164
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Interactions of selenium and mercury in soil–plant systems: Characterizations, occurrences, and mechanisms

, , , , , , , & show all

References

  • Afton, S. E., & Caruso, J. A. (2009). The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. Journal of Analytical Atomic Spectrometry, 24(6), 759–766. https://doi.org/10.1039/b823251b
  • Asaduzzaman, A. M., & Schreckenbach, G. (2011). Degradation mechanism of methyl mercury selenoamino acid complexes: A computational study. Inorganic Chemistry, 50(6), 2366–2372. https://doi.org/10.1021/ic1021406
  • Bai, X., Li, Y., Liang, X., Li, H., Zhao, J., Li, Y.-F., & Gao, Y. (2019). Botanic metallomics of mercury and selenium: Current understanding of mercury-selenium antagonism in plant with the traditional and advanced technology. Bulletin of Environmental Contamination and Toxicology, 102(5), 628–634. https://doi.org/10.1007/s00128-019-02628-8
  • Barkay, T., & Wagner-Döbler, I. (2005). Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Advances in Applied Microbiology, 57, 1–52. https://doi.org/10.1016/s0065-2164(05)57001-1
  • Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951–957. https://doi.org/10.1021/es9808200
  • Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554. https://doi.org/10.1016/j.envres.2017.08.051
  • Bone, S. E., Bargar, J. R., & Sposito, G. (2014). Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. Environmental Science & Technology, 48(18), 10681–10689. https://doi.org/10.1021/es501514r
  • Breynaert, E., Bruggeman, C., & Maes, A. (2008). XANES-EXAFS analysis of Se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environmental Science & Technology, 42(10), 3595–3601. https://doi.org/10.1021/es071370r
  • Cai, W., Jin, J., Dang, F., Shi, W., & Zhou, D. (2020). Mercury methylation from mercury selenide particles in soils. Journal of Hazardous Materials, 400, 123248. https://doi.org/10.1016/j.jhazmat.2020.123248
  • Canty, A. J., Carty, A. J., & Malone, S. F. (1983). Methylmercury(ii) selenolates- ynthesis and characterization of mehgseme and mehgseph, and h-1 and hg-199 nmr-studies of ligand-exchange in mehg(ii) thiolates and selenolates, including amino-acid complexes. Journal of Inorganic Biochemistry, 19(2), 133–142. https://doi.org/10.1016/0162-0134(83)85019-3
  • Cartes, P., Gianfreda, L., & Mora, M. L. (2005). Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276(1–2), 359–367. https://doi.org/10.1007/s11104-005-5691-9
  • Chang, C., Chen, C., Yin, R., Shen, Y., Mao, K., Yang, Z., Feng, X., & Zhang, H. (2020). Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan Mercury Mine. Environmental Science & Technology, 54(6), 3228–3236. https://doi.org/10.1021/acs.est.9b06486
  • Chang, Q., Zhang, Z., Ji, Y., Tian, L., Chen, W., & Zhang, T. (2021). Natural organic matter facilitates formation and microbial methylation of mercury selenide nanoparticles. Environmental Science: Nano, 8(1), 67–75. https://doi.org/10.1039/D0EN00992J
  • Chasteen, T. G., & Bentley, R. (2003). Biomethylation of selenium and tellurium: Microorganisms and plants. Chemical Reviews, 103(1), 1–25. https://doi.org/10.1021/cr010210+
  • Choi, H. D., & Holsen, T. M. (2009). Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation. Environmental Pollution (Barking, Essex: 1987), 157(5), 1673–1678. https://doi.org/10.1016/j.envpol.2008.12.014
  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. https://doi.org/10.1080/10408440600845619
  • Craig, P. J., & Moreton, P. A. (1984). The role of sulphide in the formation of dimethyl mercury in river and ­estuary sediments. Marine Pollution Bulletin, 15(11), 406–408. https://doi.org/10.1016/0025-326X(84)90257-1
