133
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements and challenges in protein purification techniques for denitrifying enzymes: A path to effective nitrogen removal and reduced N2O emissions

, , , , , & show all

References

  • Al-Attar, S., & de Vries, S. (2015). An electrogenic nitric oxide reductase. FEBS Letters, 589(16), 2050–2057. https://doi.org/10.1016/j.febslet.2015.06.033
  • Albertsson, I., Sjöholm, J., Beek, J., Watmough, N. J., Widengren, J., & Ädelroth, P. (2019). Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Scientific Reports, 9(1), 17234. https://doi.org/10.1038/s41598-019-53553-z
  • Almeida, S., Sousa, C., Abreu, V., Diniz, C., Dorneles, E. M. S., Lage, A. P., Barh, D., & Azevedo, V. (2017). Exploration of nitrate reductase metabolic pathway in Corynebacterium pseudotuberculosis. International Journal of Genomics, 2017, 9481756–9481712. https://doi.org/10.1155/2017/9481756
  • Arciszewska, K., Kowalska, E., Bartnicki, F., Bonarek, P., Banaś, A. K., & Strzałka, W. (2023). DNA aptamer-based affinity chromatography system for purification of recombinant proteins tagged with lysine tag. Journal of Chromatography. A, 1692, 463846. https://doi.org/10.1016/j.chroma.2023.463846
  • Argandoña, M., Martínez-Checa, F., Llamas, I., Arco, Y., Quesada, E., & del Moral, A. (2006). A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles: Life under Extreme Conditions, 10(5), 411–419. https://doi.org/10.1007/s00792-006-0515-2
  • Arias-Cartin, R., Grimaldi, S., Pommier, J., Lanciano, P., Schaefer, C., Arnoux, P., Giordano, G., Guigliarelli, B., & Magalon, A. (2011). Cardiolipin-based respiratory complex activation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7781–7786. https://doi.org/10.1073/pnas.1010427108
  • Arnoux, P., Sabaty, M., Alric, J., Frangioni, B., Guigliarelli, B., Adriano, J.-M., & Pignol, D. (2003). Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nature Structural Biology, 10(11), 928–934. https://doi.org/10.1038/nsb994
  • Bakken, L. R., Bergaust, L., Liu, B., & Frostegård, Å. (2012). Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1593), 1226–1234. https://doi.org/10.1098/rstb.2011.0321
  • Benedini, L. J., Figueiredo, D., Cabrera-Crespo, J., Gonçalves, V. M., Silva, G. G., Campani, G., Zangirolami, T. C., & Furlan, F. F. (2020). Modeling and simulation of anion exchange chromatography for purification of proteins in complex mixtures. Journal of Chromatography. A, 1613, 460685. https://doi.org/10.1016/j.chroma.2019.460685
  • Bennett, S. P., Soriano-Laguna, M. J., Bradley, J. M., Svistunenko, D. A., Richardson, D. J., Gates, A. J., & Le Brun, N. E. (2019). NosL is a dedicated copper chaperone for assembly of the CuZ center of nitrous oxide reductase. Chemical Science, 10(19), 4985–4993. https://doi.org/10.1039/c9sc01053j
  • Bergaust, L., Shapleigh, J., Frostegård, Å., & Bakken, L. (2008). Transcription and activities of NOx reductases in Agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environmental Microbiology, 10(11), 3070–3081. https://doi.org/10.1111/j.1462-2920.2007.01557.x
  • Berks, B. C., Richardson, D. J., Robinson, C., Reilly, A., Aplin, R. T., & Ferguson, S. J. (1994). Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. European Journal of Biochemistry, 220(1), 117–124. https://doi.org/10.1111/j.1432-1033.1994.tb18605.x
  • Bertero, M. G., Rothery, R. A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J. H., & Strynadka, N. C. J. (2003). Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nature Structural Biology, 10(9), 681–687. https://doi.org/10.1038/nsb969
  • Bird, L. E. (2011). High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods (San Diego, Calif.), 55(1), 29–37. https://doi.org/10.1016/j.ymeth.2011.08.002
  • Blomberg, M. R. A., & Siegbahn, P. E. M. (2016). Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR). Journal of Computational Chemistry, 37(19), 1810–1818. https://doi.org/10.1002/jcc.24396
  • Campbell, W. H., & Kinghorn, K. R. (1990). Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends in Biochemical Sciences, 15(8), 315–319. https://doi.org/10.1016/0968-0004(90)90021-3
