158
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Carbon nano-onions reinforced nanocomposites: Fabrication, computational modeling techniques and mechanical properties

ORCID Icon & ORCID Icon

Reference

  • Wu, S.; Li, H.; Futaba, D. N.; Chen, G.; Chen, C.; Zhou, K.; Zhang, Q.; Li, M.; Ye, Z.; Xu, M. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Adv. Mater. 2022, 34, e2201046. 10.1002/adma.202201046.
  • Kim, M.; Xin, R.; Earnshaw, J.; Tang, J.; Hill, J. P.; Ashok, A.; Nanjundan, A. K.; Kim, J.; Young, C.; Sugahara, Y.; et al. MOF-Derived Nanoporous Carbons with Diverse Tunable Nanoarchitectures. Nat. Protoc. 2022, 17, 2990–3027. 10.1038/s41596-022-00718-2
  • Kim, M.; Firestein, K. L.; Fernando, J. F. S.; Xu, X.; Lim, H.; Golberg, D. V.; Na, J.; Kim, J.; Nara, H.; Tang, J.; Yamauchi, Y. Strategic Design of Fe and N co-Doped Hierarchically Porous Carbon as Superior ORR Catalyst: From the Perspective of Nanoarchitectonics. Chem. Sci. 2022, 13, 10836–10845. 10.1039/d2sc02726g
  • Kumari, P.; Tripathi, K. M.; Awasthi, K.; Gupta, R. Sustainable Carbon Nano-Onions as an Adsorbent for the Efficient Removal of Oxo-Anions. Environ. Sci. Pollut. Res. Int. 2023, 30, 15480–15489. 10.1007/s11356-022-22883-3
  • Zheng, Y.; Zhu, P. Carbon Nano-Onions: Large-Scale Preparation, Functionalization and Their Application as Anode Material for Rechargeable Lithium Ion Batteries. RSC Adv. 2016, 6, 92285–92298. 10.1039/C6RA19060J
  • Bobrowska, D. M.; Castro, E.; Echegoyen, L.; Plonska‐Brzezinska, M. E. Carbon Nano‐Onion and Zinc Oxide Composites as an Electron Transport Layer in Inverted Organic Solar Cells. ChemNanoMat 2020, 6, 248–257. 10.1002/cnma.201900561
  • Xin, Y.; Odachi, K.; Shirai, T. Fabrication of Ultra-Bright Carbon Nano-Onions via a One-Step Microwave Pyrolysis of Fish Scale Waste in Seconds. Green Chem. 2022, 24, 3969–3976. 10.1039/D1GC04785J
  • Plonska‐Brzezinska, M. E.; Mazurczyk, J.; Palys, B.; Breczko, J.; Lapinski, A.; Dubis, A. T.; Echegoyen, L. Preparation and Characterization of Composites That Contain Small Carbon Nano‐Onions and Conducting Polyaniline. Chemistry 2012, 18, 2600–2608. 10.1002/chem.201102175
  • Mongwe, T. H.; Matsoso, B. J.; Mutuma, B. K.; Coville, N. J.; Maubane, M. S. Synthesis of Chain-like Carbon Nano-Onions by a Flame Assisted Pyrolysis Technique Using Different Collecting Plates. Diam. Relat. Mater 2018, 90, 135–143. 10.1016/j.diamond.2018.10.002
  • Lei, J.; Liu, J.; Tang, N.; Han, H.; Li, Z.; Li, K.; Zhai, T.; Chen, H.; Xia, H. Novel Gram‐Scale Synthesis of Carbon Nano‐Onions from Heavy Oil for Supercapacitors. Adv. Mater. Interfaces 2021, 8, 2101208.
  • Kausar, A. Carbon Nano Onion as Versatile Contender in Polymer Compositing and Advance Application. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 109–123. 10.1080/1536383X.2016.1265513
  • Kumar, A.; Sharma, K.; Dixit, A. R. A Review of the Mechanical and Thermal Properties of Graphene and Its Hybrid Polymer Nanocomposites for Structural Applications. J. Mater. Sci. 2019, 54, 5992–6026. 10.1007/s10853-018-03244-3
  • Kumar, A.; Sharma, K.; Rai Dixit, A. Carbon Nanotube-and Graphene-Reinforced Multiphase Polymeric Composites: Review on Their Properties and Applications. J. Mater. Sci. 2020, 55, 2682–2724. 10.1007/s10853-019-04196-y
  • Kumar, A.; Sharma, K.; Dixit, A. R. Tensile, Flexural and Interlaminar Shear Strength of Carbon Fiber Reinforced Epoxy Composites Modified by Graphene. Polym. Bull. 2023, 80, 7469–7490. 10.1007/s00289-022-04413-w
  • Bartelmess, J.; Giordani, S. Carbon Nano-Onions (Multi-Layer Fullerenes): Chemistry and Applications. Beilstein J. Nanotechnol. 2014, 5, 1980–1998. 10.3762/bjnano.5.207
  • Plonska‐Brzezinska, M. E. Carbon Nano‐Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat 2019, 5, 568–580. 10.1002/cnma.201800583
  • Dhand, V.; Yadav, M.; Kim, S. H.; Rhee, K. Y. A Comprehensive Review on the Prospects of Multi-Functional Carbon Nano Onions as an Effective, High-Performance Energy Storage Material. Carbon 2021, 175, 534–575. 10.1016/j.carbon.2020.12.083
  • Ghalkhani, M.; Marzi Khosrowshahi, E.; Sohouli, E. Carbon Nano-Onions: Synthesis, Characterization, and Application., In T. Sabu, C. Sarathchandran, S. A. Ilangovan, J.C. Moreno-Pirajan (eds), Handbook of Carbon-Based Nanomaterials, Elsevier: Amsterdam, 2021; pp. 159–207; 2021.
