168
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Sustainable graphene-based energy storage device technology: Materials, methods, Monitoring and digital twin

, , , , , & show all

References

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. doi:10.1126/science.1102896
  • Choy, K. Chemical Vapour Deposition of Coatings. Prog. Mater. Sci. 2003, 48, 57–170. doi:10.1016/S0079-6425(01)00009-3
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N Y 2007, 45, 1558–1565. doi:10.1016/j.carbon.2007.02.034
  • Qian, W.; Hao, R.; Hou, Y.; Tian, Y.; Shen, C.; Gao, H.; Liang, X. Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Res. 2009, 2, 706–712. doi:10.1007/s12274-009-9074-z
  • Ramesha, G. K.; Sampath, S. Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study. J. Phys. Chem. C 2009, 113, 7985–7989. doi:10.1021/jp811377n
  • Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 2009, 458, 872–876. doi:10.1038/nature07872
  • El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. doi:10.1126/science.1216744
  • Ye, R.; James, D. K.; Tour, J. M. Laser‐Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31, 1803621. doi:10.1002/adma.201803621
  • Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. doi:10.1038/ncomms6714
  • He, S.; Chen, W. 3D Graphene Nanomaterials for Binder-Free Supercapacitors: Scientific Design for Enhanced Performance. Nanoscale 2015, 7, 6957–6990. doi:10.1039/c4nr05895j
  • Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric Vehicles Batteries: Requirements and Challenges. Joule 2020, 4, 511–515. doi:10.1016/j.joule.2020.01.013
  • Augustyn, V.; McDowell, M. T.; Vojvodic, A. Toward an Atomistic Understanding of Solid-State Electrochemical Interfaces for Energy Storage. Joule 2018, 2, 2189–2193. doi:10.1016/j.joule.2018.10.014
  • Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. doi:10.1016/j.joule.2018.07.009
  • Pumera, M. Graphene-Based Nanomaterials for Energy Storage. Energy Environ. Sci. 2011, 4, 668–674. doi:10.1039/C0EE00295J
  • Priyadarshi, H.; Singh, K.; Shrivastava, A. Green Technology Solutions for Energy Storage Devices., in Energy Conversion and Green Energy Storage, CRC Press, Boca Raton, 117–132 2022.
  • Priyadarshi, H.; Shrivastava, A.; Singh, K. Energy Storage Device Fundamentals and Technology. in Electrical and Electronic Devices, Circuits and Materials, CRC Press, First Edition. | Boca Raton, FL : CRC Press/Taylor & Francis, 119–130 2021.
  • Gupta, V.; Priyadarshi, H.; Goyal, V.; Singh, K.; Shrivastava, A.; Akhtar, J. BMS-driven onsite insolation charging infrastructure for electric vehicles., 040006 2020. In AIP Conference Proceedings (Vol. 2294, No. 1). AIP Publishing.
  • Javed, K.; Oolo, M.; Savest, N.; Krumme, A. A Review on Graphene-Based Electrospun Conductive Nanofibers, Supercapacitors, Anodes, and Cathodes for Lithium-Ion Batteries. Crit. Rev. Solid State Mater. Sci. 2019, 44, 427–443. doi:10.1080/10408436.2018.1492367
  • Mahmood, F.; Zhang, C.; Xie, Y.; Stalla, D.; Lin, J.; Wan, C. Transforming Lignin into Porous Graphene via Direct Laser Writing for Solid-State Supercapacitors. RSC Adv. 2019, 9, 22713–22720. doi:10.1039/c9ra04073k
  • Chu, M.; Li, M.; Han, Z.; Cao, J.; Li, R.; Cheng, Z. Novel Biomass-Derived Smoke-like Carbon as a Supercapacitor Electrode Material. R Soc. Open Sci. 2019, 6, 190132. doi:10.1098/rsos.190132
  • Gupta, V.; Priyadarshi, H.; Goyal, V.; Singh, K.; Shrivastava, A.; Akhtar, J. Energy Exchange Modeling of Supercapacitors for E-Mobility Applications. In AIP Conference Proceedings (Vol. 2294, No. 1). AIP Publishing. 2020.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. doi:10.1021/nl802558y
  • Mi, J.; Wang, X.-R.; Fan, R.-J.; Qu, W.-H.; Li, W.-C. Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors. Energy Fuels 2012, 26, 5321–5329. doi:10.1021/ef3009234
  • Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4269. doi:10.1021/cr020730k
  • Pandolfo, A. G.; Hollenkamp, A. F. Carbon Properties and Their Role in Supercapacitors. J Power Sources 2006, 157, 11–27. doi:10.1016/j.jpowsour.2006.02.065
  • Hingorani, N. G. Introducing Custom Power. IEEE Spectr. 1995, 32, 41–48. doi:10.1109/6.387140
  • Srihari, V.; Das, A. Comparative Studies on Adsorptive Removal of Phenol by Three Agro-Based Carbons: Equilibrium and Isotherm Studies. Ecotoxicol. Environ. Saf. 2008, 71, 274–283. doi:10.1016/j.ecoenv.2007.08.008
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. doi:10.1038/nmat2297
  • Kötz, R.; Carlen, M. Principles and Applications of Electrochemical Capacitors. Electrochim Acta 2000, 45, 2483–2498. doi:10.1016/S0013-4686(00)00354-6
  • Miller, J. R.; Burke, A. Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc. Interface 2008, 17, 53–57. doi:10.1149/2.F08081IF
  • Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. J Power Sources 2001, 101, 109–116. doi:10.1016/S0378-7753(01)00707-8
  • Shi, H. Activated Carbons and Double Layer Capacitance. Electrochim Acta 1996, 41, 1633–1639. doi:10.1016/0013-4686(95)00416-5
  • Qu, D. Studies of the Activated Carbons Used in Double-Layer Supercapacitors. J Power Sources 2002, 109, 403–411. doi:10.1016/S0378-7753(02)00108-8
  • Qu, D.; Shi, H. Studies of Activated Carbons Used in Double-Layer Capacitors. J Power Sources 1998, 74, 99–107. doi:10.1016/S0378-7753(98)00038-X
  • Kim, Y. J.; Horie, Y.; Ozaki, S.; Matsuzawa, Y.; Suezaki, H.; Kim, C.; Miyashita, N.; Endo, M. Correlation between the Pore and Solvated Ion Size on Capacitance Uptake of PVDC-Based Carbons. Carbon N Y 2004, 42, 1491–1500. doi:10.1016/j.carbon.2004.01.049
  • Izutsu, K. Electrochemistry in Nonaqueous Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG 2002.
  • Fernández, J. A.; Morishita, T.; Toyoda, M.; Inagaki, M.; Stoeckli, F.; Centeno, T. A. Performance of Mesoporous Carbons Derived from Poly(Vinyl Alcohol) in Electrochemical Capacitors. J Power Sources 2008, 175, 675–679. doi:10.1016/j.jpowsour.2007.09.042
  • Jurewicz, K.; Vix-Guterl, C.; Frackowiak, E.; Saadallah, S.; Reda, M.; Parmentier, J.; Patarin, J.; Béguin, F. Capacitance Properties of Ordered Porous Carbon Materials Prepared by a Templating Procedure. J. Phys. Chem. Solids 2004, 65, 287–293. doi:10.1016/j.jpcs.2003.10.024
  • Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Templated Mesoporous Carbons for Supercapacitor Application. Electrochim Acta 2005, 50, 2799–2805. doi:10.1016/j.electacta.2004.11.027
  • Salitra, G.; Soffer, A.; Eliad, L.; Cohen, Y.; Aurbach, D. Carbon Electrodes for Double-Layer Capacitors I. Relations between Ion and Pore Dimensions. J. Electrochem. Soc. 2000, 147, 2486. doi:10.1149/1.1393557
  • Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical Energy Storage in Ordered Porous Carbon Materials. Carbon N Y 2005, 43, 1293–1302. doi:10.1016/j.carbon.2004.12.028
  • Mermin, N. D. Crystalline Order in Two Dimensions. Phys. Rev. 1968, 176, 250–254. doi:10.1103/PhysRev.176.250
  • Mermin, N. D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. doi:10.1103/PhysRevLett.17.1133
  • Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U S A 2005, 102, 10451–10453. doi:10.1073/pnas.0502848102
  • Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R. H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C. R.; Tascon, J. M. D.; Zhang, J. All in the Graphene Family – a Recommended Nomenclature for Two-Dimensional Carbon Materials. Carbon N Y 2013, 65, 1–6. doi:10.1016/j.carbon.2013.08.038
  • Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. doi:10.1038/nature05545