  • Cerqueira, N. M. F. S. A., Gonzalez, P. J., Fernandes, P. A., Moura, J. J. G., & Ramos, M. J. (2015). Periplasmic nitrate reductase and formate dehydrogenase: Similar molecular architectures with very different enzymatic activities. Accounts of Chemical Research, 48(11), 2875–2884. https://doi.org/10.1021/acs.accounts.5b00333
  • Cheng, J., Liu, T., You, X., Zhang, F., Sui, S.-F., Wan, X., & Zhang, X. (2023). Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nature Communications, 14(1), 1282. https://doi.org/10.1038/s41467-023-36175-y
  • Chu, S., Zhang, D., Wang, D., Zhi, Y., & Zhou, P. (2017). Heterologous expression and biochemical characterization of assimilatory nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil. International Journal of Biological Macromolecules, 101, 1019–1028. https://doi.org/10.1016/j.ijbiomac.2017.04.009
  • Coelho, C., & Romão, M. J. (2015). Structural and mechanistic insights on nitrate reductases. Protein Science: A Publication of the Protein Society, 24(12), 1901–1911. https://doi.org/10.1002/pro.2801
  • Coskun, O. (2016). Separation techniques: Chromatography. Northern Clinics of Istanbul, 3(2), 156–160. https://doi.org/10.14744/nci.2016.32757
  • Crowe, J., Döbeli, H., Gentz, R., Hochuli, E., Stüber, D., & Henco, K. (1994). 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods in Molecular Biology (Clifton, N.J.), 31, 371–387. https://doi.org/10.1385/0-89603-258-2:371
  • Cummins, P. M., Rochfort, K. D., & O’Connor, B. F. (2017). Ion-exchange chromatography: Basic principles and application. Protein chromatography: methods and protocols, 209–223.
  • Denisov, I. G., & Sligar, S. G. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nature Structural & Molecular Biology, 23(6), 481–486. https://doi.org/10.1038/nsmb.3195
  • Dias, J. M., Than, M. E., Humm, A., Huber, R., Bourenkov, G. P., Bartunik, H. D., Bursakov, S., Calvete, J., Caldeira, J., Carneiro, C., Moura, J. J., Moura, I., & Romão, M. J. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure (London, England: 1993), 7(1), 65–79. https://doi.org/10.1016/s0969-2126(99)80010-0
  • Dong, X., Liu, H., Long, S., Xu, S., & Lichtfouse, E. (2022). Weak electrical stimulation on biological denitrification: Insights from the denitrifying enzymes. The Science of the Total Environment, 806(Pt 4), 150926. https://doi.org/10.1016/j.scitotenv.2021.150926
  • Dow, J. M., Grahl, S., Ward, R., Evans, R., Byron, O., Norman, D. G., Palmer, T., & Sargent, F. (2014). Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone. The FEBS Journal, 281(1), 246–260. https://doi.org/10.1111/febs.12592
  • Du, F., Liu, Y. Q., Xu, Y.-S., Li, Z. J., Wang, Y. Z., Zhang, Z. X., & Sun, X. M. (2021). Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microbial Cell Factories, 20(1), 189. https://doi.org/10.1186/s12934-021-01680-6
  • Duré, A. B., Cristaldi, J. C., Guevara Cuasapud, L. A., Dalosto, S. D., Rivas, M. G., Ferroni, F. M., González, P. J., Montich, G. G., & Brondino, C. D. (2023). Molecular and kinetic properties of copper nitrite reductase from Sinorhizobium meliloti 2011 upon substituting the interfacial histidine ligand coordinated to the type 2 copper active site for glycine. Journal of Inorganic Biochemistry, 241, 112155. https://doi.org/10.1016/j.jinorgbio.2023.112155
  • Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G. P., Bartunik, H. D., Huber, R., & Kroneck, P. M. H. (1999). Structure of cytochrome c nitrite reductase. Nature, 400(6743), 476–480. https://doi.org/10.1038/22802
  • Farrar, J. A., Zumft, W. G., & Thomson, A. J. (1998). CuA and CuZ are variants of the electron transfer center in nitrous oxide reductase. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 9891–9896. https://doi.org/10.1073/pnas.95.17.9891
  • Francis, D. M., & Page, R. (2010). Strategies to optimize protein expression in E. coli. Current Protocols in Protein Science, Chapter 5(1), 5.24.1–5.24.29. https://doi.org/10.1002/0471140864.ps0524s61
  • Fukuda, M., Takeda, H., Kato, H. E., Doki, S., Ito, K., Maturana, A. D., Ishitani, R., & Nureki, O. (2015). Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK. Nature Communications, 6(1), 7097. https://doi.org/10.1038/ncomms8097
  • Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., Inoue, S., Masuda, T., Yumoto, F., Matsugaki, N., Nango, E., Tono, K., Joti, Y., Kameshima, T., Song, C., Hatsui, T., Yabashi, M., Nureki, O., Murphy, M. E. P., … Mizohata, E. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 113(11), 2928–2933. https://doi.org/10.1073/pnas.1517770113
  • Fülöp, V., Moir, J. W. B., Ferguson, S. J., & Hajdu, J. (1995). The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell, 81(3), 369–377. https://doi.org/10.1016/0092-8674(95)90390-9
  • Gao, H., Li, C., Ramesh, B., & Hu, N. (2018). Cloning, purification and characterization of novel Cu-containing nitrite reductase from the Bacillus firmus GY-49. World Journal of Microbiology and Biotechnology, 34(1), 10. https://doi.org/10.1007/s11274-017-2383-6
  • García-Fruitós, E. (2010). Inclusion bodies: A new concept. Microbial Cell Factories, 9(1), 80. https://doi.org/10.1186/1475-2859-9-80
  • Godden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J., & LeGall, J. (1991). The 2.3 Angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science (New York, N.Y.), 253(5018), 438–442. https://doi.org/10.1126/science.1862344
  • Gonska, N., Young, D., Yuki, R., Okamoto, T., Hisano, T., Antonyuk, S., Hasnain, S. S., Muramoto, K., Shiro, Y., Tosha, T., & Ädelroth, P. (2018). Characterization of the quinol-dependent nitric oxide reductase from the pathogen Neisseria meningitidis, an electrogenic enzyme. Scientific Reports, 8(1), 3637. https://doi.org/10.1038/s41598-018-21804-0
  • Gopalasingam, C. C., Johnson, R. M., Chiduza, G. N., Tosha, T., Yamamoto, M., Shiro, Y., Antonyuk, S. V., Muench, S. P., & Hasnain, S. S. (2019). Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo–electron microscopy. Science Advances, 5(8), eaax1803. https://doi.org/10.1126/sciadv.aax1803
  • Graf, D. R. H., Jones, C. M., & Hallin, S. (2014). Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PloS One, 9(12), e114118. https://doi.org/10.1371/journal.pone.0114118
  • Guo, K., Feng, X., Sun, W., Han, S., Wu, S., & Gao, H. (2022). NapB restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Communications Biology, 5(1), 87. https://doi.org/10.1038/s42003-022-03034-3
  • Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., & Jones, C. M. (2018). Genomics and ecology of novel N2O-reducing microorganisms. Trends in Microbiology, 26(1), 43–55. https://doi.org/10.1016/j.tim.2017.07.003
  • Han, C., Wright, G. S. A., Fisher, K., Rigby, S. E. J., Eady, R. R., & Hasnain, S. S. (2012). Characterization of a novel copper-HAEM c dissimilatory nitrite reductase from Ralstonia pickettii. The Biochemical Journal, 444(2), 219–226. https://doi.org/10.1042/BJ20111623
  • Hino, T., Matsumoto, Y., Nagano, S., Sugimoto, H., Fukumori, Y., Murata, T., Iwata, S., & Shiro, Y. (2010). Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science (New York, N.Y.), 330(6011), 1666–1670. https://doi.org/10.1126/science.1195591
  • Hino, T., Nagano, S., Sugimoto, H., Tosha, T., & Shiro, Y. (2012). Molecular structure and function of bacterial nitric oxide reductase. Biochimica et Biophysica Acta, 1817(4), 680–687. https://doi.org/10.1016/j.bbabio.2011.09.021
  • Jamali, M. A. M., Gopalasingam, C. C., Johnson, R. M., Tosha, T., Muramoto, K., Muench, S. P., Antonyuk, S. V., Shiro, Y., & Hasnain, S. S. (2020). The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. IUCrJ, 7(Pt 3), 404–415. https://doi.org/10.1107/S2052252520003656
  • Jepson, B. J. N., Mohan, S., Clarke, T. A., Gates, A. J., Cole, J. A., Butler, C. S., Butt, J. N., Hemmings, A. M., & Richardson, D. J. (2007). Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. The Journal of Biological Chemistry, 282(9), 6425–6437. https://doi.org/10.1074/jbc.M607353200
  • Jormakka, M., Richardson, D., Byrne, B., & Iwata, S. (2004). Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure (London, England: 1993), 12(1), 95–104. https://doi.org/10.1016/j.str.2003.11.020
  • Jormakka, M., Törnroth, S., Abramson, J., Byrne, B., & Iwata, S. (2002). Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 1), 160–162. https://doi.org/10.1107/s0907444901017723
