282
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Utilizing Clostridium autoethanogenum for dietary protein in aquafeeds: Current progress in research and future perspectives

References

  • Abrini, J., H. Naveau, and E. J. Nyns. 1994. Clostridium autoethanogenum, sp. nov. an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology 161 (4):345–51. doi:10.1007/BF00303591.
  • Cai, Y. W., H. F. Huang, W. X. Yao, H. Yang, M. Xue, X. Q. Li, and X. J. Leng. 2022. Effects of fish meal replacement by three protein sources on physical pellet quality and growth performance of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Reports 25:101210. doi:10.1016/j.aqrep.2022.101210.
  • Chen, Y., G. Sagada, B. Y. Xu, W. Chao, F. Q. Zou, W. K. Ng, Y. X. Sun, L. Wang, Z. W. Zhong, and Q. J. Shao. 2020. Partial replacement of fishmeal with Clostridium autoethanogenum single-cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii). Aquaculture Research 51 (3):1000–11. doi:10.1111/are.14446.
  • Chen, J., H. M. Wang, H. Yuan, N. J. Hu, F. Q. Zou, C. Y. Li, L. L. Shi, B. P. Tan, and S. Zhang. 2022. Effects of dietary Clostridium autoethanogenum protein on the growth, disease resistance, intestinal digestion, immunity and microbiota structure of Litopenaeus vannamei reared at different water salinities. Frontiers in Immunology 13. doi:10.3389/fimmu.2022.1034994.
  • Cui, X. S., Q. Ma, M. Duan, H. G. Xu, M. Q. Liang, and Y. L. Wei. 2022. Effects of fishmeal replacement by Clostridium autoethanogenum protein on the growth, digestibility, serum free amino acid and gene expression related to protein metabolism of obscure pufferfish (Takifugu obscurus). Animal Feed Science and Technology 292:115445. doi:10.1016/j.anifeedsci.2022.115445.
  • Dai, J., T. Chen, X. Guo, Z. Dai, Z. He, and Y. Hu. 2023. Evaluation of fish meal replacement by Clostridium autoethanogenum protein in diets for juvenile red swamp crayfish (Procambarus clarkii). Aquaculture 570:739379. doi:10.1016/j.aquaculture.2023.739379.
  • Drake, H. L., A. S. Gossner, and S. L. Daniel. 2008. Old acetogens, new light. Annals of the New York Academy of Sciences 1125 (1):100–28. doi:10.1196/annals.1419.016.
  • El-Ouny, Y. M., S. Maulu, M. A. A. Zaki, A. A. Helaly, A. A. M. Nour, M. F. ElBasuini, E. M. H. Labib, R. H. Khalil, A. H. Gouda, A. A. A. Hessein, et al. 2023. Effect of fishmeal replacement with dried red wigglers (Eisenia fetida) worm meal on growth and feed utilization, production efficiency, and serum biochemistry in Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture Reports 29:101518. doi:10.1016/j.aqrep.2023.101518.
  • Fan, Z., C. H. Li, D. Wu, J. N. Li, L. S. Wang, D. C. Cao, L. H. Miao, and S. Q. Xie. 2022. Evaluation of four novel protein sources as alternatives to soybean meal for two specifications of cage-farmed grass carp (Ctenopharyngodon idellus) deeds: Effect on growth performance, flesh quality, and expressions of muscle-related genes. Frontiers in Marine Science. 9. doi:10.3389/fmars.2022.935651.
  • Glencross, B., D. M. Fracalossi, K. Hua, M. Izquierdo, K. S. Ma, M. Overland, D. Robb, R. Roubach, J. Schrama, B. Small, et al. 2023. Harvesting the benefits of nutritional research to address global challenges in the 21st century. Journal of the World Aquaculture Society 54 (2):343–63. doi:10.1111/jwas.12948.