  • Ding, Y., Feng, R., Wang, R., Guo, J., & Zheng, X. (2014). A dual effect of Se on Cd toxicity: Evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant and Soil, 375(1-2), 289–301. https://doi.org/10.1007/s11104-013-1966-8
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v
  • Du, H., Ma, M., Igarashi, Y., & Wang, D. (2019). Biotic and abiotic degradation of methylmercury in aquatic ecosystems: A review. Bulletin of Environmental Contamination and Toxicology, 102(5), 605–611. https://doi.org/10.1007/s00128-018-2530-2
  • El Hanafi, K., Pedrero, Z., Ouerdane, L., Marchán Moreno, C., Queipo-Abad, S., Bueno, M., Pannier, F., Corns, W. T., Cherel, Y., Bustamante, P., & Amouroux, D. (2022). First time identification of selenoneine in seabirds and its potential role in mercury detoxification. Environmental Science & Technology, 56(5), 3288–3298. https://doi.org/10.1021/acs.est.1c04966
  • Etique, M., Bouchet, S., Byrne, J. M., ThomasArrigo, L. K., Kaegi, R., & Kretzschmar, R. (2021). Mercury reduction by nanoparticulate vivianite. Environmental Science & Technology, 55(5), 3399–3407. https://doi.org/10.1021/acs.est.0c05203
  • Goyer, R. A. (1997). Toxic and essential metal interactions. Annual Review of Nutrition, 17(1), 37–50. https://doi.org/10.1146/annurev.nutr.17.1.37
  • Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., & Liang, L. (2011). Mercury reduction and complexation by natural organic matter in anoxic environments. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1479–1483. https://doi.org/10.1073/pnas.1008747108
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Parvin, K., Bhuiyan, T. F., Anee, T. I., Nahar, K., Hossen, M. S., Zulfiqar, F., Alam, M. M., & Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. International Journal of Molecular Sciences, 21(22), 8695. https://doi.org/10.3390/ijms21228695
  • Herbel, M. J., Blum, J. S., Oremland, R. S., & Borglin, S. E. (2003). Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiology Journal, 20(6), 587–602. https://doi.org/10.1080/713851163
  • Hoang-Yen Thi, T., Chen, Y.-W., Saleh, M., Nehzati, S., George, G. N., Pickering, I. J., & Belzile, N. (2014). Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics: Integrated Biometal Science, 6(3), 465–475. https://doi.org/10.1039/c3mt00323j
  • Huang, Q., Liu, Y., Qin, X., Zhao, L., Liang, X., & Xu, Y. (2019). Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems. Ecotoxicology and Environmental Safety, 168, 486–494. https://doi.org/10.1016/j.ecoenv.2018.10.078
  • Jiang, S., Cuong Tu, H., Lee, J.-H., Hieu Van, D., Han, S., & Hur, H.-G. (2012). Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere, 87(6), 621–624. https://doi.org/10.1016/j.chemosphere.2011.12.083
  • Khan, M. A. K., & Wang, F. (2010). Chemical demethylation of methylmercury by selenoamino acids. Chemical Research in Toxicology, 23(7), 1202–1206. https://doi.org/10.1021/tx100080s
  • Levander, O. A. (1987). A global view of human selenium nutrition. Annual Review of Nutrition, 7(1), 227–250. https://doi.org/10.1146/annurev.nu.07.070187.001303
  • Li, Y., Hu, W., Zhao, J., Chen, Q., Wang, W., Li, B., & Li, Y.-F. (2019). Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland. Ecotoxicology and Environmental Safety, 182, 109447. https://doi.org/10.1016/j.ecoenv.2019.109447
  • Li, Y., Jiating, Z., Yuxi, G., Yufeng, L., Bai, L., Yuliang, Z., & Zhifang, C. (2014). Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza sativa L.). Asian Journal of Ecotoxicology, 9(5), 972–977.