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Jungbauer, A., Kaar, W., & Schlegl, R. (2004). Folding and refolding of proteins in chromatographic beds. Current Opinion in Biotechnology, 15(5), 487–494. https://doi.org/10.1016/j.copbio.2004.08.009
  • Kahle, M., Blomberg, M. R. A., Jareck, S., & Ädelroth, P. (2019). Insights into the mechanism of nitric oxide reductase from a FeB-depleted variant. FEBS Letters, 593(12), 1351–1359. https://doi.org/10.1002/1873-3468.13436
  • Kahle, M., Ter Beek, J., Hosler, J. P., & Ädelroth, P. (2018). The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on NorQ and NorD accessory proteins. Biochimica et Biophysica Acta Bioenergetics, 1859(10), 1051–1058. https://doi.org/10.1016/j.bbabio.2018.05.020
  • Kameya, M., Kanbe, H., Igarashi, Y., Arai, H., & Ishii, M. (2017). Nitrate reductases in Hydrogenobacter thermophilus with evolutionarily ancient features: Distinctive localization and electron transfer. Molecular Microbiology, 106(1), 129–141. https://doi.org/10.1111/mmi.13756
  • Kilic, V., Kilic, G. A., Kutlu, H. M., & Martínez-Espinosa, R. M. (2017). Nitrate reduction in Haloferax alexandrinus: The case of assimilatory nitrate reductase. Extremophiles: Life under Extreme Conditions, 21(3), 551–561. https://doi.org/10.1007/s00792-017-0924-4
  • Koppenhöfer, A., Little, R. H., Lowe, D. J., Ferguson, S. J., & Watmough, N. J. (2000). Oxidase reaction of Cytochrome cd1 from Paracoccus pantotrophus. Biochemistry, 39(14), 4028–4036. https://doi.org/10.1021/bi991912k
  • Krishnarjuna, B., Marte, J., Ravula, T., & Ramamoorthy, A. (2023). Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. Journal of Colloid and Interface Science, 634, 887–896. https://doi.org/10.1016/j.jcis.2022.12.112
  • Krishnarjuna, B., & Ramamoorthy, A. (2022). Detergent-free isolation of membrane proteins and strategies to study them in a near-native membrane environment. Biomolecules, 12(8), 1076. https://doi.org/10.3390/biom12081076
  • Kumita, H., Matsuura, K., Hino, T., Takahashi, S., Hori, H., Fukumori, Y., Morishima, I., & Shiro, Y. (2004). NO reduction by nitric-oxide reductase from denitrifying bacterium Pseudomonas aeruginosa. The Journal of Biological Chemistry, 279(53), 55247–55254. https://doi.org/10.1074/jbc.M409996200
  • Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9
  • Lee, H. J., Lee, H. S., Youn, T., Byrne, B., & Chae, P. S. (2022). Impact of novel detergents on membrane protein studies. Chem, 8(4), 980–1013. https://doi.org/10.1016/j.chempr.2022.02.007
  • Leferink, N. G. H., Antonyuk, S. V., Houwman, J. A., Scrutton, N. S., Eady, R. R., & Hasnain, S. S. (2014). Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Nature Communications, 5(1), 4395. https://doi.org/10.1038/ncomms5395
  • Lehnert, N., Dong, H. T., Harland, J. B., Hunt, A. P., & White, C. J. (2018). Reversing nitrogen fixation. Nature Reviews Chemistry, 2(10), 278–289. https://doi.org/10.1038/s41570-018-0041-7
  • Lv, S., Zheng, F., Wang, Z., Hayat, K., Veiga, M. C., Kennes, C., & Chen, J. (2024). Unveiling novel pathways and key contributors in the nitrogen cycle: Validation of enrichment and taxonomic characterization of oxygenic denitrifying microorganisms in environmental samples. The Science of the Total Environment, 908, 168339. https://doi.org/10.1016/j.scitotenv.2023.168339
  • Mahinthichaichan, P., Gennis, R. B., & Tajkhorshid, E. (2018). Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Biochimica et Biophysica Acta Bioenergetics, 1859(9), 712–724. https://doi.org/10.1016/j.bbabio.2018.06.002
  • Martínez-Espinosa, R. M., Marhuenda-Egea, F. C., & Bonete, M. J. (2001). Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: Purification and characterisation. FEMS Microbiology Letters, 204(2), 381–385. https://doi.org/10.1111/j.1574-6968.2001.tb10914.x
  • Matsumoto, Y., Tosha, T., Pisliakov, A. V., Hino, T., Sugimoto, H., Nagano, S., Sugita, Y., & Shiro, Y. (2012). Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 19(2), 238–245. https://doi.org/10.1038/nsmb.2213