  • Ghavanloo, E.; Rafii-Tabar, H.; Kausar, A.; Giannopoulos, G. I.; Fazelzadeh, S. A. Experimental and Computational Physics of Fullerenes and Their Nanocomposites: Synthesis, Thermo-Mechanical Characteristics and Nanomedicine Applications. Phys. Rep. 2023, 996, 1–116. 10.1016/j.physrep.2022.10.003
  • Vindhyasarumi, A.; Anjali, K. P.; Sethulekshmi, A. S.; Jayan, J. S.; Deeraj, B. D. S.; Saritha, A.; Joseph, K. A Comprehensive Review on Recent Progress in Carbon Nano-Onion Based Polymer Nanocomposites. Eur. Polym. J. 2023, 194, 112143. 10.1016/j.eurpolymj.2023.112143
  • Ugarte, D. Curling and Closure of Graphitic Networks under Electron-Beam Irradiation. Nature 1992, 359, 707–709. 10.1038/359707a0
  • Iijima, S. Direct Observation of the Tetrahedral Bonding in Graphitized Carbon Black by High Resolution Electron Microscopy. J. Cryst. Growth 1980, 50, 675–683. 10.1016/0022-0248(80)90013-5
  • Kroto, H. W.; McKay, K. The Formation of Quasi-Icosahedral Spiral Shell Carbon Particles. Nature 1988, 331, 328–331. 10.1038/331328a0
  • Ugarte, D. Onion-like Graphitic Particles. Carbon 1995, 33, 989–993. 10.1016/0008-6223(95)00027-B
  • Kuznetsov, V. L.; Chuvilin, A. L.; Butenko, Y. V.; Mal’kov, I. Y.; Titov, V. M. Onion-like Carbon from Ultra-Disperse Diamond. Chem. Phys. Lett. 1994, 222, 343–348. 10.1016/0009-2614(94)87072-1
  • Guo, A.; Bao, K.; Sang, S.; Zhang, X.; Shao, B.; Zhang, C.; Wang, Y.; Cui, F.; Yang, X. Soft-Chemistry Synthesis, Solubility and Interlayer Spacing of Carbon Nano-Onions. RSC Adv. 2021, 11, 6850–6858. 10.1039/d0ra09410b
  • Brabec, C. J.; Maiti, A.; Bernholc, J. Structural Defects and the Shape of Large Fullerenes. Chem. Phys. Lett. 1994, 219, 473–478. 10.1016/0009-2614(94)00119-7
  • Terrones, H.; Terrones, M. The Transformation of Polyhedral Particles into Graphitic Onions. J. Phys. Chem. Solids 1997, 58, 1789–1796. 10.1016/S0022-3697(97)00067-X
  • Roddatis, V. V.; Kuznetsov, V. L.; Butenko, Y. V.; Su, D. S.; Schlögl, R. Transformation of Diamond Nanoparticles into Carbon Onions under Electron Irradiation. Phys. Chem. Chem. Phys. 2002, 4, 1964–1967. 10.1039/b110487j
  • Abdullaeva, Z.; Omurzak, E.; Iwamoto, C.; Ganapathy, H. S.; Sulaimankulova, S.; Liliang, C.; Mashimo, T. Onion-like Carbon-Encapsulated Co, Ni, and Fe Magnetic Nanoparticles with Low Cytotoxicity Synthesized by a Pulsed Plasma in a Liquid. Carbon 2012, 50, 1776–1785. 10.1016/j.carbon.2011.12.025
  • Tomita, S.; Sakurai, T.; Ohta, H.; Fujii, M.; Hayashi, S. Structure and Electronic Properties of Carbon Onions. J. Chem. Phys. 2001, 114, 7477–7482. 10.1063/1.1360197
  • Cabioc’h, T.; Jaouen, M.; Thune, E.; Guérin, P.; Fayoux, C.; Denanot, M. F. Carbon Onions Formation by High-Dose Carbon Ion Implantation into Copper and Silver. Surf. Coat. Technol. 2000, 128-129, 43–50. 10.1016/S0257-8972(00)00655-1
  • Guo, J. J.; Liu, G. H.; Wang, X. M.; Fujita, T.; Xu, B. S.; Chen, M. W. High-Pressure Raman Spectroscopy of Carbon Onions and Nanocapsules. Appl. Phys. Lett. 2009, 95, 051920.
  • Kasálková, N. S.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. 10.3390/nano11092368
  • Ugarte, D. Canonical Structure of Large Carbon Clusters: Cn, n > 100. Europhys. Lett. 1993, 22, 45–50. 10.1209/0295-5075/22/1/009
  • Maiti, A.; Brabec, C. J.; Bernholc, J. Structure and Energetics of Single and Multilayer Fullerene Cages. Phys. Rev. Lett. 1993, 70, 3023–3026. 10.1103/PhysRevLett.70.3023
  • Cioffi, C. T.; Palkar, A.; Melin, F.; Kumbhar, A.; Echegoyen, L.; Melle‐Franco, M.; Zerbetto, F.; Rahman, G. M. A.; Ehli, C.; Sgobba, V.; et al. A Carbon Nano‐Onion–Ferrocene Donor–Acceptor System: Synthesis, Characterization and Properties. Chemistry 2009, 15, 4419–4427. 10.1002/chem.200801818
  • Mojica, M.; Alonso, J. A.; Méndez, F. Synthesis of Fullerenes. J. Phys. Org. Chem. 2013, 26, 526–539. 10.1002/poc.3121
  • Crichton, R. A.; Zhang, J. Formation Mechanism of Fullerenes/Metallofullerenes., In. Handbook of Fullerene Science and Technology; Akasaka, X. T., Slanina Z., ed(s).; Springer Nature, Singapore, 2022; pp. 1–30.
  • Chuvilin, A.; Kaiser, U.; Bichoutskaia, E.; Besley, N. A.; Khlobystov, A. N. Direct Transformation of Graphene to Fullerene. Nat. Chem. 2010, 2, 450–453. 10.1038/nchem.644
  • Li, M. Y.; Zhao, Y. X.; Han, Y. B.; Yuan, K.; Nagase, S.; Ehara, M.; Zhao, X. Theoretical Investigation of the Key Roles in Fullerene-Formation Mechanisms: Enantiomer and Enthalpy. ACS Appl. Nano Mater. 2019, 3, 547–554. 10.1021/acsanm.9b02110
  • Zuaznabar-Gardona, J. C.; Fragoso, A. Electrochemistry of Redox Probes at Thin Films of Carbon Nano-Onions Produced by Thermal Annealing of Nanodiamonds. Electrochim. Acta 2020, 353, 136495. 10.1016/j.electacta.2020.136495
  • Manawi, Yehia, Samara, Ayman, Al-Ansari, Tareq, Atieh, Muataz, Ihsanullah  , A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method, Materials 2018, 11, 822. 10.3390/ma11050822
  • Borgohain, R.; Yang, J.; Selegue, J. P.; Kim, D. Y. Controlled Synthesis, Efficient Purification, and Electrochemical Characterization of Arc-Discharge Carbon Nano-Onions. Carbon 2014, 66, 272–284. 10.1016/j.carbon.2013.09.001
  • de Campos da Costa, J. P.; Teodoro, V.; Assis, M.; Bettini, J.; Andrés, J.; Pereira do Carmo, J. P.; Longo, E. A Scalable Electron Beam Irradiation Platform Applied for Allotropic Carbon Transformation. Carbon 2021, 174, 567–580. 10.1016/j.carbon.2020.11.054
  • Zhang, C.; Li, J.; Shi, C.; Liu, E.; Du, X.; Feng, W.; Zhao, N. The Efficient Synthesis of Carbon Nano-Onions Using Chemical Vapor Deposition on an Unsupported Ni–Fe Alloy Catalyst. Carbon 2011, 49, 1151–1158. 10.1016/j.carbon.2010.11.030
  • Pak, A. Y.; Larionov, K. B.; Kolobova, E. N.; Slyusarskiy, K. V.; Bolatova, J.; Yankovsky, S. A.; Stoyanovskii, V. O.; Vassilyeva, Y. Z.; Gubin, V. E. A Novel Approach of Waste Tires Rubber Utilization via Ambient Air Direct Current Arc Discharge Plasma, Fuel. Process. Technol. 2022, 227, 107111. 10.1016/j.fuproc.2021.107111
  • Lucherelli, M. A.; Stiegler, L.; Steiger, F.; Åhlgren, E. H.; Requena-Ramírez, J.; Castro, E.; Echegoyen, L.; Hirsch, A.; Peukert, W.; Kotakoski, J.; et al. Carbon Nano-Onions: Individualization and Enhanced Water Solubility. Carbon 2023, 218, 118760. 10.1016/j.carbon.2023.118760.