  • Li, Y., Li, H., Li, Y.-F., Zhao, J., Guo, J., Wang, R., Li, B., Zhang, Z., & Gao, Y. (2018). Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 50, 435–440. https://doi.org/10.1016/j.jtemb.2017.10.006
  • Liu, C., Chen, C., Gong, X., Zhou, W., & Yang, J. (2014). Progress in research of iron plaque on root surface of wetland plants. Acta Ecologica Sinica, 34(10), 2470–2480. https://doi.org/10.5846/stxb201304110685
  • Li, Y.-F., Zhao, J., Li, Y., Li, H., Zhang, J., Li, B., Gao, Y., Chen, C., Luo, M., Huang, R., & Li, J. (2015). The concentration of selenium matters: A field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 391(1-2), 195–205. https://doi.org/10.1007/s11104-015-2418-4
  • Li, Y., Zhao, J., Zhang, B., Liu, Y., Xu, X., Li, Y.-F., Li, B., Gao, Y., & Chai, Z. (2016). The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 398(1–2), 87–97. https://doi.org/10.1007/s11104-015-2627-x
  • Lu, Z., Xin-Bin, Z., & Ting-Ting, S. U. (2017). Effects of foliar application of selenium on cadmium and mercury absorption in different growth periods of rice. Journal of Southwest University(Natural Science Edition), 39(7), 50–56. https://doi.org/10.13718/j.cnki.xdzk.2017.07.008
  • Mahaffey, K. R., Clickner, R. P., & Bodurow, C. C. (2004). Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environmental Health Perspectives, 112(5), 562–570. https://doi.org/10.1289/ehp.6587
  • Manceau, A., Bourdineaud, J.-P., Oliveira, R. B., Sarrazin, S. L. F., Krabbenhoft, D. P., Eagles-Smith, C. A., Ackerman, J. T., Stewart, A. R., Ward-Deitrich, C., del Castillo Busto, M. E., Goenaga-Infante, H., Wack, A., Retegan, M., Detlefs, B., Glatzel, P., Bustamante, P., Nagy, K. L., & Poulin, B. A. (2021). Demethylation of methylmercury in bird, fish, and earthworm. Environmental Science & Technology, 55(3), 1527–1534. https://doi.org/10.1021/acs.est.0c04948
  • Manceau, A., Gaillot, A.-C., Glatzel, P., Cherel, Y., & Bustamante, P. (2021). In vivo formation of HgSe nanoparticles and Hg–tetraselenolate complex from methylmercury in seabirds—Implications for the Hg-Se antagonism. Environmental Science & Technology, 55(3), 1515–1526. https://doi.org/10.1021/acs.est.0c06269
  • Manceau, A., Wang, J. X., Rovezzi, M., Glatzel, P., & Feng, X. B. (2018). Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury. Environmental Science & Technology, 52(7), 3935–3948. https://doi.org/10.1021/acs.est.7b05452
  • Mason, W. R. (1996). Vapor phase electronic absorption and MCD spectra for dimethyl sulfide, dimethyl selenide, and dimethyl telluride in the UV region. The Journal of Physical Chemistry, 100(20), 8139–8143. https://doi.org/10.1021/jp952904q
  • McNear, D. H., Jr., Afton, S. E., & Caruso, J. A. (2012). Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics: Integrated Biometal Science, 4(3), 267–276. https://doi.org/10.1039/c2mt00158f
  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. AMBIO: A Journal of the Human Environment, 36(1), 3–11. https://doi.org/10.1579/0044-7447(2007)36[3:Meahei]2.0.Co;2
  • Mounicou, S., Shah, M., Meija, J., Caruso, J. A., Vonderheide, A. P., & Shann, J. (2006). Localization and speciation of selenium and mercury in Brassica juncea—implications for Se-Hg antagonism. Journal of Analytical Atomic Spectrometry, 21(4), 404–412. https://doi.org/10.1039/b514954a
  • Myneni, S. C. B., Tokunaga, T. K., & Brown, G. E. (1997). Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science, 278(5340), 1106–1109. https://doi.org/10.1126/science.278.5340.1106
  • Pan, H., Wen, H., Ling, H., & Hu, R. (2006). Recent progress in research on selenium speciation in the supergene environment. Earth and Environment, 34(2), 19–26. https://doi.org/10.1016/S1872-2040(06)60041-8
  • Parizek, J., & Ostadalova, I. (1967). Protective effect of small amounts of selenite in sublimate intoxication. Experientia, 23(2), 142. https://doi.org/10.1007/bf02135970