  • Mintmier, B., McGarry, J. M., Bain, D. J., & Basu, P. (2021). Kinetic consequences of the endogenous ligand to molybdenum in the DMSO reductase family: A case study with periplasmic nitrate reductase. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 26(1), 13–28. https://doi.org/10.1007/s00775-020-01833-9
  • Mintmier, B., McGarry, J. M., Sparacino-Watkins, C. E., Sallmen, J., Fischer-Schrader, K., Magalon, A., McCormick, J. R., Stolz, J. F., Schwarz, G., Bain, D. J., & Basu, P. (2018). Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni. FEMS Microbiology Letters, 365(16), fny151. https://doi.org/10.1093/femsle/fny151
  • Miralles-Robledillo, J. M., Bernabeu, E., Giani, M., Martínez-Serna, E., Martínez-Espinosa, R. M., & Pire, C. (2021). Distribution of denitrification among Haloarchaea: A comprehensive study. Microorganisms, 9(8), 1669. Article 8. https://doi.org/10.3390/microorganisms9081669
  • Moir, J. W. B., Baratta, D., Richardson, D. J., & Ferguson, S. J. (1993). The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. European Journal of Biochemistry, 212(2), 377–385. https://doi.org/10.1111/j.1432-1033.1993.tb17672.x
  • Moreno-Vivián, C., Cabello, P., Martínez-Luque, M., Blasco, R., & Castillo, F. (1999). Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. Journal of Bacteriology, 181(21), 6573–6584. https://doi.org/10.1128/JB.181.21.6573-6584.1999
  • Morozkina, E. V., & Zvyagilskaya, R. A. (2007). Nitrate reductases: Structure, functions, and effect of stress factors. Biochemistry. Biokhimiia, 72(10), 1151–1160. https://doi.org/10.1134/s0006297907100124
  • Müller, C., Zhang, L., Zipfel, S., Topitsch, A., Lutz, M., Eckert, J., Prasser, B., Chami, M., Lü, W., Du, J., & Einsle, O. (2022). Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature, 608(7923), 626–631. Article 7923. https://doi.org/10.1038/s41586-022-05015-2
  • Nojiri, M., Koteishi, H., Nakagami, T., Kobayashi, K., Inoue, T., Yamaguchi, K., & Suzuki, S. (2009). Structural basis of inter-protein electron transfer for nitrite reduction in denitrification. Nature, 462(7269), 117–120. https://doi.org/10.1038/nature08507
  • Nojiri, M., Xie, Y., Inoue, T., Yamamoto, T., Matsumura, H., Kataoka, K., Yamaguchi, K., Kai, Y., Suzuki, S., Deligeer. (2007). Structure and function of a hexameric copper-containing nitrite reductase. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4315–4320. https://doi.org/10.1073/pnas.0609195104
  • Oba, K., Suenaga, T., Kuroiwa, M., Riya, S., & Terada, A. (2022). Exploring the functions of efficient canonical denitrifying bacteria as N2O sinks: Implications from 15N tracer and transcriptome analyses. Environmental Science & Technology, 56(16), 11694–11706. https://doi.org/10.1021/acs.est.2c02119
  • Opperman, D. J., Murgida, D. H., Dalosto, S. D., Brondino, C. D., & Ferroni, F. M. (2019). A three-domain copper-nitrite reductase with a unique sensing loop. IUCrJ, 6(Pt 2), 248–258. https://doi.org/10.1107/S2052252519000241
  • Pang, Y., & Wang, J. (2021). Various electron donors for biological nitrate removal: A review. The Science of the Total Environment, 794, 148699. https://doi.org/10.1016/j.scitotenv.2021.148699
  • Paraskevopoulou, V., & Falcone, F. (2018). Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms, 6(2), 47. https://doi.org/10.3390/microorganisms6020047
  • Pauleta, S. R., Dell’Acqua, S., & Moura, I. (2013). Nitrous oxide reductase. Coordination Chemistry Reviews, 257(2), 332–349. https://doi.org/10.1016/j.ccr.2012.05.026
  • Peciak, K., Laurine, E., Tommasi, R., Choi, J., & Brocchini, S. (2019). Site-selective protein conjugation at histidine. Chemical Science, 10(2), 427–439. https://doi.org/10.1039/C8SC03355B
  • Pedroso, H. A., Silveira, C. M., Almeida, R. M., Almeida, A., Besson, S., Moura, I., Moura, J. J. G., & Almeida, M. G. (2016). Electron transfer and docking between cytochrome cd1 nitrite reductase and different redox partners—A comparative study. Biochimica et Biophysica Acta, 1857(9), 1412–1421. https://doi.org/10.1016/j.bbabio.2016.04.279
  • Perret, G., & Boschetti, E. (2020). Aptamer-based affinity chromatography for protein extraction and purification. Aptamers in Biotechnology, 93–193.