  • Zhang, W.; Fu, J.; Chang, J.; Zhang, M.; Yang, Y.; Gao, L. Fabrication and Purification of Carbon Nano Onions. Carbon 2015, 82, 610. 10.1016/j.carbon.2014.10.056
  • Zhang, W.; Deng, C.; Jia, J.; Wang, J.; Zhang, Y.; Yang, Y.; Lian, Y. Efficient Removal of Transition Phase from Metal Encapsulated Carbon Onions. Diam. Relat. Mater. 2018, 89, 282–285. 10.1016/j.diamond.2018.09.020
  • Spampinato, V.; Ceccone, G.; Giordani, S. Surface Analysis of Zinc-Porphyrin Functionalized Carbon Nano-Onions. Biointerphases 2015, 10, 019006. 10.1116/1.4907726
  • Singh, S.; Singh, D.; Singh, S. P.; Pandey, A. K. Candle Soot Derived Carbon Nanoparticles: Assessment of Physico-Chemical Properties, Cytotoxicity and Genotoxicity. Chemosphere 2019, 214, 130–135. 10.1016/j.chemosphere.2018.09.112
  • Georgakilas, V.; Guldi, D. M.; Signorini, R.; Bozio, R.; Prato, M. Organic Functionalization and Optical Properties of Carbon Onions. J. Am. Chem. Soc. 2003, 125, 14268–14269. 10.1021/ja0342805
  • Orozco-Ic, M.; Sundholm, D. Magnetic Response Properties of Carbon Nano-Onions. Phys. Chem. Chem. Phys. 2022, 24, 22487–22496. 10.1039/d2cp02718f
  • Xu, B. S. Prospects and Research Progress in Nano Onion-like Fullerenes. New Carbon Mater. 2008, 23, 289–301. 10.1016/S1872-5805(09)60001-9
  • Zheng, D.; Yang, G.; Zheng, Y.; Fan, P.; Ji, R.; Huang, J.; Zhang, W.; Yu, J. Carbon Nano-Onions as a Functional Dopant to Modify Hole Transporting Layers for Improving Stability and Performance of Planar Perovskite Solar Cells. Electrochim. Acta 2017, 247, 548–557. 10.1016/j.electacta.2017.07.061
  • Liu, X.; Ren, J.; Licht, G.; Wang, X.; Licht, S. Carbon Nano‐Onions Made Directly from CO2 by Molten Electrolysis for Greenhouse Gas Mitigation. Adv. Sustain. Syst. 2019, 3, 1900056.
  • Hou, S. M.; Tao, C. G.; Zhang, G. M.; Zhao, X. Y.; Xue, Z. Q.; Shi, Z. J.; Gu, Z. N. Ultrahigh Vacuum Scanning Probe Microscopy Studies of Carbon Onions. Physica E 2001, 9, 300–304. 10.1016/S1386-9477(00)00273-3
  • Lin, Y.; Zhu, Y.; Zhang, B.; Kim, Y. A.; Endo, M.; Su, D. S. Boron-Doped Onion-like Carbon with Enriched Substitutional Boron: The Relationship between Electronic Properties and Catalytic Performance. J. Mater. Chem. A 2015, 3, 21805–21814. 10.1039/C5TA03141A
  • Hirata, A.; Igarashi, M.; Kaito, T. Study on Solid Lubricant Properties of Carbon Onions Produced by Heat Treatment of Diamond Clusters or Particles. Tribol. Int. 2004, 37, 899–905. 10.1016/j.triboint.2004.07.006
  • Joly-Pottuz, L.; Vacher, B.; Ohmae, N.; Martin, J. M.; Epicier, T. Anti-Wear and Friction Reducing Mechanisms of Carbon Nano-Onions as Lubricant Additives. Tribol. Lett. 2008, 30, 69–80. 10.1007/s11249-008-9316-3
  • Luo, N.; Xiang, J. X.; Shen, T.; Liang, H. L.; Xin, S. One-Step Gas-Liquid Detonation Synthesis of Carbon Nano-Onions and Their Tribological Performance as Lubricant Additives. Diam. Relat. Mater. 2019, 97, 107448. 10.1016/j.diamond.2019.107448
  • Wang, W.; Qian, S.; Gong, L.; Ni, Z.; Ren, H. Effects of Carbon Nano Onions on the Tribological Performance of Food‐Grade Calcium Sulfonate Complex Grease. Lubr. Sci. 2021, 33, 460–470. 10.1002/ls.1567
  • Joly-Pottuz, L.; Bucholz, E. W.; Matsumoto, N.; Phillpot, S. R.; Sinnott, S. B.; Ohmae, N.; Martin, J. M. Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations. Tribol. Lett. 2010, 37, 75–81. 10.1007/s11249-009-9492-9
  • Camisasca, A.; Giordani, S. Carbon Nano-Onions in Biomedical Applications: Promising Theranostic Agents. Inorgan. Chim. Acta 2017, 468, 67–76. 10.1016/j.ica.2017.06.009
  • D' Amora, M.; Rodio, M.; Bartelmess, J.; Sancataldo, G.; Brescia, R.; Cella Zanacchi, F.; Diaspro, A.; Giordani, S. Biocompatibility and Biodistribution of Functionalized Carbon Nano-Onions (f-CNOs) in a Vertebrate Model. Sci. Rep. 2016, 6, 33923. 10.1038/srep33923
  • d’Amora, M.; Maffeis, V.; Brescia, R.; Barnes, D.; Scanlan, E.; Giordani, S. Carbon Nano-Onions as Non-Cytotoxic Carriers for Cellular Uptake of Glycopeptides and Proteins. Nanomaterials 2019, 9, 1069. 10.3390/nano9081069
  • Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Carbon Nano-Onions: Unique Carbon Nanostructures with Fascinating Properties and Their Potential Applications. Inorgan. Chim. Acta 2017, 468, 49–66. 10.1016/j.ica.2017.07.021
  • Chandel, M.; Kaur, K.; Sahu, B. K.; Sharma, S.; Panneerselvam, R.; Shanmugam, V. Promise of Nano-Carbon to the Next Generation Sustainable Agriculture. Carbon 2022, 188, 461–481. 10.1016/j.carbon.2021.11.060
  • Cumba, L. R.; Camisasca, A.; Giordani, S.; Forster, R. J. Electrochemical Properties of Screen-Printed Carbon Nano-Onion Electrodes. Molecules 2020, 25, 3884. 10.3390/molecules25173884