  • Peixoto, F., Vicente, J., & Madeira, V. M. C. (2004). A comparative study of plant and animal mitochondria exposed to paraquat reveals that hydrogen peroxide is not related to the observed toxicity. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 18(6), 733–739. https://doi.org/10.1016/j.tiv.2004.02.009
  • Peterson, S. A., Ralston, N. V. C., Peck, D. V., Van Sickle, J., Robertson, J. D., Spate, V. L., & Morris, J. S. (2009). How might selenium moderate the toxic effects of mercury in stream fish of the western US? Environmental Science & Technology, 43(10), 3919–3925. https://doi.org/10.1021/es803203g
  • Poulain, A., Fernandez-Martinez, A., Greneche, J.-M., Prieur, D., Scheinost, A. C., Menguy, N., Bureau, S., Magnin, V., Findling, N., Drnec, J., Martens, I., Mirolo, M., & Charlet, L. (2022). Selenium nanowire formation by reacting selenate with magnetite. Environmental Science & Technology, 56(20), 14817–14827. https://doi.org/10.1021/acs.est.1c08377
  • Qin, H.-B., Jian-Ming, Z., Yong-Xuan, Z., & Lei, L. (2009). Advances in research on atmospheric selenium. Earth and Environment, 37(3), 304–314. https://doi.org/10.14050/j.cnki.1672-9250.2009.03.01
  • Ralston, N. V. C., & Raymond, L. J. (2018). Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochimica et Biophysica Acta. General Subjects, 1862(11), 2405–2416. https://doi.org/10.1016/j.bbagen.2018.05.009
  • Rehman, F., Pervez, A., Khattak, B. N., & Ahmad, R. (2017). Constructed wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes. CLEAN – Soil, Air, Water, 45(1), 1–9. https://doi.org/10.1002/clen.201600054
  • Rothenberg, S. E., & Feng, X. (2012). Mercury cycling in a flooded rice paddy. Journal of Geophysical Research: Biogeosciences, 117(G3), G03003. https://doi.org/10.1029/2011JG001800
  • Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Daas, S., Prakash, S., & Srivastava, M. M. (1996a). Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant and Soil, 183(2), 233–238. https://doi.org/10.1007/BF00011438
  • Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Dass, S., Prakash, S., & Srivastava, M. M. (1996b). Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 34(9), 883–886. https://doi.org/10.1016/S0278-6915(96)00047-6
  • Sørmo, E. G., Ciesielski, T. M., Øverjordet, I. B., Lierhagen, S., Eggen, G. S., Berg, T., & Jenssen, B. M. (2011). Selenium moderates mercury toxicity in free-ranging freshwater fish. Environmental Science & Technology, 45(15), 6561–6566. https://doi.org/10.1021/es200478b
  • Steinbrenner, H., & Sies, H. (2009). Protection against reactive oxygen species by selenoproteins. Biochimica et Biophysica Acta, 1790(11), 1478–1485. https://doi.org/10.1016/j.bbagen.2009.02.014
  • Tang, W. L., Dang, F., Evans, D., Zhong, H., & Xiao, L. (2017). Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses. Chemosphere, 169, 369–376. https://doi.org/10.1016/j.chemosphere.2016.11.087
  • Thi Anh Thu, T., Quang Toan, D., Cui, Z., Huang, J., Wang, D., Wei, T., Liang, D., Sun, X., & Ning, P. (2018). Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi. Ecotoxicology and Environmental Safety, 147, 897–904. https://doi.org/10.1016/j.ecoenv.2017.09.061
  • Thi Anh Thu, T., Zhou, F., Yang, W., Wang, M., Quang Toan, D., Wang, D., & Liang, D. (2018). Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and Environmental Safety, 159, 77–84. https://doi.org/10.1016/j.ecoenv.2018.04.029
  • Tian, L., Guan, W., Ji, Y., He, X., Chen, W., Alvarez, P. J. J., & Zhang, T. (2021). Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nature Geoscience, 14(6), 409–416. https://doi.org/10.1038/s41561-021-00735-y
  • Truong, H.-Y. T., Chen, Y.-W., & Belzile, N. (2013). Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. The Science of the Total Environment, 449, 373–384. https://doi.org/10.1016/j.scitotenv.2013.01.054
  • UNEP. (2017). Minamata Convention Text and Annexes accessed. http://mercuryconvention.org/Convention/Text/tabid/3426/language/en-US/Default.