  • Philippot, L., & Højberg, O. (1999). Dissimilatory nitrate reductases in bacteria. Biochimica et Biophysica Acta, 1446(1-2), 1–23. https://doi.org/10.1016/s0167-4781(99)00072-x
  • Pignol, D., Adriano, J. M., Fontecilla-Camps, J. C., & Sabaty, M. (2001). Crystallization and preliminary X-ray analysis of the periplasmic nitrate reductase (NapA-NapB complex) from Rhodobacter sphaeroides f. Sp. Denitrificans. Acta Crystallographica. Section D, Biological Crystallography, 57(Pt 12), 1900–1902. https://doi.org/10.1107/s0907444901015852
  • Pinho, D., Besson, S., Silva, P. J., de Castro, B., & Moura, I. (2005). Isolation and spectroscopic characterization of the membrane-bound nitrate reductase from Pseudomonas chlororaphis DSM 50135. Biochimica et Biophysica Acta, 1723(1-3), 151–162. https://doi.org/10.1016/j.bbagen.2005.02.008
  • Pisliakov, A. V., Hino, T., Shiro, Y., & Sugita, Y. (2012). Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase. PLoS Computational Biology, 8(8), e1002674. https://doi.org/10.1371/journal.pcbi.1002674
  • Pomowski, A., Zumft, W. G., Kroneck, P. M. H., & Einsle, O. (2011). N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature, 477(7363), 234–237. https://doi.org/10.1038/nature10332
  • Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258(5536), 598–599. https://doi.org/10.1038/258598a0
  • Prasser, B., Schöner, L., Zhang, L., & Einsle, O. (2021). The copper chaperone NosL forms a heterometal site for Cu delivery to nitrous oxide reductase. Angewandte Chemie (International ed. in English), 60(34), 18810–18814. https://doi.org/10.1002/anie.202106348
  • Privé, G. G. (2007). Detergents for the stabilization and crystallization of membrane proteins. Methods (San Diego, Calif.), 41(4), 388–397. https://doi.org/10.1016/j.ymeth.2007.01.007
  • Prudêncio, M., Pereira, A. S., Tavares, P., Besson, S., Cabrito, I., Brown, K., Samyn, B., Devreese, B., Van Beeumen, J., Rusnak, F., Fauque, G., Moura, J. J., Tegoni, M., Cambillau, C., & Moura, I. (2000). Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617. Biochemistry, 39(14), 3899–3907. https://doi.org/10.1021/bi9926328
  • Qi, C., Zhou, Y., Suenaga, T., Oba, K., Lu, J., Wang, G., Zhang, L., Yoon, S., & Terada, A. (2022). Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. Water Research, 209, 117910. https://doi.org/10.1016/j.watres.2021.117910
  • Qin, X., Deng, L., Hu, C., Li, L., & Chen, X. (2017). Copper-containing nitrite reductase employing proton-coupled spin-exchanged electron-transfer and multiproton synchronized transfer to reduce nitrite. Chemistry (Weinheim an Der Bergstrasse, Germany), 23(59), 14900–14910. https://doi.org/10.1002/chem.201703221
  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science (New York, N.Y.), 326(5949), 123–125. https://doi.org/10.1126/science.1176985
  • Rendon, J., Pilet, E., Fahs, Z., Seduk, F., Sylvi, L., Hajj Chehade, M., Pierrel, F., Guigliarelli, B., Magalon, A., & Grimaldi, S. (2015). Demethylmenaquinol is a substrate of Escherichia coli nitrate reductase A (NarGHI) and forms a stable semiquinone intermediate at the NarGHI quinol oxidation site. Biochimica et Biophysica Acta, 1847(8), 739–747. https://doi.org/10.1016/j.bbabio.2015.05.001
  • Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S., & Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cellular and Molecular Life Sciences: CMLS, 58(2), 165–178. https://doi.org/10.1007/PL00000845
  • Richter, C. D., Allen, J. W. A., Higham, C. W., Koppenhofer, A., Zajicek, R. S., Watmough, N. J., & Ferguson, S. J. (2002). Cytochrome cd1, reductive activation and kinetic analysis of a multifunctional respiratory enzyme. The Journal of Biological Chemistry, 277(5), 3093–3100. https://doi.org/10.1074/jbc.M108944200
  • Rinaldo, S., Giardina, G., Castiglione, N., Stelitano, V., & Cutruzzolà, F. (2011). The catalytic mechanism of Pseudomonas aeruginosa cd 1 nitrite reductase. Biochemical Society Transactions, 39(1), 195–200. https://doi.org/10.1042/BST0390195