  • Panda, A.; Arumugasamy, S. K.; Lee, J.; Son, Y.; Yun, K.; Venkateswarlu, S.; Yoon, M. Chemical-Free Sustainable Carbon Nano-Onion as a Dual-Mode Sensor Platform for Noxious Volatile Organic Compounds. Appl. Surf. Sci. 2021, 537, 147872. 10.1016/j.apsusc.2020.147872
  • Gunture, K.; Garg, A. K.; Aggarwal, R.; Kaushik, J.; Prajapati, R. K.; Sonkar, S. K. Non-Aqueous Onion like Nano-Carbons from Waste Diesel-Soot Used as FRET-Based Sensor for Sensing of Nitro-Phenols. Environ. Res. 2022, 212, 113308. 10.1016/j.envres.2022.113308
  • Pallavolu, M. R.; Gaddam, N.; Banerjee, A. N.; Nallapureddy, R. R.; Joo, S. W. Superior Energy‐Power Performance of N‐Doped Carbon Nano‐Onions‐Based Asymmetric and Symmetric Supercapacitor Devices. Intl. J. Energy Res. 2022, 46, 1234–1249. 10.1002/er.7242
  • Muduli, S.; Pati, S. K.; Martha, S. K. Bio‐Waste Derived Carbon Nano‐Onions as an Efficient Electrode Material for Symmetric and Lead‐Carbon Hybrid Ultracapacitors. Intl. J. Energy Res. 2022, 46, 14074–14087. 10.1002/er.8123
  • Mamidi, N.; Delgadillo, R. M. V.; González-Ortiz, A. Engineering of Carbon Nano-Onion Bioconjugates for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111698. 10.1016/j.msec.2020.111698
  • Ahlawat, J.; Masoudi Asil, S.; Barroso, G. G.; Nurunnabi, M.; Narayan, M. Application of Carbon Nano Onions in the Biomedical Field: Recent Advances and Challenges. Biomater. Sci. 2021, 9, 626–644. 10.1039/d0bm01476a
  • Han, T. H.; Mohapatra, D.; Mahato, N.; Parida, S.; Shim, J. H.; Nguyen, A. T. N.; Nguyen, V. Q.; Cho, M. H.; Shim, J.-J. Effect of Nitrogen Doping on the Catalytic Activity of Carbon Nano-Onions for the Oxygen Reduction Reaction in Microbial Fuel Cells. J. Ind. Eng. Chem. 2020, 81, 269–277. 10.1016/j.jiec.2019.09.014
  • Mizuno, H.; Nagano, K.; Tomita, S.; Yanagi, H.; Hiromitsu, I. Organic Photovoltaic Cells with Onion-like Carbon Thin Films as Hole Collection Layers. Thin Solid Films 2018, 654, 69–76. 10.1016/j.tsf.2018.03.074
  • Poddar, A. K.; Patel, S. S.; Patel, H. D. Synthesis, Characterization and Applications of Conductive Polymers: A Brief Review. Polym. Adv. Techs. 2021, 32, 4616–4641. 10.1002/pat.5483
  • Shanmugam, M.; Augustin, A.; Mohan, S.; Honnappa, B.; Chuaicham, C.; Rajendran, S.; Hoang, T. K. A.; Sasaki, K.; Sekar, K. Conducting Polymeric Nanocomposites: A Review in Solar Fuel Applications. Fuel 2022, 325, 124899. 10.1016/j.fuel.2022.124899
  • Sharma, S.; Sudhakara, P.; Omran, A. A. B.; Singh, J.; Ilyas, R. A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers. (Basel) 2021, 13, 2898. 10.3390/polym13172898
  • Yao, X.; Kou, X.; Qiu, J. Multi-Walled Carbon Nanotubes/Polyaniline Composites with Negative Permittivity and Negative Permeability. Carbon 2016, 107, 261–267. 10.1016/j.carbon.2016.05.055
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Mater. 2022, 61, 1871–1907.
  • Kausar, A. Epitome of Fullerene in Conducting Polymeric Nanocomposites: Fundamentals and beyond. Polym. Plast. Technol. Mater. 2023, 62, 618–631. 10.1080/25740881.2022.2121223
  • Kausar, A. Reinforced Polyaniline Nanocomposite Nanofibers: Cutting-Edge Potential. Polym. Plast. Technol. Mater. 2022, 61, 1088–1101. 10.1080/25740881.2022.2033772
  • Kovalenko, I.; Bucknall, D. G.; Yushin, G. Detonation Nanodiamond and Onion‐like‐Carbon‐Embedded Polyaniline for Supercapacitors. Adv. Funct. Mater. 2010, 20, 3979–3986. 10.1002/adfm.201000906
  • Łapiński, A.; Dubis, A. T.; Plonska‐Brzezinska, M. E.; Mazurczyk, J.; Breczko, J.; Echegoyen, L. Vibrational Spectroscopic Study of Carbon Nano‐Onions Coated with Polyaniline. Phys. Status Solidi C 2012, 9, 1210–1212. 10.1002/pssc.201100782
  • Papathanassiou, A. N.; Plonska-Brzezinska, M. E.; Mykhailiv, O.; Echegoyen, L.; Sakellis, I. Combined High Permittivity and High Electrical Conductivity of Carbon Nano-Onion/Polyaniline Composites. Synth. Met. 2015, 209, 583–587. 10.1016/j.synthmet.2015.08.020
  • Papathanassiou, A. N.; Mykhailiv, O.; Echegoyen, L.; Sakellis, I.; Plonska-Brzezinska, M. E. Electric Properties of Carbon Nano-Onion/Polyaniline Composites: A Combined Electric Modulus and ac Conductivity Study. J. Phys. D: Appl. Phys. 2016, 49, 285305. 10.1088/0022-3727/49/28/285305
  • Shokouhmandi, Z.; Shokrollahi, A. Development of Solid Phase Extraction with Carbon Nanoonion-Polyaniline Composite Sorbent Followed by Microextraction Method for the Extraction of Pesticides Residues before Gas Chromatography. Mater. Res. Exp. 2022, 9, 065008. 10.1088/2053-1591/ac74a5
  • Wang, T.; Yan, L.; He, Y.; Alhassan, S. I.; Gang, H.; Wu, B.; Jin, L.; Wang, H. Application of Polypyrrole-Based Adsorbents in the Removal of Fluoride: A Review. RSC Adv. 2022, 12, 3505–3517. 10.1039/D1RA08496H
  • Yuan, X.; Remita, H. Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications, Top. Curr. Chem. 2022, 380, 32.
  • Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska‐Brzezinska, M. E. Chemical versus Electrochemical Synthesis of Carbon Nano‐Onion/Polypyrrole Composites for Supercapacitor Electrodes. Chemistry 2015, 21, 5783–5793. 10.1002/chem.201406126
  • Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-Based Hybrid Nanostructures Grown on Textile for Wearable Supercapacitors. Nano Res. 2019, 12, 1129–1137. 10.1007/s12274-019-2360-5
  • Al-Refai, H. H.; Ganash, A. A.; Hussein, M. A. Polythiophene and Its Derivatives–Based Nanocomposites in Electrochemical Sensing: A Mini Review. Mater. Today Commun. 2021, 26, 101935. 10.1016/j.mtcomm.2020.101935
  • Plonska‐Brzezinska, M. E.; Lewandowski, M.; Błaszyk, M.; Molina‐Ontoria, A.; Luciński, T.; Echegoyen, L. Preparation and Characterization of Carbon Nano‐Onion/PEDOT: PSS Composites. Chemphyschem 2012, 13, 4134–4141. 10.1002/cphc.201200789
  • Mi, H. Y.; Jing, X.; Peng, J.; Salick, M. R.; Peng, X. F.; Turng, L. S. Poly (ε-Caprolactone)(PCL)/Cellulose Nano-Crystal (CNC) Nanocomposites and Foams. Cellulose 2014, 21, 2727–2741. 10.1007/s10570-014-0327-y
  • Zhou, L.; Gao, C.; Zhu, D.; Xu, W.; Chen, F. F.; Palkar, A.; Echegoyen, L.; Kong, E. S. W. Facile Functionalization of Multilayer Fullerenes (Carbon Nano‐Onions) by Nitrene Chemistry and “Grafting from” Strategy. Chemistry 2009, 15, 1389–1396. 10.1002/chem.200801642
  • Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. 10.1021/ma3001719
  • Mamidi, N.; Zuníga, A. E.; Villela-Castrejón, J. Engineering and Evaluation of Forcespun Functionalized Carbon Nano-Onions Reinforced Poly (ε-Caprolactone) Composite Nanofibers for pH-Responsive Drug Release. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110928. 10.1016/j.msec.2020.110928
  • Dautzenberg, H.; Görnitz, E.; Jaeger, W. Synthesis and Characterization of Poly (Diallyldimethylammonium Chloride) in a Broad Range of Molecular Weight. Macromol. Chem. Phys. 1998, 199, 1561–1571. 10.1002/macp.1998.021990814
  • Pigareva, V. A.; Senchikhin, IN.; Bolshakova, A. V.; Sybachin, A. V. Modification of Polydiallyldimethylammonium Chloride with Sodium Polystyrenesulfonate Dramatically Changes the Resistance of Polymer-Based Coatings towards Wash-off from Both Hydrophilic and Hydrophobic Surfaces. Polymers. (Basel) 2022, 14, 1247. 10.3390/polym14061247
  • Breczko, J.; Winkler, K.; Plonska-Brzezinska, M. E.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical Properties of Composites Containing Small Carbon Nano-Onions and Solid Polyelectrolytes. J. Mater. Chem. 2010, 20, 7761–7768. 10.1039/c0jm01213k
  • Breczko, J.; Plonska-Brzezinska, M. E.; Echegoyen, L. Electrochemical Oxidation and Determination of Dopamine in the Presence of Uric and Ascorbic Acids Using a Carbon Nano-Onion and Poly (Diallyldimethylammonium Chloride) Composite. Electrochim. Acta 2012, 72, 61–67. 10.1016/j.electacta.2012.03.177
  • Ahamad Said, M. N.; Hasbullah, N. A.; Rosdi, M. R. H.; Musa, M. S.; Rusli, A.; Ariffin, A.; Shafiq, M. D. Polymerization and Applications of Poly(Methyl Methacrylate)-Graphene Oxide Nanocomposites: A Review. ACS Omega. 2022, 7, 47490–47503. 10.1021/acsomega.2c04483
  • Macutkevic, J.; Adomavicius, R.; Krotkus, A.; Seliuta, D.; Valusis, G.; Maksimenko, S. A.; Kuzhir, P. P.; Batrakov, K.; Kuznetsov, V. L.; Moseenkov, S. I.; et al. Terahertz Probing of Onion-like carbon-PMMA Composite Films. Diam. Relat. Mater. 2008, 17, 1608–1612. 10.1016/j.diamond.2007.11.018
  • Macutkevic, J.; Kuzhir, P. P.; Seliuta, D.; Valusis, G.; Banys, J.; Paddubskaya, A.; Bychanok, D. S.; Slepyan, G.; Maksimenko, S. A.; Kuznetsov, V. L.; et al. Dielectric Properties of a Novel High Absorbing Onion-like-Carbon Based Polymer Composite. Diam. Relat. Mater. 2010, 19, 91–99. 10.1016/j.diamond.2009.11.011
  • Macutkevic, J.; Kuzhir, P. P.; Paddubskaya, A.; Banys, J.; Maksimenko, S. A.; Moseenkov, S. I.; Kuznetsov, V. L.; Shenderova, O.; Lambin, P. Onset of Electrical Percolation in Onion-like Carbon/Poly (Methyl Methacrylate) Composites, Nanosci. Nanosci. Nanotechnol. Lett. 2013, 5, 1201–1206. 10.1166/nnl.2013.1699
  • Kuzhir, P. P.; Bychanok, D. S.; Maksimenko, S. A.; Gusinski, A. V.; Ruhavets, O. V.; Kuznetsov, V. L.; Moseenkov, S. I.; Jones, C.; Shenderova, O.; Lambin, P. Onion-like Carbon Based Polymer Composite Films in Microwaves. Solid State Sci. 2009, 11, 1762–1767. 10.1016/j.solidstatesciences.2008.12.003
  • Grimaldi, C.; Kecsenovity, E.; Majidian, M.; Kuznetsov, V. L.; Magrez, A.; Forró, L. Electrical Transport in Onion-like Carbon—PMMA Nanocomposites. Appl. Phys. Lett. 2019, 114, 103102.