  • Glencross, B., X. Ling, D. Gatlin, S. Kaushik, M. Øverland, R. Newton, and L. M. P. Valente. 2024. A SWOT analysis of the use of Marine, grain, terrestrial-animal and novel protein ingredients in aquaculture feeds. Reviews in Fisheries Science & Aquaculture 1–39. doi:10.1080/23308249.2024.2315049.
  • Hall, H. N., H. V. Masey O’Neill, D. Scholey, E. Burton, M. Dickinson, and E. C. Fitches. 2018. Amino acid digestibility of larval meal (Musca domestica) for broiler chickens. Poultry Science 97:1290–97.
  • Hardy, R. W. 2010. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research 41 (5):770–76. doi:10.1111/j.1365-2109.2009.02349.x.
  • Hasimuna, O. J., S. Maulu, C. Monde, and M. Mweemba. 2019. Cage aquaculture production in Zambia: Assessment of opportunities and challenges on Lake Kariba, Siavonga district. The Egyptian Journal of Aquatic Research 45 (3):281–85. doi:10.1016/j.ejar.2019.06.007.
  • Heffernan, J. K., C. Y. Lai, R. A. Gonzalez-Garcia, L. K. Nielsen, J. H. Guo, and E. Marcellin. 2023. Biogas upgrading using Clostridium autoethanogenum for value-added products. Chemical Engineering Journal 452:138950. doi:10.1016/j.cej.2022.138950.
  • Humphreys, C. M., and N. P. Minton. 2018. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Current Opinion in Biotechnology 50:174–81. doi:10.1016/j.copbio.2017.12.023.
  • Jiang, X. R., W. X. Yao, H. Yang, S. M. Tan, X. J. Leng, and X. Q. Li. 2021. Dietary effects of Clostridium autoethanogenum protein substituting fish meal on growth, intestinal histology and immunity of Pacific white shrimp (Litopenaeus vannamei) based on transcriptome analysis. Fish & Shellfish Immunology 119:635–44. doi:10.1016/j.fsi.2021.10.005.
  • Jin, S., Y. Jeon, M. S. Jeon, J. Shin, Y. S. Song, S. Kang, J. Bae, S. Cho, J. K. Lee, D. R. Kim, et al. 2021. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences 118 (9). doi:10.1073/pnas.2020552118.
  • Li, X. Y., Y. K. Chen, C. Z. Zheng, S. Y. Chi, S. Zhang, B. P. Tan, and S. W. Xie. 2022. Evaluation of six novel protein sources on apparent digestibility in Pacific White Shrimp, Litopenaeus vannamei. Aquaculture Nutrition 2022:1–11. doi:10.1155/2022/8225273.
  • Liew, F., A. M. Henstra, K. Winzer, M. Kopke, S. D. Simpson, N. P. Minton, and S. Y. Lee. 2016. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Mbio 7 (3). doi:10.1128/mBio.00427-16.
  • Liew, F., M. E. Martin, R. C. Tappel, B. D. Heijstra, C. Mihalcea, and M. Kopke. 2016. Gas fermentation a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Frontiers in Microbiology 7. doi:10.3389/fmicb.2016.00694.
  • Li, M. Y., H. L. Liang, J. Xie, W. Chao, F. Q. Zou, X. P. Ge, and M. C. Ren. 2021. Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Reports 19:100572. doi:10.1016/j.aqrep.2020.100572.
  • Li, L. K., X. J. Liu, Y. Wang, Y. Q. Huang, and C. F. Wang. 2022. Effects of alternate feeding between fish meal and novel protein diets on the intestinal health of juvenile largemouth bass (Micropterus salmoides). Aquaculture Reports 23:101023. doi:10.1016/j.aqrep.2022.101023.
  • Liu, G., M. Zhou, X. Mao, D. Gu, W. Chen, X. Long, S. Xie, and Q. Tan. 2024. Evaluation of the appropriate Clostridium autoethanogenum protein level in grass carp (Ctenopharyngodon idellus) diets by growth performance, health status, and intestinal microbiota. Aquaculture International 32:31–59. doi:10.1007/s10499-023-01163-y.