  • Rinaldo, S., Sam, K. A., Castiglione, N., Stelitano, V., Arcovito, A., Brunori, M., Allen, J. W. A., Ferguson, S. J., & Cutruzzolà, F. (2011). Observation of fast release of NO from ferrous d 1 haem allows formulation of a unified reaction mechanism for cytochrome cd 1 nitrite reductases. The Biochemical Journal, 435(1), 217–225. https://doi.org/10.1042/BJ20101615
  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S. I., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., … Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. https://doi.org/10.5751/ES-03180-140232
  • Sadeghi, S., Deshpande, S., Vallerinteavide Mavelli, G., Aksoyoglu, A., Bafna, J., Winterhalter, M., Kini, R. M., Lane, D. P., & Drum, C. L. (2021). A general approach to protein folding using thermostable exoshells. Nature Communications, 12(1), 5720. https://doi.org/10.1038/s41467-021-25996-4
  • Salomonsson, L., Reimann, J., Tosha, T., Krause, N., Gonska, N., Shiro, Y., & Adelroth, P. (2012). Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen. Biochimica et Biophysica Acta, 1817(10), 1914–1920. https://doi.org/10.1016/j.bbabio.2012.04.007
  • Schneider, L. K., & Einsle, O. (2016). Role of calcium in secondary structure stabilization during maturation of nitrous oxide reductase. Biochemistry, 55(10), 1433–1440. https://doi.org/10.1021/acs.biochem.5b01278
  • Schuster, L. A., & Reisch, C. R. (2022). Plasmids for controlled and tunable high-level expression in E. coli. Applied and Environmental Microbiology, 88(22), e00939-22. https://doi.org/10.1128/aem.00939-22
  • Sengupta, S., Shaila, M. S., & Rao, G. R. (1996). Purification and characterization of assimilatory nitrite reductase from Candida utilis. The Biochemical Journal, 317(Pt 1), 147–155. https://doi.org/10.1042/bj3170147
  • Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8(11), 779–790. https://doi.org/10.1038/nrmicro2439
  • Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M., & Panda, A. K. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14(1), 41. https://doi.org/10.1186/s12934-015-0222-8
  • Structural Genomics Consortium, Architecture et Fonction des Macromolécules Biologiques, Berkeley Structural Genomics Center, China Structural Genomics Consortium, Integrated Center for Structure and Function Innovation, Israel Structural Proteomics Center, Joint Center for Structural Genomics, Midwest Center for Structural Genomics, New York Structural GenomiX Research Center for Structural Genomics, Northeast Structural Genomics Consortium, Oxford Protein Production Facility, Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, RIKEN Structural Genomics/Proteomics Initiative, & SPINE2-Complexes. (2008). Protein production and purification. Nature Methods, 5(2), 135–146. https://doi.org/10.1038/nmeth.f.202
  • Suharti, S. (2019). The phenomenon of UV-Vis spectroscopic changing due the binding of CO to the nitric oxide reductase from Bacillus Azotoformans. IOP Conference Series: Materials Science and Engineering, 509, 012141. https://doi.org/10.1088/1757-899X/509/1/012141
  • Suharti, Heering, H. A., de Vries, S. (2004). NO reductase from Bacillus azotoformans is a bifunctional enzyme accepting electrons from menaquinol and a specific endogenous membrane-bound cytochrome c551. Biochemistry, 43(42), 13487–13495. https://doi.org/10.1021/bi0488101
  • Suharti, Strampraad, M. J., Schröder, I., de Vries, S. (2001). A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry, 40(8), 2632–2639. https://doi.org/10.1021/bi0020067
  • Sun, Y., Xu, J., Zhou, H., Zhang, H., Wu, J., & Yang, L. (2023). Recombinant protein expression Chassis library of Vibrio natriegens by fine-tuning the expression of T7 RNA polymerase. ACS Synthetic Biology, 12(2), 555–564. https://doi.org/10.1021/acssynbio.2c00562
  • Suzuki, S., Kataoka, K., & Yamaguchi, K. (2000). Metal coordination and mechanism of multicopper nitrite reductase. Accounts of Chemical Research, 33(10), 728–735. https://doi.org/10.1021/ar9900257
  • Tan, W., Liao, T. H., Wang, J., Ye, Y., Wei, Y. C., Zhou, H. K., Xiao, Y., Zhi, X. Y., Shao, Z. H., Lyu, L. D., & Zhao, G. P. (2020). A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. The Journal of Biological Chemistry, 295(15), 5051–5066. https://doi.org/10.1074/jbc.RA120.012859