  • Kausar, A. Polyimide, Polybenzimidazole-in Situ-Polyaniline Nanoparticle and Carbon Nano-Onion-Based Nanocomposite Designed for Corrosion Protection. Int. J. Polym. Anal. Charact. 2017, 22, 557–567. 10.1080/1023666X.2017.1343175
  • Kausar, A. Carbon Nano-Onion-Filled Polyacrylonitrile/Polyethylenimine Foams: Structure, Characteristics, and Ion Detoxification Studies. J. Chin. Adv. Mater. Soc. 2018, 6, 352–368. 10.1080/22243682.2018.1473051
  • Kausar, A. Polyurethane/Poly (2-Chloro-5-Methoxyaniline) and Carbon Nano-Onion-Based Nanocomposite: Physical Properties and anti-Corrosion Behavior, Mater. Res. Innov. 2019, 23, 345–353. 10.1080/14328917.2018.1480274
  • Kausar, A. Nanocomposite of Polyacrylonitrile/Modified Polyethersulfone and Carbon Nano-Onion: Effect of Dispersion on Physical Features, Interface and Fracture Behavior. J. Dispers. Sci. Technol. 2019, 40, 1264–1271. 10.1080/01932691.2018.1505528
  • Tretjak, M.; Palaimiene, E.; Pralgauskaitė, S.; Matukas, J.; Banys, J.; Macutkevič, J.; Fierro, V.; Schaefer, S.; Celzard, A. Noise and Electrical Characteristics of Composites Filled with Onion-like Carbon Nanoparticles. Polymers. (Basel) 2021, 13, 997. 10.3390/polym13070997
  • Wei, X.; Yin, G.; Zhou, X.; Li, L.; Li, M.; Qin, Y.; Hou, X.; Song, G.; Ali, Z.; Dai, W.; et al. Carbon Nano-Onions as a Nanofiller for Enhancing Thermal Conductivity of Epoxy Composites. Appl. Nanosci. 2023, 13, 483–491. 10.1007/s13204-021-01799-3
  • Zhang, J.; Chen, S.; Li, J.; Han, W.; Sun, X.; Li, N.; Hu, Z.; Wang, L. Sulfonated Carbon Nano-Onion Incorporated Polyethersulfone Nanocomposite Ultrafiltration Membranes with Improved Permeability and Antifouling Property. Sep. Purif. Technol. 2021, 256, 117825. 10.1016/j.seppur.2020.117825
  • Siemiaszko, G.; Hryniewicka, A.; Breczko, J.; Delgado, O. F.; Markiewicz, K. H.; Echegoyen, L.; Plonska-Brzezinska, M. E. Polymeric Network Hierarchically Organized on Carbon Nano-Onions: Block Polymerization as a Tool for the Controlled Formation of Specific Pore Diameters. ACS Appl. Polym. Mater. 2022, 4, 2442–2458. 10.1021/acsapm.1c01788
  • Sohouli, E.; Shahdost-Fard, F.; Rahimi-Nasrabadi, M.; Plonska-Brzezinska, M. E.; Ahmadi, F. Introducing a Novel Nanocomposite Consisting of Nitrogen-Doped Carbon Nano-Onions and Gold Nanoparticles for the Electrochemical Sensor to Measure Acetaminophen. J. Electroanal. Chem. 2020, 871, 114309. 10.1016/j.jelechem.2020.114309
  • Nadafan, M.; Ghalkhani, M.; Sohouli, E. The Effect of Nitrogen-Doped Carbon Nano-Onions on the Third Order Nonlinear Optical Responses of CoWO4-MnO2 Nanocomposites. Optik 2021, 248, 168209. 10.1016/j.ijleo.2021.168209
  • Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209. 10.1063/1.1743957
  • Alder, B. J.; Wainwright, T. E. Studies in Molecular Dynamics. I. general Method. J. Chem. Phys. 1959, 31, 459–466. 10.1063/1.1730376
  • Aghajamali, A.; Karton, A. Comparative Study of Carbon Force Fields for the Simulation of Carbon Onions. Aust. J. Chem. 2021, 74, 709–714. 10.1071/CH21172
  • Grubmüller, H.; Heller, H.; Windemuth, A.; Schulten, K. Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-Range Interactions. Mol. Simul. 1991, 6, 121–142. 10.1080/08927029108022142
  • Rafii-Tabar, H. Computational Physics of Carbon Nanotubes; Cambridge University Press: Cambridge, 2008.
  • Fugaciu, F.; Hermann, H.; Seifert, G. Concentric-Shell Fullerenes and Diamond Particles: A Molecular-Dynamics Study. Phys. Rev. B 1999, 60, 10711–10714. 10.1103/PhysRevB.60.10711
  • Los, J. H.; Pineau, N.; Chevrot, G.; Vignoles, G.; Leyssale, J. M. Formation of Multiwall Fullerenes from Nanodiamonds Studied by Atomistic Simulations. Phys. Rev. B 2009, 80, 155420. 10.1103/PhysRevB.80.155420
  • Erkoç, S. Stability of Carbon Nanoonion C20@C60@C240: Molecular Dynamics Simulations. Nano Lett. 2002, 2, 215–217. 10.1021/nl0100825
  • Adhikari, B.; Muthuraman, B.; Mathioudakis, C.; Fyta, M. Promoting the Assembly of Carbon Onions: An Atomistic Approach. Phys. Status Solidi (a) 2014, 211, 277–287. 10.1002/pssa.201330082
  • Lu, J.; Guan, J.; Chen, H.; Li, M.; Hua, Z.; Niu, F.; Zhang, Y. Molecular Dynamical Investigation of Lithium-Ion Adsorption on Multilayer Fullerene. Coatings 2022, 12, 1824. 10.3390/coatings12121824
  • Li, S.; Feng, G.; Fulvio, P. F.; Hillesheim, P. C.; Liao, C.; Dai, S.; Cummings, P. T. Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. J. Phys. Chem. Lett. 2012, 3, 2465–2469. 10.1021/jz3009387
  • Ahangari, M. G.; Fereidoon, A.; Ganji, M. D.; Sharifi, N. Density Functional Theory Based Molecular Dynamics Simulation Study on the Bulk Modulus of Multi-Shell Fullerenes. Physica B 2014, 423, 1–5. 10.1016/j.physb.2013.04.047
  • Zhao, H.; Shi, Q.; Han, Z.; Gong, H.; Zhang, Z.; Wu, S.; Wu, J. Anomalous Thermal Stability in Supergiant Onion-like Carbon Fullerenes. Carbon 2018, 138, 243–256. 10.1016/j.carbon.2018.06.012
  • Izadi, R.; Ghavanloo, E.; Nayebi, A. Elastic Properties of Polymer Composites Reinforced with C60 Fullerene and Carbon Onion: Molecular Dynamics Simulation. Physica B 2019, 574, 311636. 10.1016/j.physb.2019.08.013
  • Júnior, M. P.; da Cunha, W. F.; de Sousa Junior, R. T.; Nze, G. A.; Galvão, D. S.; Júnior, L. R. Dynamics and Structural Transformations of Carbon Onion-like Structures under High-Velocity Impacts. Carbon 2022, 189, 422–429. 10.1016/j.carbon.2021.12.064
  • Rafii-Tabar, H.; Ghavanloo, E.; Fazelzadeh, S. A. Nonlocal Continuum-Based Modeling of Mechanical Characteristics of Nanoscopic Structures. Phys. Rep. 2016, 638, 1–97. 10.1016/j.physrep.2016.05.003