  • Yang, L.; Park, C.-H.; Son, Y.-W.; Cohen, M. L.; Louie, S. G. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 2007, 99, 186801. doi:10.1103/PhysRevLett.99.186801
  • Son, Y.-W.; Cohen, M. L.; Louie, S. G. Half-Metallic Graphene Nanoribbons. Nature 2006, 444, 347–349. doi:10.1038/nature05180
  • C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, Graphene at the Edge: Stability and Dynamics. Science (1979) 323(5922), 1705–1708 ((2009)). doi:10.1126/science.1166999
  • Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys Rep 2009, 473, 51–87. doi:10.1016/j.physrep.2009.02.003
  • Oostinga, J. B.; Heersche, H. B.; Liu, X.; Morpurgo, A. F.; Vandersypen, L. M. K. Gate-Induced Insulating State in Bilayer Graphene Devices. Nat. Mater. 2008, 7, 151–157. doi:10.1038/nmat2082
  • Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Il Song, Y.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. doi:10.1038/nnano.2010.132
  • Yang, Y.; Liu, X.; Zhu, Z.; Zhong, Y.; Bando, Y.; Golberg, D.; Yao, J.; Wang, X. The Role of Geometric Sites in 2D Materials for Energy Storage. Joule 2018, 2, 1075–1094. doi:10.1016/j.joule.2018.04.027
  • Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.-M.; Kang, F. Two-Dimensional Materials for Thermal Management Applications. Joule 2018, 2, 442–463. doi:10.1016/j.joule.2018.01.006
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun 2008, 146, 351–355. doi:10.1016/j.ssc.2008.02.024
  • Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308–1308. doi:10.1126/science.1156965
  • Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal Optical Conductance of Graphite. Phys. Rev. Lett. 2008, 100, 117401. doi:10.1103/PhysRevLett.100.117401
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. doi:10.1021/nl0731872
  • Yu, C.; Shi, L.; Yao, Z.; Li, D.; Majumdar, A. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Lett. 2005, 5, 1842–1846. doi:10.1021/nl051044e
  • Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328, 213–216. doi:10.1126/science.1184014
  • Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96–100. doi:10.1021/nl052145f
  • Kwon, Y.-K.; Kim, P. Unusually High Thermal Conductivity in Carbon Nanotubes. In High Thermal Conductivity Materials, Springer-Verlag, New York, n.d., 227–265
  • Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844–849. doi:10.1021/nl2038979
  • Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G. C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257–317. doi:10.1080/10408436.2015.1127206
  • Devi, N.; Kumar, R.; Singh, S.; Singh, R. K. Recent Development of Graphene-Based Composite for Multifunctional Applications: Energy, Environmental and Biomedical Sciences. Crit. Rev. Solid State Mater. Sci. 2022, 49(1), 72–140. doi:10.1080/10408436.2022.2132910
  • Agudosi, E. S.; Abdullah, E. C.; Numan, A.; Mubarak, N. M.; Khalid, M.; Omar, N. A Review of the Graphene Synthesis Routes and Its Applications in Electrochemical Energy Storage. Crit. Rev. Solid State Mater. Sci. 2020, 45, 339–377. doi:10.1080/10408436.2019.1632793
  • Kim, H.-K.; Bak, S.-M.; Lee, S. W.; Kim, M.-S.; Park, B.; Lee, S. C.; Choi, Y. J.; Jun, S. C.; Han, J. T.; Nam, K.-W.; et al. Scalable Fabrication of Micron-Scale Graphene Nanomeshes for High-Performance Supercapacitor Applications. Energy Environ. Sci. 2016, 9, 1270–1281. doi:10.1039/C5EE03580E
  • Cheng, H.; Huang, Y.; Shi, G.; Jiang, L.; Qu, L. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. Acc. Chem. Res. 2017, 50, 1663–1671. doi:10.1021/acs.accounts.7b00131
  • Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Adv. Mater. 2013, 25, 2326–2331. doi:10.1002/adma.201300132
  • Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Zhai, X.; Jiang, L.; Qu, L. Graphene Microtubings: Controlled Fabrication and Site-Specific Functionalization. Nano Lett. 2012, 12, 5879–5884. doi:10.1021/nl303243h
  • Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. Innentitelbild: A Versatile, Ultralight, Nitrogen-Doped Graphene Framework (Angew. Chem. 45/2012). Angewandte Chemie 2012, 124, 11336–11336. doi:10.1002/ange.201207760
  • Ye, M.; Dong, Z.; Hu, C.; Cheng, H.; Shao, H.; Chen, N.; Qu, L. Uniquely Arranged Graphene-on-Graphene Structure as a Binder-Free Anode for High-Performance Lithium-Ion Batteries. Small 2014, 10, 5035–5041. n/a-n/a). doi:10.1002/smll.201401610
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. doi:10.1126/science.1157996
  • Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Adv. Mater. 2008, 20, 3557–3561. doi:10.1002/adma.200800757
  • Van Lier, G.; Van Alsenoy, C.; Van Doren, V.; Geerlings, P. Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene. Chem Phys Lett 2000, 326, 181–185. doi:10.1016/S0009-2614(00)00764-8
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448, 457–460. doi:10.1038/nature06016
  • Wu, H.-C.; Lin, Y.-P.; Lee, E.; Lin, W.-T.; Hu, J.-K.; Chen, H.-C.; Wu, N.-L. High-Performance Carbon-Based Supercapacitors Using Al Current-Collector with Conformal Carbon Coating. Mater. Chem. Phys. 2009, 117, 294–300. doi:10.1016/j.matchemphys.2009.06.001
  • Ku, K.; Kim, B.; Chung, H.; Kim, W. Characterization of Graphene-Based Supercapacitors Fabricated on Al Foils Using Au or Pd Thin Films as Interlayers. Synth. Met. 2010, 160, 2613–2617. doi:10.1016/j.synthmet.2010.10.012
  • Portet, C.; Taberna, P. L.; Simon, P.; Laberty-Robert, C. Modification of Al Current Collector Surface by Sol–Gel Deposit for Carbon–Carbon Supercapacitor Applications. Electrochim Acta 2004, 49, 905–912. doi:10.1016/j.electacta.2003.09.043
  • Demarconnay, L.; Raymundo-Piñero, E.; Béguin, F. A Symmetric Carbon/Carbon Supercapacitor Operating at 1.6V by Using a Neutral Aqueous Solution. Electrochem. Commun. 2010, 12, 1275–1278. doi:10.1016/j.elecom.2010.06.036
  • Hong, M. S.; Lee, S. H.; Kim, S. W. Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor. Electrochem. Solid-State Lett. 2002, 5, A227. doi:10.1149/1.1506463
  • Obreja, V. V. N. On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Material—a Review. Physica E Low Dimens Syst Nanostruct 2008, 40, 2596–2605. doi:10.1016/j.physe.2007.09.044
  • Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.-F.; Cui, Y. Highly Conductive Paper for Energy-Storage Devices. Proc. Natl. Acad. Sci. U S A 2009, 106, 21490–21494. doi:10.1073/pnas.0908858106
  • Zhou, R.; Meng, C.; Zhu, F.; Li, Q.; Liu, C.; Fan, S.; Jiang, K. High-Performance Supercapacitors Using a Nanoporous Current Collector Made from Super-Aligned Carbon Nanotubes. Nanotechnology 2010, 21, 345701. doi:10.1088/0957-4484/21/34/345701
  • Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. Engl. 2009, 48, 7752–7777. doi:10.1002/anie.200901678
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Moshkalev, S. A.; Matsuda, A.; Kar, K. K. Heteroatom Doping of 2D Graphene Materials for Electromagnetic Interference Shielding: A Review of Recent Progress. Crit. Rev. Solid State Mater. Sci. 2022, 47, 570–619. doi:10.1080/10408436.2021.1965954
  • Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. doi:10.1038/nnano.2009.58
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. doi:10.1080/10408430903505036
  • Wang, Y.; Wu, Y.; Huang, Y.; Zhang, F.; Yang, X.; Ma, Y.; Chen, Y. Preventing Graphene Sheets from Restacking for High-Capacitance Performance. J. Phys. Chem. C 2011, 115, 23192–23197. doi:10.1021/jp206444e
  • Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103–13107. doi:10.1021/jp902214f
  • Yu, A.; Roes, I.; Davies, A.; Chen, Z. Ultrathin, Transparent, and Flexible Graphene Films for Supercapacitor Application. Appl Phys Lett 2010, 96, 253105.
  • Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. doi:10.1126/science.1200770
  • Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors. Adv. Mater. 2011, 23, 2833–2838. doi:10.1002/adma.201100261
  • Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11, 2472–2477. doi:10.1021/nl2009058
  • Arora, P.; Zhang, Z. (. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. doi:10.1021/cr020738u
  • Vandana, M.; Bijapur, K.; Soman, G.; Hegde, G. Recent Advances in the Development, Design and Mechanism of Negative Electrodes for Asymmetric Supercapacitor Applications. Crit. Rev. Solid State Mater. Sci. 2023, 1–36. doi:10.1080/10408436.2023.2202225
  • Ricketts, B. W.; Ton-That, C. Self-Discharge of Carbon-Based Supercapacitors with Organic Electrolytes. J Power Sources 2000, 89, 64–69. doi:10.1016/S0378-7753(00)00387-6
  • Davies, A.; Yu, A. Material Advancements in Supercapacitors: From Activated Carbon to Carbon Nanotube and Graphene. Can. J. Chem. Eng. 2011, 89, 1342–1357. doi:10.1002/cjce.20586
  • Burke, A. R &D Considerations for the Performance and Application of Electrochemical Capacitors. Electrochim Acta 2007, 53, 1083–1091. doi:10.1016/j.electacta.2007.01.011
  • Haynes, W. M., Ed. CRC Handbook of Chemistry and Physics, 95th.; CRC Press, 2014. doi:10.1201/b17118.
  • Basirun, W. J.; Saeed, I. M.; Rahman, M. S.; Mazari, S. A. Nickel Oxides/Hydroxides-Graphene as Hybrid Supercapattery Nanocomposites for Advanced Charge Storage Materials – a Review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 553–586. doi:10.1080/10408436.2021.1886040
  • Kar, T.; Godavarthi, S.; Pasha, S. K.; Deshmukh, K.; Martínez-Gómez, L.; Kesarla, M. K. Layered Materials and Their Heterojunctions for Supercapacitor Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 357–388. doi:10.1080/10408436.2021.1886048
  • Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. Performance of Carbon–Carbon Supercapacitors Based on Organic, Aqueous and Ionic Liquid Electrolytes. J Power Sources 2010, 195, 5814–5819. doi:10.1016/j.jpowsour.2010.03.082
  • Lewandowski, A.; Galinski, M. Practical and Theoretical Limits for Electrochemical Double-Layer Capacitors. J Power Sources 2007, 173, 822–828. doi:10.1016/j.jpowsour.2007.05.062
  • Ganguly, A.; Chattopadhyay, S.; Chen, K.-H.; Chen, L.-C. Production and Storage of Energy with One-Dimensional Semiconductor Nanostructures. Crit. Rev. Solid State Mater. Sci. 2014, 39, 109–153. doi:10.1080/10408436.2013.796909
  • Staiti, P.; Lufrano, F. Investigation of Polymer Electrolyte Hybrid Supercapacitor Based on Manganese Oxide–Carbon Electrodes. Electrochim Acta 2010, 55, 7436–7442. doi:10.1016/j.electacta.2010.01.021
  • Kalpana, D.; Renganathan, N. G.; Pitchumani, S. A New Class of Alkaline Polymer Gel Electrolyte for Carbon Aerogel Supercapacitors. J Power Sources 2006, 157, 621–623. doi:10.1016/j.jpowsour.2005.07.057
  • Meng, C.; Liu, C.; Chen, L.; Hu, C.; Fan, S. Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Lett. 2010, 10, 4025–4031. doi:10.1021/nl1019672
  • Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Mohana Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Ultrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423–1427. doi:10.1021/nl200225j
  • Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Lett. 2009, 9, 1872–1876. doi:10.1021/nl8038579
  • Lian, K.; Li, C. M. Solid Polymer Electrochemical Capacitors Using Heteropoly Acid Electrolytes. Electrochem Commun 2009, 11, 22–24. doi:10.1016/j.elecom.2008.10.016
