173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil Nutrient Concentrations, Associations and Their Relationships with Canopy Tree Category and Size in the Southwestern China Tropical Rainforests

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bai, X., Wang, B., An, S., Zeng, Q., & Zhang, H. (2019). Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China. CATENA, 183, 104186. https://doi.org/10.1016/j.catena.2019.104186
  • Bell, C., Carrillo, Y., Boot, C. M., Rocca, J. D., Pendall, E., & Wallenstein, M. D. (2014). Rhizosphere stoichiometry: Are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytologist, 201(2), 505–517. https://doi.org/10.1111/nph.12531
  • Berg, B. (2018). Decomposing litter; limit values; humus accumulation, locally and regionally. Applied Soil Ecology, 123, 494–508. https://doi.org/10.1016/j.apsoil.2017.06.026
  • Bordin, K. M., Esquivel-Muelbert, A., Bergamin, R. S., Klipel, J., Picolotto, R. C., Frangipani, M. A., Zanini, K. J., Cianciaruso, M. V., Jarenkow, J. A., Jurinitz, C. F., Molz, M., Higuchi, P., Silva, A. C. D., & Müller, S. C. (2021). Climate and large-sized trees, but not diversity, drive above-ground biomass in subtropical forests. Forest Ecology and Management, 490, 119126. https://doi.org/10.1016/j.foreco.2021.119126
  • Bucher, M. (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 173(1), 11–26. https://doi.org/10.1111/j.1469-8137.2006.01935.x
  • Bui, E. N., & Henderson, B. L. (2013). C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373(1), 553–568. https://doi.org/10.1007/s11104-013-1823-9
  • Cao, Y., & Chen, Y. (2017). Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China. Trees, 31(5), 1559–1570. https://doi.org/10.1007/s00468-017-1569-8
  • Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. PNAS, 110(13), 5064–5068. https://doi.org/10.1073/pnas.1218042110
  • Congjuan, L., Yan, L., & Jian, M. (2011). Scale characteristics of spatial heterogeneity of soil chemical properties in Gurbantunggut desert. Acta Pedologica Sinica, 48(2), 302–310. http://qikan.cqvip.com/Qikan/Article/Detail?id=37013576
  • Cordell, S., Goldstein, G., Meinzer, F. C., & Vitousek, P. M. (2001). Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii. Tree Physiology, 21(1), 43–50. https://doi.org/10.1093/treephys/21.1.43
  • Curd, E. E., Martiny, J. B. H., Li, H., & Smith, T. B. (2018). Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 9(1), e02079. https://doi.org/10.1002/ecs2.2079
  • Dai, X., Fu, X., Kou, L., Wang, H., & Shock, C. C. (2018). C:N:P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China. Canadian Journal of Forest Research, 48(11), 1398–1405. https://doi.org/10.1139/cjfr-2018-0095
  • Delcourt, H. R., & Delcourt, P. A. (1988). Quaternary landscape ecology: Relevant scales in space and time. Landscape Ecology, 2(1), 23–44. https://doi.org/10.1007/BF00138906
  • Ding, W., Cong, W.-F., & Lambers, H. (2021). Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends in Ecology & Evolution, 36(10), 899–906. https://doi.org/10.1016/j.tree.2021.06.005
  • Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: Quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1–15. https://doi.org/10.1139/t02-090
  • Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1996). Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecological Research, 11(3), 299–309. https://doi.org/10.1007/BF02347787
  • Fan, H., Wu, J., Liu, W., Yuan, Y., Hu, L., & Cai, Q. (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392(1–2), 127–138. https://doi.org/10.1007/s11104-015-2444-2
  • Föhse, D., Claassen, N., & Jungk, A. (1988). Phosphorus efficiency of plants. Plant and Soil, 110(1), 101–109. https://doi.org/10.1007/BF02143545
  • Gagnon, J. S., Lovejoy, S., & Schertzer, D. (2006). Multifractal earth topography. Nonlinear Processes in Geophysics, 13(5), 541–570. https://doi.org/10.5194/npg-13-541-2006
  • Gallardo, A. (2003). Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia, 47(2), 117–125. https://doi.org/10.1078/0031-4056-00175
  • Ge, J., & Xie, Z. (2017). Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecology, 218(9), 1063–1076. https://doi.org/10.1007/s11258-017-0752-8