  • Ahmad, S. Continuum Elastic Model of Fullerenes and the Sphericity of the Carbon Onion Shells. J. Chem. Phys. 2002, 116, 3396–3400. 10.1063/1.1446428
  • Baowan, D.; Thamwattana, N.; Hill, J. M. Continuum Modelling of Spherical and Spheroidal Carbon Onions. Eur. Phys. J. D 2007, 44, 117–123. 10.1140/epjd/e2007-00159-8
  • Todt, M.; Rammerstorfer, F. G.; Fischer, F. D.; Mayrhofer, P. H.; Holec, D.; Hartmann, M. A. Continuum Modeling of Van Der Waals Interactions between Carbon Onion Layers. Carbon 2011, 49, 1620–1627. 10.1016/j.carbon.2010.12.045
  • Ghavanloo, E.; Fazelzadeh, S. A. Analytical Formula to Estimate the Van Der Waals Interlayer Interaction Coefficients for Nested Spherical Fullerenes. Physica B 2015, 478, 63–67. 10.1016/j.physb.2015.08.060
  • Thamwattana, N.; Hill, J. M. Oscillation of Nested Fullerenes (Carbon Onions) in Carbon Nanotubes. J. Nanopart. Res. 2008, 10, 665–677. 10.1007/s11051-007-9300-0
  • Ghavanloo, E.; Fazelzadeh, S. A. Continuum Modeling of Breathing-like Modes of Spherical Carbon Onions. Phys. Lett. A 2015, 379, 1600–1606. 10.1016/j.physleta.2015.04.006
  • Sadeghi, F.; Ansari, R. Van Der Waals Interactions and Oscillatory Behaviour of Carbon Onions Interacting with a Fully Constrained Graphene Sheet. Bull. Mater. Sci. 2021, 44, 44. 10.1007/s12034-020-02334-w
  • Rekhviashvili, S. S.; Bukhurova, M. M. Stability of a Carbon Nano-Onion in Contact with a Graphite Substrate. Tech. Phys. Lett. 2019, 45, 591–593. 10.1134/S1063785019060294
  • Todt, M.; Bitsche, R. D.; Hartmann, M. A.; Fischer, F. D.; Rammerstorfer, F. G. Growth Limit of Carbon Onions–a Continuum Mechanical Study. Int. J. Solids Struct. 2014, 51, 706–715. 10.1016/j.ijsolstr.2013.10.038
  • Soni, S. K.; Thomas, B.; Kar, V. R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546. 10.1016/j.mtcomm.2020.101546
  • Mamidi, N.; Gamero, M. R. M.; Villela-Castrejón, J.; Zúníga, A. E. Development of Ultra-High Molecular Weight Polyethylene-Functionalized Carbon Nano-Onions Composites for Biomedical Applications. Diam. Relat. Mater. 2019, 97, 107435. 10.1016/j.diamond.2019.05.020
  • Mamidi, N.; González-Ortiz, A.; Romo, I. L.; Barrera, E. V. Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics 2019, 11, 621. 10.3390/pharmaceutics11120621
  • Mamidi, N.; Villela-Castrejón, J.; González-Ortiz, A. Rational Design and Engineering of Carbon Nano-Onions Reinforced Natural Protein Nanocomposite Hydrogels for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 103696. 10.1016/j.jmbbm.2020.103696
  • Mamidi, N.; Gamero, M. R. M.; Delgadillo, R. M. V.; Villela-Castrejón, J.; Zúníga, A. E. Engineering of Functionalized Carbon Nano-Onions Reinforced Nanocomposites: Fabrication, Biocompatibility, and Mechanical Properties. J. Mater. Res. 2020, 35, 922–930. 10.1557/jmr.2020.23
  • Mamidi, N.; Delgadillo, R. M. V.; Gonzáles-Ortiz, A.; Barrera, E. V. Carbon Nano-Onions Reinforced Multilayered Thin Film System for Stimuli-Responsive Drug Release. Pharmaceutics 2020, 12, 1208. 10.3390/pharmaceutics12121208
  • Mamidi, N.; Delgadillo, R. M. V.; Barrera, E. V. Covalently Functionalized Carbon Nano-Onions Integrated Gelatin Methacryloyl Nanocomposite Hydrogel Containing γ-Cyclodextrin as Drug Carrier for High-Performance pH-Triggered Drug Release. Pharmaceuticals 2021, 14, 291. 10.3390/ph14040291
  • Wen, T.; Fan, K.; Zhang, F. High Strength and High Ductility in Nickel Matrix Nanocomposites Reinforced by Carbon Nanotubes and Onion-like-Carbon Hybrid Reinforcements. J. Alloys Compd. 2020, 814, 152303. 10.1016/j.jallcom.2019.152303
  • Fan, K.; Zhang, F.; Shang, C.; Saba, F.; Yu, J. Mechanical Properties and Strengthening Mechanisms of Titanium Matrix Nanocomposites Reinforced with Onion-like Carbons. Compos. Part A 2020, 132, 105834. 10.1016/j.compositesa.2020.105834
  • Liu, L.; Lu, Y.; Pu, Y.; Li, N.; Hu, Z.; Chen, S. Highly Sulfonated Carbon Nano-Onions as an Excellent Nanofiller for the Fabrication of Composite Proton Exchange Membranes with Enhanced Water Retention and Durability. J. Membr. Sci. 2021, 640, 119823. 10.1016/j.memsci.2021.119823
  • Kumar, J.; Kesarwani, S.; Kharwar, P. K.; Jackson, M. J.; Verma, R. K. Mechanical Performance and Drilling Machinability Evaluation of Carbon Nano Onions (CNOs) Reinforced Polymer Nanocomposites. Int. J. Interact. Des. Manuf. 2023, 17, 169–186. 10.1007/s12008-022-01160-0
  • Kötz, R.; Carlen, M. J. E. A. Principles and Applications of Electrochemical Capacitors. Electrochim. Acta 2000, 45, 2483–2498. 10.1016/S0013-4686(00)00354-6
  • Lee, J. S. M.; Briggs, M. E.; Hu, C. C.; Cooper, A. I. Controlling Electric Double-Layer Capacitance and Pseudocapacitance in Heteroatom-Doped Carbons Derived from Hypercrosslinked Microporous Polymers. Nano Energy 2018, 46, 277–289. 10.1016/j.nanoen.2018.01.042
  • Giordani, S. Carbon Nano Onions for Biomedical Applications, in. Meet. Abstr. 2020, MA2020-01, 653–653. The Electrochemical SocietyInc 10.1149/MA2020-016653mtgabs
  • Plonska-Brzezinska, M. E.; Echegoyen, L. Carbon Nano-Onions for Supercapacitor Electrodes: Recent Developments and Applications. J. Mater. Chem. A 2013, 1, 13703–13714. 10.1039/c3ta12628e
  • Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-Based Nanostructured Materials and Their Composites as Supercapacitor Electrodes. J. Mater. Chem. 2012, 22, 767–784. 10.1039/C1JM14468E
  • Kaur, S.; Krishnan, A.; Chakraborty, S. Recent Advances and Challenges of Carbon Nano Onions (CNOs) for Application in Supercapacitor Devices (SCDs). J. Energy Storage 2023, 71, 107928. 10.1016/j.est.2023.107928