  • Li, L. K., Y. Wang, Z. Zhang, and C. F. Wang. 2023. Microbiomic and metabonomic analysis provide new insights into the enhanced intestinal health in large-size largemouth bass (Micropterus salmoides) when fed novel proteins: Novel proteins are promising foods for future aquaculture. Aquaculture 563:739019. doi:10.1016/j.aquaculture.2022.739019.
  • Ma, S., X. Liang, P. Chen, J. Wang, X. Gu, Y. Qin, C. Blecker, and M. Xue. 2022a. A new single-cell protein from clostridium autoethanogenum as a functional protein for largemouth bass (Micropterus salmoides). Animal Nutrition 10:99–110. doi:10.1016/j.aninu.2022.04.005.
  • Marcellin, E., J. B. Behrendorff, S. Nagaraju, S. DeTissera, S. Segovia, R. W. Palfreyman, J. Daniell, C. Licona-Cassani, L. E. Quek, R. Speight, et al. 2016. Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chemistry 18 (10):3020–28. doi:10.1039/C5GC02708J.
  • Maulu, S., S. Langi, O. J. Hasimuna, D. Missinhoun, B. P. Munganga, B. M. Hampuwo, N. N. Gabriel, M. Elsabagh, H. Van Doan, Z. Abdul Kari, et al. 2022. Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition 11:334–49. doi:10.1016/j.aninu.2022.07.013.
  • Maulu, S., H. L. Liang, X. P. Ge, H. Yu, D. Y. Huang, J. Ke, M. C. Ren, and H. F. Mi. 2021. Effect of dietary Clostridium autoethanogenum protein on growth, body composition, plasma parameters and hepatic genes expression related to growth and AMPK/TOR/PI3K signaling pathway of the genetically improved farmed tilapia (GIFT: Oreochromis niloticus) juveniles. Animal Feed Science and Technology. 276 (114914):1–13. doi:10.1016/j.anifeedsci.2021.114914.
  • Maulu, S., H. L. Liang, J. Ke, M. C. Ren, X. P. Ge, D. Y. Huang, and H. Yu. 2021. Dietary Clostridium autoethanogenum protein modulates intestinal absorption, antioxidant status, and immune response in GIFT (Oreochromis niloticus) juveniles. Aquaculture Research 52 (11):5787–99. doi:10.1111/are.15454.
  • Ma, S. F., H. Wang, J. Yang, J. G. Li, M. Xue, H. Y. Cheng, F. Q. Zou, and C. Blecker. 2022b. Effects of clostridium autoethanogenum protein inclusion levels and processing parameters on the physical properties of low-starch extruded floating feed. Aquaculture Reports 23:101030. doi:10.1016/j.aqrep.2022.101030.
  • Naylor, R. L., R. W. Hardy, A. H. Buschmann, S. R. Bush, L. Cao, D. H. Klinger, D. C. Little, J. Lubchenco, S. E. Shumway, and M. Troell. 2021. Publisher Correction: A 20-year retrospective review of global aquaculture (vol 591, pg 551, 2021). Nature 595 (7868):E36–36. doi:10.1038/s41586-021-03736-4.
  • Norman, R. O. J., T. Millat, K. Winzer, N. P. Minton, and C. Hodgman. 2018a. Progress towards platform chemical production using Clostridium autoethanogenum. Biochemical Society Transactions 46 (3):523–35. doi:10.1042/BST20170259.
  • Norman, R. O. J., T. Millat, K. Winzer, N. P. Minton, and C. Hodgman. 2018b. Progress towards platform chemical production using Clostridium autoethanogenum. Biochemical Society Transactions 46 (3):523–35. doi:10.1042/BST20170259.
  • NRC, N. R. C. 2011. Nutrient requirements of fish and shrimp. Washington DC: The National Academies Press.
  • Øverland, M., A. H. Tauson, K. Shearer, and A. Skrede. 2010. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition 64 (3):171–89. doi:10.1080/17450391003691534.