  • Giehl, R. F. H., & von Wirén, N. (2014). Root Nutrient Foraging. Plant Physiology, 166(2), 509–517. https://doi.org/10.1104/pp.114.245225
  • Harrington, R. A., Fownes, J. H., & Vitousek, P. M. (2001). Production and Resource Use Efficiencies in N- and P-Limited Tropical Forests: A Comparison of Responses to Long-term Fertilization. Ecosystems, 4(7), 646–657. https://doi.org/10.1007/s10021-001-0034-z
  • Hirobe, M., Tokuchi, N., & Iwatsubo, G. (1998). Spatial variability of soil nitrogen transformation patterns along a forest slope in a Cryptomeria japonica D. Don plantation. European Journal of Soil Biology, 34(3), 123–131. https://doi.org/10.1016/S1164-5563(00)88649-5
  • Hutchings, M. J., John, E. A., & Wijesinghe, D. K. (2003). TOWARD UNDERSTANDING THE CONSEQUENCES OF SOIL HETEROGENEITY FOR PLANT POPULATIONS AND COMMUNITIES. Ecology, 84(9), 2322–2334. https://doi.org/10.1890/02-0290
  • Jobbágy, E. G., & Jackson, R. B. (2001). The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 53(1), 51–77. https://doi.org/10.1023/A:1010760720215
  • Lambers, H., Cawthray, G. R., Giavalisco, P., Kuo, J., Laliberté, E., Pearse, S. J., Scheible, W.-R., Stitt, M., Teste, F., & Turner, B. L. (2012). Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist, 196(4), 1098–1108. https://doi.org/10.1111/j.1469-8137.2012.04285.x
  • Liu, J., Gou, X., Zhang, F., Bian, R., & Yin, D. (2021). Spatial patterns in the C:N:P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China. CATENA, 196, 104814. https://doi.org/10.1016/j.catena.2020.104814
  • Meier, I. C., Leuschner, C., & Hertel, D. (2005). Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology, 177(1), 99–112. https://doi.org/10.1007/s11258-005-2221-z
  • Pescador, D. S., de la Cruz, M., Chacón-Labella, J., Pavón-García, J., & Escudero, A. (2020). Tales from the underground: Soil heterogeneity and not only above-ground plant interactions explain fine-scale species patterns in a Mediterranean dwarf-shrubland. Journal of Vegetation Science, 31(3), 497–508. https://doi.org/10.1111/jvs.12859
  • Qiulian, Z., Xiaoyi, X., Hong, Z., & Shaoshan, A. (2013). Soil ecological stoichiometry under different vegetation area on loess hillygully region. Acta Ecologica Sinica, 33(15), 4674–4682. https://doi.org/10.5846/stxb201212101772
  • R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Ricklefs, R. E. (1977). Environmental Heterogeneity and Plant Species Diversity: A Hypothesis. The American Naturalist, 111(978), 376–381. https://doi.org/10.1086/283169
  • Rumpel, C., & Chabbi, A. (2019). Plant–Soil Interactions Control CNP Coupling and Decoupling Processes in Agroecosystems With Perennial Vegetation (Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality. Elsevier. https://doi.org/10.1016/B978-0-12-811050-8.00001-7
  • Ruttenberg, K. C. (2003). The Global Phosphorus Cycle. Treatise on Geochemistry, Pergamon, 8, 585–643. https://doi.org/10.1016/B0-08-043751-6/08153-6
  • Sardans, J., & Peñuelas, J. (2012). The Role of Plants in the Effects of Global Change on Nutrient Availability and Stoichiometry in the Plant-Soil System. Plant Physiology, 160(4), 1741–1761. https://doi.org/10.1104/pp.112.208785
  • Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1), 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013
  • Stone, E. L., & Kalisz, P. J. (1991). On the maximum extent of tree roots. Forest Ecology and Management, 46(1), 59–102. https://doi.org/10.1016/0378-1127(91)90245-Q
  • Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., Milchunas, D. G., & Pennings, S. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS, 102(12), 4387–4392. https://doi.org/10.1073/pnas.0408648102
  • Tateno, R., & Takeda, H. (2003). Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18(5), 559–571. https://doi.org/10.1046/j.1440-1703.2003.00578.x
  • Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. T., Fung, I., Lamarque, J. F., Feddema, J. J., & Lee, Y. H. (2009). Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model. Biogeosciences, 6(10), 2099–2120. https://doi.org/10.5194/bg-6-2099-2009