  • Gao, H.; Tian, Q.; Lian, K. Polyvinyl Alcohol-Heteropoly Acid Polymer Electrolytes and Their Applications in Electrochemical Capacitors. Solid State Ion 2010, 181, 874–876. doi:10.1016/j.ssi.2010.05.006
  • Lian, K.; Li, C. Heteropoly Acid Electrolytes for Double-Layer Capacitors and Pseudocapacitors. Electrochem. Solid-State Lett. 2008, 11, A158. doi:10.1149/1.2955861
  • Priyadarshi, H.; Ahmed, G.; Singh, K.; Shrivastava, A. 2021 Two-Dimensional Modeling and Analysis of Lithium-Ion Cell for Electric Vehicle Application. In 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE, 548–552. doi:10.1109/RDCAPE52977.2021.9633549
  • Priyadarshi, H.; Choudhary, H.; Agarwal, S. N.; Shrivastava, A.; Singh, K.; Akhtar, J. 2019 Graphene Based Futuristic Green Batteries for Energy Harvesting. In 2019 IEEE International Conference on Engineering, Technology and Education (TALE), IEEE, 1–4. doi:10.1109/TALE48000.2019.9226032
  • Ban, S.; Zhang, J.; Zhang, L.; Tsay, K.; Song, D.; Zou, X. Charging and Discharging Electrochemical Supercapacitors in the Presence of Both Parallel Leakage Process and Electrochemical Decomposition of Solvent. Electrochim Acta 2013, 90, 542–549. doi:10.1016/j.electacta.2012.12.056
  • Severson, K. A.; Attia, P. M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M. H.; Aykol, M.; Herring, P. K.; Fraggedakis, D.; et al. Data-Driven Prediction of Battery Cycle Life before Capacity Degradation. Nat. Energy 2019, 4, 383–391. doi:10.1038/s41560-019-0356-8
  • Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J Power Sources 2013, 226, 272–288. doi:10.1016/j.jpowsour.2012.10.060
  • Hu, X.; Li, S.; Peng, H. A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries. J Power Sources 2012, 198, 359–367. doi:10.1016/j.jpowsour.2011.10.013
  • Doyle, M.; Fuller, T. F.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. doi:10.1149/1.2221597
  • Ye, M.; Zhang, Z.; Zhao, Y.; Qu, L. Graphene Platforms for Smart Energy Generation and Storage. Joule 2018, 2, 245–268. doi:10.1016/j.joule.2017.11.011
  • Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Zhang, W.; Wen, Y.; Ming, H.; Zhu, X.; Guan, Y.; Xiang, Y.; et al. Heterogeneous Nucleation and Growth of Electrodeposited Lithium Metal on the Basal Plane of Single-Layer Graphene. Energy Storage Mater 2019, 16, 419–425. doi:10.1016/j.ensm.2018.06.024
  • Goh, M. S.; Pumera, M. Multilayer Graphene Nanoribbons Exhibit Larger Capacitance than Their Few-Layer and Single-Layer Graphene Counterparts. Electrochem Commun 2010, 12, 1375–1377. doi:10.1016/j.elecom.2010.07.024
  • Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X. S. Graphene-Based Electrodes for Electrochemical Energy Storage. Energy Environ. Sci. 2013, 6, 1388. doi:10.1039/c3ee23870a
  • Oh, J.; Yoo, H.; Choi, J.; Kim, J. Y.; Lee, D. S.; Kim, M. J.; Lee, J.-C.; Kim, W. N.; Grossman, J. C.; Park, J. H.; et al. Significantly Reduced Thermal Conductivity and Enhanced Thermoelectric Properties of Single- and bi-Layer Graphene Nanomeshes with Sub-10 nm Neck-Width. Nano Energy 2017, 35, 26–35. doi:10.1016/j.nanoen.2017.03.019
  • Ji, K.; Han, J.; Hirata, A.; Fujita, T.; Shen, Y.; Ning, S.; Liu, P.; Kashani, H.; Tian, Y.; Ito, Y.; et al. Lithium Intercalation into Bilayer Graphene. Nat. Commun. 2019, 10, 275. doi:10.1038/s41467-018-07942-z
  • Atrey, I.; Shukla, A. Dispersion Consisting Entirely of Trilayer Graphene Provides Film of High Specific Capacitance. J Alloys Compd 2024, 970, 172553. doi:10.1016/j.jallcom.2023.172553