  • Reihani, S. F. S., and K. Khosravi-Darani. 2019. Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology 37:34–40. doi:10.1016/j.ejbt.2018.11.005.
  • Sillman, J., L. Nygren, H. Kahiluoto, V. Ruuskanen, A. Tamminen, C. J. Bajamundi, M. Nappa, M. Wuokko, T. Lindh, P. Vainikka, et al. 2019. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Global Food Security 22:25–32. doi:10.1016/j.gfs.2019.09.007.
  • Simpson, S., W. E. Allen, R. J. Conrado, and S. Molloy. 2016. Gas fermentation for the production of protein or feed (Patent No. US0338380 A1). United States Patent Publication.
  • Song, Y., J. Shin, S. Jin, J. K. Lee, D. R. Kim, S. C. Kim, S. Cho, and B. K. Cho. 2018. Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. Bmc Genomics 19 (1):837. doi:10.1186/s12864-018-5238-0.
  • Wang, X. E., M. Wan, Z. Wang, H. T. Zhang, S. Zhu, X. F. Cao, N. Xu, J. C. Zheng, X. Y. Bu, W. Xu, et al. 2023. Effects of tributyrin supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of large yellow croaker (Larimichthys crocea) fed with a high level of Clostridium autoethanogenum protein. Aquaculture Nutrition 2023 (2687734): 1–12. doi:10.1155/2023/2687734.
  • Wang, D., S. W. Zhai, C. X. Zhang, Y. Y. Bai, S. H. An, and Y. N. Xu. 2005. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australasian Journal of Animal Sciences 18:667–70.
  • Wei, H. C., H. H. Yu, X. M. Chen, W. Chao, F. Q. Zou, P. Chen, Y. H. Zheng, X. F. Wu, X. F. Liang, and M. Xue. 2018. Effects of soybean meal replaced by Clostridium autoethanogenum protein on growth performance, plasma biochemical indexes and hepatopancreas and intestinal histopathology of grass carp (Ctenopharyngodon idllus). Chinese Journal of Animal Nutrition 30:4190–201.
  • Wood, J. C., J. Grove, E. Marcellin, J. K. Heffernan, S. Hu, Z. Yuan, and B. Virdis. 2021. Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation. Water Research 201:117306. doi:10.1016/j.watres.2021.117306.
  • Woolley, L., M. R. Chaklader, L. Pilmer, F. Stephens, C. Wingate, M. Salini, and G. Partridge. 2023. Gas to protein: Microbial single cell protein is an alternative to fishmeal in aquaculture. Science of the Total Environment 859:160141. doi:10.1016/j.scitotenv.2022.160141.
  • Wu, Y., S. J. Tian, J. Yuan, Z. Y. Zhang, H. H. Zhou, W. H. Gao, W. B. Zhang, and K. S. Mai. 2022. Effects of Clostridium autoethanogenum protein as substitute for dietary fishmeal on the growth, feed utilization, intestinal health and muscle quality of large yellow croaker Larimichthys crocea. Aquaculture 561:738591. doi:10.1016/j.aquaculture.2022.738591.
  • Wu, Z. H., X. J. Yu, J. S. Guo, Y. H. Fu, Y. L. Guo, M. Z. Pan, W. B. Zhang, and K. S. Mai. 2022. Replacement of dietary fish meal with Clostridium autoethanogenum protein on growth performance, digestion, mTOR pathways and muscle quality of abalone Haliotis discus hannai. Aquaculture 553:738070. doi:10.1016/j.aquaculture.2022.738070.
  • Xue, R. R., H. D. Li, S. Liu, Z. C. Hu, Q. Wu, and H. Ji. 2023. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Animal Feed Science and Technology 295:115547. doi:10.1016/j.anifeedsci.2022.115547.
