. J. Liquid Crystal Tunable Metamaterial Absorber. Phys. Rev. Lett. 2013, 110, 177403. 10.1103/PhysRevLett.110.177403
  • Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J.; Shalaev, V. M.; Kildishev, A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. 10.1002/adma.201401874
  • Tittl, A.; Michel, A. K. U.; Schäferling, M.; Yin, X.; Gholipour, B.; Cui, L.; Wuttig, M.; Taubner, T.; Neubrech, F.; Giessen, H. A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Adv. Mater. 2015, 27, 4597–4603. 10.1002/adma.201502023
  • Liu, X.; Padilla, W. J. Reconfigurable Room Temperature Metamaterial Infrared Emitter. Optica 2017, 4, 430–433. 10.1364/OPTICA.4.000430
  • Zhu, H.; Yi, F.; Cubukcu, E. Plasmonic Metamaterial Absorber for Broadband Manipulation of Mechanical Resonances. Nat. Photon. 2016, 10, 709–714. 10.1038/nphoton.2016.183

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.