  • Ding, Y.; Wu, R.; Abidi, I. H.; Wong, H.; Liu, Z.; Zhuang, M.; Gan, L.-Y.; Luo, Z. Stacking Modes-Induced Chemical Reactivity Differences on Chemical Vapor Deposition-Grown Trilayer Graphene. ACS Appl. Mater. Interfaces. 2018, 10, 23424–23431. doi:10.1021/acsami.8b05635
  • Huang, Q.; Jin, Y.; Huang, L.; Cong, Y.; Xu, Z. Zincophilic Multilayer Graphene Structures Leveraging Fast and Ultrastable Zn-Ion Storage. J. Mater. Chem. A 2023, 11, 12297–12307. doi:10.1039/D3TA01107K
  • Liu, J.; Notarianni, M.; Will, G.; Tiong, V. T.; Wang, H.; Motta, N. Electrochemically Exfoliated Graphene for Electrode Films: Effect of Graphene Flake Thickness on the Sheet Resistance and Capacitive Properties. Langmuir 2013, 29, 13307–13314. doi:10.1021/la403159n
  • Kang, S.; Ryu, J. H.; Lee, B.; Jung, K. H.; Shim, K. B.; Han, H.; Kim, K. M. Laser Wavelength Modulated Pulsed Laser Ablation for Selective and Efficient Production of Graphene Quantum Dots. RSC Adv. 2019, 9, 13658–13663. doi:10.1039/c9ra02087j
  • Liu, J.; Cai, H.; Yu, X.; Zhang, K.; Li, X.; Li, J.; Pan, N.; Shi, Q.; Luo, Y.; Wang, X. Fabrication of Graphene Nanomesh and Improved Chemical Enhancement for Raman Spectroscopy. J. Phys. Chem. C 2012, 116, 15741–15746. doi:10.1021/jp303265d
  • Vo, T. H.; Perera, U. G. E.; Shekhirev, M.; Mehdi Pour, M.; Kunkel, D. A.; Lu, H.; Gruverman, A.; Sutter, E.; Cotlet, M.; Nykypanchuk, D.; et al. Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Nano Lett. 2015, 15, 5770–5777. doi:10.1021/acs.nanolett.5b01723
  • Liu, J.; Liu, G.; Xu, J.; Liu, C.; Zhou, W.; Liu, P.; Nie, G.; Duan, X.; Jiang, F. Graphene/Polymer Hybrid Fiber with Enhanced Fracture Elongation for Thermoelectric Energy Harvesting. ACS Appl. Energy Mater. 2020, 3, 6165–6171. doi:10.1021/acsaem.0c00001
  • Huang, J.; Sumpter, B. G.; Meunier, V. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry 2008, 14, 6614–6626. doi:10.1002/chem.200800639
  • Santhanagopalan, S.; Guo, Q.; Ramadass, P.; White, R. E. Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries. J Power Sources 2006, 156, 620–628. doi:10.1016/j.jpowsour.2005.05.070
  • Wang, C. Y.; Gu, W. B.; Liaw, B. Y. Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells: I. Model Development. J. Electrochem. Soc. 1998, 145, 3407–3417. doi:10.1149/1.1838820
  • Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods. J Power Sources 2013, 239, 680–688. doi:10.1016/j.jpowsour.2012.11.146
  • Wu, B.; Han, S.; Shin, K. G.; Lu, W. Application of Artificial Neural Networks in Design of Lithium-Ion Batteries. J Power Sources 2018, 395, 128–136. doi:10.1016/j.jpowsour.2018.05.040
  • Wu, J.; Wang, Y.; Zhang, X.; Chen, Z. A Novel State of Health Estimation Method of Li-Ion Battery Using Group Method of Data Handling. J Power Sources 2016, 327, 457–464. doi:10.1016/j.jpowsour.2016.07.065
  • Yang, D.; Wang, Y.; Pan, R.; Chen, R.; Chen, Z. A Neural Network Based State-of-Health Estimation of Lithium-Ion Battery in Electric Vehicles. Energy Procedia 2017, 105, 2059–2064. doi:10.1016/j.egypro.2017.03.583
  • Guo, J.; Li, Z.; Pecht, M. A Bayesian Approach for Li-Ion Battery Capacity Fade Modeling and Cycles to Failure Prognostics. J Power Sources 2015, 281, 173–184. doi:10.1016/j.jpowsour.2015.01.164
  • Tseng, K.-H.; Liang, J.-W.; Chang, W.; Huang, S.-C. Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries. Energies (Basel 2015, 8, 2889–2907. doi:10.3390/en8042889
  • Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a 
 Deep Learning Algorithm. Energies 2019, 12, 660. doi:10.3390/en12040660
  • Zahid, T.; Xu, K.; Li, W.; Li, C.; Li, H. State of Charge Estimation for Electric Vehicle Power Battery Using Advanced Machine Learning Algorithm under Diversified Drive Cycles. Energy 2018, 162, 871–882. doi:10.1016/j.energy.2018.08.071
  • Chemali, E.; Kollmeyer, P. J.; Preindl, M.; Emadi, A. State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach. J Power Sources 2018, 400, 242–255. doi:10.1016/j.jpowsour.2018.06.104
  • Jiménez-Bermejo, D.; Fraile-Ardanuy, J.; Castaño-Solis, S.; Merino, J.; Álvaro-Hermana, R. Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles. Procedia Comput Sci 2018, 130, 533–540. doi:10.1016/j.procs.2018.04.077
  • Hu, J. N.; Hu, J. J.; Lin, H. B.; Li, X. P.; Jiang, C. L.; Qiu, X. H.; Li, W. S. State-of-Charge Estimation for Battery Management System Using Optimized Support Vector Machine for Regression. J Power Sources 2014, 269, 682–693. doi:10.1016/j.jpowsour.2014.07.016
  • Wu, T.; Wang, M.; Xiao, Q.; Wang, X. The SOC Estimation of Power Li-Ion Battery Based on ANFIS Model. SGRE. 2012, 03, 51–55. doi:10.4236/sgre.2012.31007
  • Takagishi, Y.; Yamanaka, T.; Yamaue, T. Machine Learning Approaches for Designing Mesoscale Structure of Li-Ion Battery Electrodes. Batteries 2019, 5, 54. doi:10.3390/batteries5030054
  • Qu, X.; Jain, A.; Rajput, N. N.; Cheng, L.; Zhang, Y.; Ong, S. P.; Brafman, M.; Maginn, E.; Curtiss, L. A.; Persson, K. A. The Electrolyte Genome Project: A Big Data Approach in Battery Materials Discovery. Comput Mater Sci 2015, 103, 56–67. doi:10.1016/j.commatsci.2015.02.050
  • Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J. Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials. Chem. Mater. 2019, 31, 342–352. doi:10.1021/acs.chemmater.8b03272
  • Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater 2013, 1, 011002.
  • Liu, P.; Guo, B.; An, T.; Fang, H.; Zhu, G.; Jiang, C.; Jiang, X. High Throughput Materials Research and Development for Lithium Ion Batteries. J. Materiomics 2017, 3, 202–208. doi:10.1016/j.jmat.2017.07.004
  • Bai, P.; Cogswell, D. A.; Bazant, M. Z. Suppression of Phase Separation in LiFePO 4 Nanoparticles during Battery Discharge. Nano Lett. 2011, 11, 4890–4896. doi:10.1021/nl202764f
  • Joshi, R. P.; Eickholt, J.; Li, L.; Fornari, M.; Barone, V.; Peralta, J. E. Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries. ACS Appl. Mater. Interfaces. 2019, 11, 18494–18503. doi:10.1021/acsami.9b04933
  • Takaki, T. Phase-Field Modeling and Simulations of Dendrite Growth. ISIJ Int. 2014, 54, 437–444. doi:10.2355/isijinternational.54.437
  • Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G. J.; Seh, Z. W. Predicting the State of Charge and Health of Batteries Using Data-Driven Machine Learning. Nat. Mach. Intell. 2020, 2, 161–170. doi:10.1038/s42256-020-0156-7
  • Zhang, Y.; Zhang, Y.; Li, G.; Lu, J.; Lin, X.; Du, S.; Berger, R.; Feng, X.; Müllen, K.; Gao, H.-J. Direct Visualization of Atomically Precise Nitrogen-Doped Graphene Nanoribbons. Appl Phys Lett 2014, 105, 023101.
  • Yang, J.; Ma, M.; Li, L.; Zhang, Y.; Huang, W.; Dong, X. Graphene Nanomesh: New Versatile Materials. Nanoscale 2014, 6, 13301–13313. doi:10.1039/c4nr04584j
  • Liu, H.; Liu, Y.; Zhu, D. Chemical Doping of Graphene. J. Mater. Chem. 2011, 21, 3335–3345. doi:10.1039/C0JM02922J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.