  • Xu, J., J. Wang, C. L. Ma, Z. X. Wei, Y. D. Zhai, N. Tian, Z. G. Zhu, M. Xue, and D. M. Li. 2023. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnology Advances 63:108096. doi:10.1016/j.biotechadv.2023.108096.
  • Xu, J., C. Z. Zheng, S. Y. Chi, S. Zhang, J. M. Cao, B. P. Tan, and S. W. Xie. 2023. Clostridium autoethanogenum protein substitution and bile acids addition altered intestinal health and transcriptome profiles of hepatopancreas in Litopenaeus vannamei. Aquaculture Reports 28:101432. doi:10.1016/j.aqrep.2022.101432.
  • Yang, P., X. Li, B. Song, M. He, C. Wu, and X. Leng. 2023. The potential of clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (micropterus salmoides): Growth, feed utilization and intestinal histology. Aquaculture and Fisheries 8 (1):67–75. doi:10.1016/j.aaf.2021.03.003.
  • Yang, P. X., X. Q. Li, W. X. Yao, M. L. Li, Y. Y. Wang, and X. J. Leng. 2022. Dietary effect of Clostridium autoethanogenum protein on growth, Intestinal histology and flesh lipid metabolism of Largemouth Bass (Micropterus salmoides) Based on Metabolomics. Metabolites 12 (11):1088. doi:10.3390/metabo12111088.
  • Yang, P. X., W. X. Yao, Y. Y. Wang, M. L. Li, X. Q. Li, and X. J. Leng. 2022. Dietary effects of fish meal substitution with Clostridium autoethanogenum on flesh quality and metabolomics of largemouth bass (Micropterus salmoides). Aquaculture Reports 23:101012. doi:10.1016/j.aqrep.2022.101012.
  • Yao, W., X. Li, X. Zhang, M. Li, Y. Wang, H. He, and X. Leng. 2024. The complete replacement of fish meal with Clostridium autoethanogenum protein in practical diet did not affect the growth, but reduced the flesh quality of Pacific white shrimp, Litopenaeus vannamei. Animal Feed Science and Technology 310:115919. doi:10.1016/j.anifeedsci.2024.115919.
  • Yao, W. X., P. X. Yang, X. Zhang, X. Y. Xu, C. Y. Zhang, X. Q. Li, and X. J. Leng. 2022. Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 549:737770. doi:10.1016/j.aquaculture.2021.737770.
  • Zhang, J., Y. Z. Dong, K. Song, L. Wang, X. S. Li, K. L. Lu, B. P. Tan, and C. X. Zhang. 2022. Substituting fish meal with a bacteria protein (Clostridium autoethanogenum protein) derived from industrial-scale gas fermentation: effects on growth and gut health of juvenile large yellow croakers (Larimichthys crocea). Fishes-Basel 7 (5):228. doi:10.3390/fishes7050228.
  • Zheng, C. Z., J. M. Cao, S. Y. Chi, X. H. Dong, Q. H. Yang, H. Y. Liu, S. Zhang, S. W. Xie, and B. P. Tan. 2022. Dietary phosphorus supplementation in the diet of Pacific white shrimp (Litopenaeus vannamei) alleviated the adverse impacts caused by high Clostridium autoethanogenum protein. Fish & Shellfish Immunology 131:137–49. doi:10.1016/j.fsi.2022.10.005.
  • Zheng, J. C., W. C. Zhang, Z. J. Dan, Y. W. Zhuang, Y. T. Liu, K. S. Mai, and Q. H. Ai. 2022. Replacement of dietary fish meal with Clostridium autoethanogenum meal on growth performance, intestinal amino acids transporters, protein metabolism and hepatic lipid metabolism of juvenile turbot (Scophthalmus maximus L.). Frontiers in Physiology 13. doi:10.3389/fphys.2022.981750.
  • Zhu, S. J., W. H. Gao, Z. Y. Wen, S. Y. Chi, Y. H. Shi, W. Hu, and B. P. Tan. 2022. Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides). Aquaculture Reports 22:22. doi:10.1016/j.aqrep.2021.100938.