  • Tian, H., Chen, G., Zhang, C., Melillo, J. M., & Hall, C. A. S. (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98(1), 139–151. https://doi.org/10.1007/s10533-009-9382-0
  • Tischer, A., Potthast, K., & Hamer, U. (2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175(1), 375–393. https://doi.org/10.1007/s00442-014-2894-x
  • Tumber-Dávila, S. J., Schenk, H. J., Du, E., & Jackson, R. B. (2022). Plant sizes and shapes above and belowground and their interactions with climate. New Phytologist, 235(3), 1032–1056. https://doi.org/10.1111/nph.18031
  • Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555(7696), 367–370. https://doi.org/10.1038/nature25789
  • Vitousek, P. M. (1984). Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology, 65(1), 285–298. https://doi.org/10.2307/1939481
  • Vitousek, P. M., Hättenschwiler, S., Olander, L., & Allison, S. (2002). Nitrogen and Nature. AMBIO, 31(2), 97–101. https://doi.org/10.1579/0044-7447-31.2.97
  • Wang, L., Mou, P. P., Huang, J., & Wang, J. (2007). Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil, 295(1), 137–150. https://doi.org/10.1007/s11104-007-9271-z
  • Wang, L., Wang, P., Sheng, M., & Tian, J. (2018). Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Global Ecology and Conservation, 16, e00449. https://doi.org/10.1016/j.gecco.2018.e00449
  • Wang, S.-Q., & Yu, G.-R. (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28(8), 3937–3947. https://www.ecologica.cn/stxb/article/abstract/20080854
  • Wen, J., Ji, H., Sun, N., Tao, H., Du, B., Hui, D., & Liu, C. (2018). Imbalanced plant stoichiometry at contrasting geologic-derived phosphorus sites in subtropics: The role of microelements and plant functional group. Plant and Soil, 430(1), 113–125. https://doi.org/10.1007/s11104-018-3728-0
  • Wen, Z., Pan, Q., Li, R., Yang, Y., Jiang, Z., Zheng, H., & Ouyang, Z. (2022). Species–size networks elucidate the effects of biodiversity on aboveground biomass in tropical forests. Ecological Indicators, 141, 109067. https://doi.org/10.1016/j.ecolind.2022.109067
  • Williams, B. M., & Houseman, G. R. (2013). Experimental evidence that soil heterogeneity enhances plant diversity during community assembly. Journal of Plant Ecology, 7(5), 461–469. https://doi.org/10.1093/jpe/rtt056
  • Xia, S.-W., Cao, M., Yang, X., Chen, J., & Goodale, U. M. (2019). Fine scale heterogeneity of soil properties causes seedling spatial niche separation in a tropical rainforest. Plant and Soil, 438(1), 435–445. https://doi.org/10.1007/s11104-019-04027-8
  • Xia, S.-W., Chen, J., Schaefer, D., & Detto, M. (2015). Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil, 391(1), 51–61. https://doi.org/10.1007/s11104-015-2402-z
  • Xia, S.-W., Yuan, W., Lin, L.-X., Yang, X.-D., Feng, X.-B., Li, X.-M., Liu, X., Chen, P.-J., Zeng, S.-F., Wang, D.-Y., Su, Q.-Z., & Wang, X. (2022). Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. Journal of Hazardous Materials, 429, 128295. https://doi.org/10.1016/j.jhazmat.2022.128295
  • Yang, Y., Liu, B.-R., & An, -S.-S. (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. CATENA, 166, 328–338. https://doi.org/10.1016/j.catena.2018.04.018
  • Ye, T., Yuan-ming, Z., & Xiao-bin, Z. (2016). Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region,Xinjiang,China. Chinese Journal of Applied Ecology, 27(7), 2239–2248. https://doi.org/10.13287/j.1001-9332.201607.002
  • Zeng, Q., Li, X., Dong, Y., An, S., & Darboux, F. (2016). Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. CATENA, 147, 481–488. https://doi.org/10.1016/j.catena.2016.07.047
  • Zhang, Y., Li, C., & Wang, M. (2019). Linkages of C: N: P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 19(4), 1820–1829. https://doi.org/10.1007/s11368-018-2173-2
  • Zhou, Y., Boutton, T. W., & Wu, X. B. (2018). Soil C:N:P stoichiometry responds to vegetation change from grassland to woodland. Biogeochemistry, 140(3), 341–357. https://doi.org/10.1007/s10533-018-0495-1
  • Zinke, P. J. (1962). The Pattern of Influence of Individual Forest Trees on Soil Properties. Ecology, 43(1), 130–133. https://doi.org/10.2307/1932049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.