  • Plonska-Brzezinska, M. E.; Brus, D. M.; Molina-Ontoria, A.; Echegoyen, L. Synthesis of Carbon Nano-Onion and Nickel Hydroxide/Oxide Composites as Supercapacitor Electrodes. RSC Adv. 2013, 3, 25891–25901. 10.1039/c3ra44249g
  • Bobrowska, D. M.; Brzezinski, K.; Echegoyen, L.; Plonska-Brzezinska, M. E. A New Perspective on Carbon Nano-Onion/Nickel Hydroxide/Oxide Composites: Physicochemical Properties and Application in Hybrid Electrochemical Systems. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 193–203. 10.1080/1536383X.2016.1267151
  • Olejnik, P.; Gniadek, M.; Echegoyen, L.; Plonska-Brzezinska, M. E. Nanoforest: Polyaniline Nanotubes Modified with Carbon Nano-Onions as a Nanocomposite Material for Easy-to-Miniaturize High-Performance Solid-State Supercapacitors. Polymers. (Basel) 2018, 10, 1408. 10.3390/polym10121408
  • Zhang, W.; Peng, L.; Wang, J.; Guo, C.; Chan, S. H.; Zhang, L. High Electrochemical Performance of Bi2WO6/Carbon Nano-Onion Composites as Electrode Materials for Pseudocapacitors. Front. Chem. 2020, 8, 577. 10.3389/fchem.2020.00577
  • Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Manganese Dioxide/Cobalt Tungstate/Nitrogen-Doped Carbon Nano-Onions Nanocomposite as New Supercapacitor Electrode. Ceram. Int. 2022, 48, 295–303. 10.1016/j.ceramint.2021.09.104
  • Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Preparation of a Supercapacitor Electrode Based on Carbon Nano-Onions/Manganese Dioxide/Iron Oxide Nanocomposites. J. Energy Storage 2022, 52, 104987. 10.1016/j.est.2022.104987
  • Pallavolu, M. R.; Gaddam, N.; Banerjee, A. N.; Nallapureddy, R. R.; Kumar, Y. A.; Joo, S. W. Facile Construction and Controllable Design of CoTiO3@ Co3O4/NCNO Hybrid Heterojunction Nanocomposite Electrode for High-Performance Supercapacitors. Electrochim. Acta 2022, 407, 139868. 10.1016/j.electacta.2022.139868
  • Kausar, A. Nanocomposite in Sensor Application. Am. J. Appl. Phys. 2019, 3, 1–8.
  • Bobrowska, M. D.; Brzezinski, K.; Plonska-Brzezinska, M. E. PEGylated Carbon Nano-Onions Composite as a Carrier of Polyphenolic Compounds: A Promising System for Medical Applications and Biological Sensors. Colloid Interface Sci. Commun. 2017, 21, 6–9. 10.1016/j.colcom.2017.10.004
  • Zuaznabar-Gardona, J. C.; Fragoso, A. A Wide-Range Solid State Potentiometric pH Sensor Based on Poly-Dopamine Coated Carbon Nano-Onion Electrodes. Sens. Actuat. B 2018, 273, 664–671. 10.1016/j.snb.2018.06.103
  • Zuaznabar-Gardona, J. C.; Fragoso, A. Development of Highly Sensitive IgA Immunosensors Based on co-Electropolymerized L-DOPA/Dopamine Carbon Nano-Onion Modified Electrodes. Biosens. Bioelectron. 2019, 141, 111357. 10.1016/j.bios.2019.111357
  • Babar, D. G.; Gupta, N. R.; Nandi, G.; Sarkar, S. Carbon Nano Onions–Polystyrene Composite for Sensing S-Containing Amino Acids. J. Compos. Sci. 2020, 4, 90. 10.3390/jcs4030090
  • Sohouli, E.; Ghalkhani, M.; Zargar, T.; Joseph, Y.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Plonska-Brzezinska, M. E.; Ehrlich, H. A New Electrochemical Aptasensor Based on Gold/Nitrogen-Doped Carbon Nano-Onions for the Detection of Staphylococcus aureus. Electrochim. Acta 2022, 403, 139633. 10.1016/j.electacta.2021.139633
  • Sok, V.; Fragoso, A. Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2, 4-D and 2, 4, 5-T. Appl. Sci. 2021, 11, 6889. 10.3390/app11156889
  • Grande Tovar, C. D.; Castro, J. I.; Valencia, C. H.; Navia Porras, D. P.; Mina Hernandez, J. H.; Valencia, M. E.; Velásquez, J. D.; Chaur, M. N. Preparation of Chitosan/Poly (Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules 2019, 9, 684. 10.3390/biom9110684
  • Castro, J. I.; Chaur, M. N.; Valencia, C. H.; Valencia, M. E.; Mina Hernandez, J. H.; Grande Tovar, C. D. Biocompatibility Study of Electrospun Nanocomposite Membranes Based on Chitosan/Polyvinyl Alcohol/Oxidized Carbon Nano-Nnions. Molecules 2021, 26, 4753. 10.3390/molecules26164753
  • Marin, D.; Bartkowski, M.; Kralj, S.; Rosetti, B.; D’Andrea, P.; Adorinni, S.; Marchesan, S.; Giordani, S. Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications. Nanomaterials 2022, 13, 172. 10.3390/nano13010172
  • Shenderova, O.; Jones, C.; Borjanovic, V.; Hens, S.; Cunningham, G.; Moseenkov, S.; Kuznetsov, V.; McGuire, G. Detonation Nanodiamond and Onion‐like Carbon: Applications in Composites. Phys. Status Solidi (a)2008, 205, 2245–2251. 10.1002/pssa.200879706
  • Kuzhir, P. P.; Paddubskaya, A. G.; Maksimenko, S. A.; Kuznetsov, V. L.; Moseenkov, S.; Romanenko, A. I.; Shenderova, O. A.; Macutkevic, J.; Valušis, G.; Lambin, P. Carbon Onion Composites for EMC Applications. IEEE Trans. Electromagn. Compat. 2012, 54, 6–16. 10.1109/TEMC.2011.2173348
  • Zhang, W.; Wang, J.; Yang, Y.; Liang, Y.; Gao, Z. Novel Magnetically Retrievable Bi2WO6/Magnetic Carbon Nano-Onions Composite with Enhanced Photoactivity under Visible Light. J. Colloid Interface Sci. 2018, 531, 502–512. 10.1016/j.jcis.2018.07.076
  • Lei, T.; Li, S. J.; Jiang, F.; Ren, Z. X.; Wang, L. L.; Yang, X. J.; Tang, L. H.; Wang, S. X. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent. Nanoscale Res. Lett 2019, 14, 352.
  • Hassan, A. F. Synthesis of Carbon Nano-Onion Embedded Metal–Organic Frameworks as an Efficient Adsorbent for Cadmium Ions: Kinetic and Thermodynamic Studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 24099–24111. 10.1007/s11356-019-05581-5
  • Meng, Y.; Wang, G.; Xiao, M.; Duan, C.; Wang, C.; Zhu, F.; Zhang, Y. Ionic Liquid-Derived Co3O4/Carbon Nano-Onions Composite and Its Enhanced Performance as Anode for Lithium-Ion Batteries. J. Mater. Sci. 2017, 52, 13192–13202. 10.1007/s10853-017-1414-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.