  • Wang, Y., Dang, F., Evans, R. D., Zhong, H., Zhao, J., & Zhou, D. (2016). Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: The key role of antagonism in soil. Scientific Reports, 6, 19477. https://doi.org/10.1038/srep19477
  • Wang, Y., Dang, F., Zhao, J-T., & Zhong, H. (2016). Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environmental Pollution (Barking, Essex: 1987), 213, 232–239. https://doi.org/10.1016/j.envpol.2016.02.021
  • Wang, Y., Dang, F., Zhong, H., Wei, Z., & Li, P. (2016). Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Environmental Science and Pollution Research International, 23(5), 4602–4608. https://doi.org/10.1007/s11356-015-5696-8
  • Wang, X., He, Z., Luo, H., Zhang, M., Zhang, D., Pan, X., & Gadd, G. M. (2018). Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. The Science of the Total Environment, 615, 615–623. https://doi.org/10.1016/j.scitotenv.2017.09.336
  • Wang, D., Rensing, C., & Zheng, S. (2022). Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. Journal of Hazardous Materials, 421, 126684. https://doi.org/10.1016/j.jhazmat.2021.126684
  • Wang, X., Tam, N. F.-Y., Fu, S., Ametkhan, A., Ouyang, Y., & Ye, Z. (2014). Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Annals of Botany, 114(2), 271–278. https://doi.org/10.1093/aob/mcu117
  • Wang, X., Zhang, D., Pan, X., Lee, D.-J., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2017). Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere, 170, 266–273. https://doi.org/10.1016/j.chemosphere.2016.12.020
  • Wells, M., Basu, P., & Stolz, J. F. (2021). The physiology and evolution of microbial selenium metabolism. Metallomics: Integrated Biometal Science, 13(6), 1–26. https://doi.org/10.1093/mtomcs/mfab024
  • WHO. (2013). ZH IPCS:Ten chemicals of major public health concern. https://www.who.int/news/item/11-10-2013-who-calls-for-the-phase-out-of-mercury-fever-thermometers-and-blood-pressure-measuring-devices-by-2020.
  • Wiatrowski, H. A., Das, S., Kukkadapu, R., Ilton, E. S., Barkay, T., & Yee, N. (2009). Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 43(14), 5307–5313. https://doi.org/10.1021/es9003608
  • Wolfe, N. L., Zepp, R. G., Gordon, J. A., & Baughman, G. L. (1973). Chemistry of methylmercurials in aqueous solution. Chemosphere, 2(4), 147–152. https://doi.org/10.1016/0045-6535(73)90014-3
  • Wu, Q., Hu, H., Meng, B., Wang, B., Poulain, A. J., Zhang, H., Liu, J., Bravo, A. G., Bishop, K., Bertilsson, S., & Feng, X. (2020). Methanogenesis is an important process in controlling MeHg concentration in rice paddy soils affected by mining activities. Environmental Science & Technology, 54(21), 13517–13526. https://doi.org/10.1021/acs.est.0c00268
  • Wu, Q., Wang, B., Hu, H., Bravo, A. G., Bishop, K., Bertilsson, S., Meng, B., Zhang, H., & Feng, X. (2023). Sulfate-reduction and methanogenesis are coupled to Hg(II) and MeHg reduction in rice paddies. Journal of Hazardous Materials, 460, 132486. https://doi.org/10.1016/j.jhazmat.2023.132486
  • Xie, H., He, L., Tian, X., Zhang, W., Cui, L., Shang, L., Zhao, J., Li, B., & Li, Y.-F. (2023). Nano mercury selenide as a source of mercury for rice. Environmental Pollution (Barking, Essex: 1987), 318, 120918. https://doi.org/10.1016/j.envpol.2022.120918
  • Xu, X., Yan, M., Liang, L., Lu, Q., Han, J., Liu, L., Feng, X., Guo, J., Wang, Y., & Qiu, G. (2019). Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution (Barking, Essex: 1987), 249, 647–654. https://doi.org/10.1016/j.envpol.2019.03.095