  • ter Beek, J., Krause, N., Reimann, J., Lachmann, P., & Ädelroth, P. (2013). The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway. The Journal of Biological Chemistry, 288(42), 30626–30635. https://doi.org/10.1074/jbc.M113.497347
  • Terasaka, E., Okada, N., Sato, N., Sako, Y., Shiro, Y., & Tosha, T. (2014). Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: Enzymatic activity and active site structure. Biochimica et Biophysica Acta, 1837(7), 1019–1026. https://doi.org/10.1016/j.bbabio.2014.02.017
  • Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N., Gurney, K. R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., … Wofsy, S. C. (2016). The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 531(7593), 225–228. https://doi.org/10.1038/nature16946
  • Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., … Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586-020-2780-0
  • Torregrosa-Crespo, J., González-Torres, P., Bautista, V., Esclapez, J. M., Pire, C., Camacho, M., Bonete, M. J., Richardson, D. J., Watmough, N. J., & Martínez-Espinosa, R. M. (2017). Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments. Environmental Microbiology Reports, 9(6), 788–796. https://doi.org/10.1111/1758-2229.12596
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Wg, Z. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews: MMBR, 61(4), 533–616. https://doi.org/10.1128/mmbr.61.4.533-616.1997
  • Williams, P. A., Fülöp, V., Garman, E. F., Saunders, N. F. W., Ferguson, S. J., & Hajdu, J. (1997). Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature, 389(6649), 406–412. https://doi.org/10.1038/38775
  • Yamagiwa, R., Kurahashi, T., Takeda, M., Adachi, M., Nakamura, H., Arai, H., Shiro, Y., Sawai, H., & Tosha, T. (2018). Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses. Biochimica et Biophysica Acta. Bioenergetics, 1859(5), 333–341. https://doi.org/10.1016/j.bbabio.2018.02.009
  • Zhang, L., Bill, E., Kroneck, P. M. H., & Einsle, O. (2021a). A [3Cu:2S] cluster provides insight into the assembly and function of the CuZ site of nitrous oxide reductase. Chemical Science, 12(9), 3239–3244. https://doi.org/10.1039/d0sc05204c
  • Zhang, L., Bill, E., Kroneck, P. M. H., & Einsle, O. (2021b). Histidine-gated proton-coupled electron transfer to the CuA site of nitrous oxide reductase. Journal of the American Chemical Society, 143(2), 830–838. https://doi.org/10.1021/jacs.0c10057
  • Zhang, Z. X., Nong, F. T., Wang, Y. Z., Yan, C. X., Gu, Y., Song, P., & Sun, X. M. (2022). Strategies for efficient production of recombinant proteins in Escherichia coli: Alleviating the host burden and enhancing protein activity. Microbial Cell Factories, 21(1), 191. https://doi.org/10.1186/s12934-022-01917-y
  • Zhang, Z. X., Wang, Y. Z., Nong, F. T., Xu, Y., Ye, C., Gu, Y., Sun, X. M., & Huang, H. (2022). Developing a dynamic equilibrium system in Escherichia coli to improve the production of recombinant proteins. Applied Microbiology and Biotechnology, 106(18), 6125–6137. https://doi.org/10.1007/s00253-022-12145-0
  • Zhang, L., Wüst, A., Prasser, B., Müller, C., & Einsle, O. (2019). Functional assembly of nitrous oxide reductase provides insights into copper site maturation. Proceedings of the National Academy of Sciences of the United States of America, 116(26), 12822–12827. https://doi.org/10.1073/pnas.1903819116
  • Zhao, Z., Rothery, R. A., & Weiner, J. H. (2003). Transient kinetic studies of heme reduction in Escherichia coli nitrate reductase A (NarGHI) by menaquinol. Biochemistry, 42(18), 5403–5413. https://doi.org/10.1021/bi027221x
  • Zumft, W. G. (2005a). Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. Journal of Molecular Microbiology and Biotechnology, 10(2-4), 154–166. https://doi.org/10.1159/000091562
  • Zumft, W. G. (2005b). Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. Journal of Inorganic Biochemistry, 99(1), 194–215. https://doi.org/10.1016/j.jinorgbio.2004.09.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.