Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on Forming Quality and Microstructure of Laser-MIG Hybrid Welded Joint of Invar Steel

, , , &
Pages 209-221 | Received 24 Sep 2022, Accepted 09 Mar 2023, Published online: 08 Feb 2024

References

  • A. Arora, and S. Mula, Phase evolution characteristics, thermal stability, and strengthening processes of Fe-Ni based ODS invar steel produced by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A. 856, 143972 (2022). DOI: 10.1016/j.msea.2022.143972.
  • T. Nagayama, T. Yamamoto, and T. Nakamura, Thermal expansions and mechanical properties of electrodeposited Fe-Ni alloys in the Invar composition range, Electrochim. Acta. 205, 178 (2016). DOI: 10.1016/j.electacta.2016.04.089.
  • S. J. Park et al., Microstructure-dependent etching behavior of a partially recrystallized Invar alloy, Mater. Des. 217, 110631 (2022). DOI: 10.1016/j.matdes.2022.110631.
  • X. C. Tang, Z. W. Zhu, and C. J. Shen, Experimental study on Fe-Ni alloy electrodeposition in a vacuum, Integr. Ferroelectr. 172 (1), 125 (2016). DOI: 10.1080/10584587.2016.1176824.
  • Z. W. Zhu et al., Study on microstructure and properties of mechanically electrodeposited nanocrystalline Fe-Ni alloy, Integr. Ferroelectr. 201 (1), 241 (2019). DOI: 10.1080/10584587.2017.1338499.
  • M. Yakout, M. A. Elbestawi, and S. C. Veldhuis, A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L, Addit. Manuf. 24, 405 (2018). DOI: 10.1016/j.addma.2018.09.035.
  • M. Harada et al., R&D of Invar duct for fabrication of 2nd JSNS moderators, J. Nucl. Mater. 450 (1–3), 104 (2014). DOI: 10.1016/j.jnucmat.2013.11.017.
  • C. Qiu, N. J. E. Adkins, and M. M. Attallah, Selective laser melting of Invar 36: Microstructure and properties, Acta Mater. 103, 382 (2016). DOI: 10.1016/j.actamat.2015.10.020.
  • Y. Zhao et al., Microstructure and properties of friction stir welded high strength Fe-36wt%Ni alloy, Mater. Sci. Eng. A. 528 (25–26), 7768 (2011). DOI: 10.1016/j.msea.2011.06.082.
  • J. L. Corbacho, J. C. Suárez, and F. Molleda, Grain coarsening and boundary migration during welding of invar Fe-36Ni alloy, Mater. Char. 41 (1), 27 (1998). DOI: 10.1016/S1044-5803(98)00020-5.
  • X. Liu et al., Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships, Ocean Eng. 258, 111815 (2022). DOI: 10.1016/j.oceaneng.2022.111815.
  • S. Li et al., Fatigue crack initiation behaviors around defects induced by welding thermal cycle in superalloy IN617B, Int. J. Fatigue. 158, 106745 (2022). DOI: 10.1016/j.ijfatigue.2022.106745.
  • M. Ono et al., Development of laser-arc hybrid welding, NKK Tech. Rev. 8–12 (2002).
  • J. Matsuda et al., TIG or MIG arc augmented laser welding of thick mill steel plate, Join. Mater. 1 (1), 31–34 (1988).
  • X. Zhan et al., Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy, Opt. Laser Technol. 85, 75 (2016). DOI: 10.1016/j.optlastec.2016.06.001.
  • C. M. Ellison et al., Pulse shaping effects on weld porosity in laser beam spot welds. contrast of long-& short-pulse welds, UNT Digital Library (2007).
  • Y. Sun et al., Numeri al modeling on formation of periodic chain-like pores in high power laser welding of thick steel plate, J Mater. Process. Tech. 306, 117638 (2022). DOI: 10.1016/j.jmatprotec.2022.117638.
  • P. Berger, H. Hügel, and T. Graf, Understanding pore formation in laser beam welding, Phy. Proce. 12, 241 (2011). DOI: 10.1016/j.phpro.2011.03.031.
  • K. Zhang et al., Effect of heat input modes on microstructure, mechanical properties and porosity of laser welded NiTi-316L joints: A comparative study, Mater. Sci. Eng. A. 848, 143426 (2022).
  • L. Liu et al., Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-mechanism and remedy, Mater. Sci. Eng.: A. 390 (1–2), 76 (2005). DOI: 10.1016/j.msea.2004.07.067.
  • M. M. Atabaki et al., Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel, Mater. Des. 67, 509 (2015). DOI: 10.1016/j.matdes.2014.10.072.
  • X. Han et al., Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint, Opt. Laser Technol. 132, 106511 (2020). DOI: 10.1016/j.optlastec.2020.106511.
  • M. Gao et al., Process and joint characterizations of laser–MIG hybrid welding of AZ31 magnesium alloy, J. Mater. Process Tech. 212 (6), 1338 (2012). DOI: 10.1016/j.jmatprotec.2012.01.011.
  • L. Zhang et al., A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding, Mater. Des. 110, 35 (2016). DOI: 10.1016/j.matdes.2016.07.117.
  • X. Zhan et al., Research on the microstructure and properties of laser-MIG hybrid welded joint of Invar alloy, Opt. Laser Technol. 97, 124 (2017). (DOI: 10.1016/j.optlastec.2017.06.014.
  • Q. Gao et al., Effect of vapor/plasma-liquid flow behavior on the keyhole oscillation in laser-MIG hybrid welding of Invar alloy, Opt. Laser. Technol. 140, 107054 (2021). DOI: 10.1016/j.optlastec.2021.107054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.