  • Yang, D.-Y., Chen, Y.-W., & Belzile, N. (2011). Evidences of non-reactive mercury-selenium compounds generated from cultures of Pseudomonas fluorescens. The Science of the Total Environment, 409(9), 1697–1703. https://doi.org/10.1016/j.scitotenv.2011.01.030
  • Yang, D.-Y., Chen, Y.-W., Gunn, J. M., & Belzile, N. (2008). Selenium and mercury in organisms: Interactions and mechanisms. Environmental Reviews, 16(NA), 71–92. https://doi.org/10.1139/A08-001
  • Yathavakilla, S. K. V., & Caruso, J. A. (2007). A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Analytical and Bioanalytical Chemistry, 389(3), 715–723. https://doi.org/10.1007/s00216-007-1458-x
  • Yin, R. S., Feng, X. B., & Meng, B. (2013). Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environmental Science & Technology, 47(5), 2238–2245. https://doi.org/10.1021/es304302a
  • Yu, Q., Boyanov, M. I., Liu, J., Kemner, K. M., & Fein, J. B. (2018). Adsorption of selenite onto Bacillus subtilis: The overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se(IV). Environmental Science & Technology, 52(18), 10400–10407. https://doi.org/10.1021/acs.est.8b02280
  • Zhang, H., Feng, X., Jiang, C., Li, Q., Liu, Y., Gu, C., Shang, L., Li, P., Lin, Y., & Larssen, T. (2014). Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environmental Pollution (Barking, Essex: 1987), 188, 27–36. https://doi.org/10.1016/j.envpol.2014.01.012
  • Zhang, H., Feng, X., Larssen, T., Qiu, G., & Vogt, R. D. (2010). In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives, 118(9), 1183–1188. https://doi.org/10.1289/ehp.1001915
  • Zhang H., Feng, X., Wang Z., & Larssen, T. (2013). Advances in research on the mechanisms of selenium-mercury interactions. Earth and Environment, 41(6), 696–708. https://doi.org/10.14050/j.cnki.1672-9250.2013.06.011
  • Zhang, H., Feng, X., Zhu, J., Sapkota, A., Meng, B., Yao, H., Qin, H., & Larssen, T. (2012). Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environmental Science & Technology, 46(18), 10040–10046. https://doi.org/10.1021/es302245r
  • Zhang, C., Qiu, G., Anderson, C. W. N., Zhang, H., Meng, B., Liang, L., & Feng, X. (2015). Effect of atmospheric mercury deposition on selenium accumulation in rice (Oryza sativa L.) at a mercury mining region in Southwestern China. Environmental Science & Technology, 49(6), 3540–3547. https://doi.org/10.1021/es505827d
  • Zhao, J. T., Gao, Y. X., Li, Y. F., Hu, Y., Peng, X. M., Dong, Y. X., Li, B., Chen, C. Y., & Chai, Z. F. (2013). Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 125, 75–81. https://doi.org/10.1016/j.envres.2013.01.010
  • Zhao, J., Liang, X., Zhu, N., Wang, L., Li, Y., Li, Y.-F., Zheng, L., Zhang, Z., Gao, Y., & Chai, Z. (2020). Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 7(4), 1115–1125. https://doi.org/10.1039/C9EN01294J
  • Zhao, J., Li, Y., Li, Y., Gao, Y., Li, B., Hu, Y., Zhao, Y., & Chai, Z. (2014). Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics: Integrated Biometal Science, 6(10), 1951–1957. https://doi.org/10.1039/c4mt00170b
  • Zhao, J., Li, Y., Zhu, N., Gao, Y., & Chai, Z. (2015). Investigation of mercury- selenium interaction in bio-organisms using metallomics approach. Science & Technology Review, 33(12), 93–100. https://doi.org/10.3981/j.issn.1000-7857.2015.12.016
  • Zhou, X. B., & Li, Y. Y. (2019). Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture. Environmental Science and Pollution Research International, 26(14), 13795–13803. https://doi.org/10.1007/s11356-018-3066-z
  • Zhou, X.-B., & Shi, W.-M. (2007). Effect of root surface iron plaque on se translocation and uptake by Fe-deficient rice. Pedosphere, 17(5), 580–587. https://doi.org/10.1016/s1002-0160(07)60068-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.