146
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of antibiotic perturbation on nitrous oxide emissions: An in-depth analysis

, , , , , , , & show all

References

  • Bender, M., & Conrad, R. (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 27(12), 1517–1527. https://doi.org/10.1016/0038-0717(95)00104-M
  • Bollon, J., Filali, A., Fayolle, Y., Guerin, S., Rocher, V., & Gillot, S. (2016). N2O emissions from full-scale nitrifying biofilters. Water Research, 102, 41–51. https://doi.org/10.1016/j.watres.2016.05.091
  • Cavigelli, M. A., Grosso, S. J. D., Liebig, M. A., Snyder, C. S., Fixen, P. E., Venterea, R. T., Leytem, A. B., McLain, J. E., & Watts, D. B. (2012). US agricultural nitrous oxide emissions: Context, status, and trends. Frontiers in Ecology and the Environment, 10(10), 537–546. https://doi.org/10.1890/120054
  • Cheng, Z. K., Yang, J. S., & Lve, M. (2022). Antibiotics used in livestock and poultry breeding and its environmental and health risks in China: A review. Journal of Agricultural Resources and Environment, 39, 1253–1262.
  • Chen, C., Li, Y., Yin, G. Y., Hou, L. J., Liu, M., Jiang, Y. H., Zheng, D. S., Wu, H., Zheng, Y. L., & Sun, D. Y. (2022). Antibiotics sulfamethoxazole alter nitrous oxide production and pathways in estuarine sediments: Evidenced by the N15-O18 isotopes tracing. Journal of Hazardous Materials, 437, 129281. https://doi.org/10.1016/j.jhazmat.2022.129281
  • Chen, Z., Wu, Y., Wen, Q., Bao, H., & Fu, Q. (2020). Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting. Bioresource Technology, 297, 122463. https://doi.org/10.1016/j.biortech.2019.122463
  • Chen, H., Xue, H., Liu, W., Wu, F., Wang, Y., & Gao, H. (2019). Meta-analysis of Platelet Lymphocyte Ratio as A Prognostic Factor for Non-small Cell Lung Cancer. Chinese Journal of Lung Cancer, 22, 289–298.
  • Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von, B. M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504–509. https://doi.org/10.1038/nature16461
  • Daims, H., Lücker, S., Paslier, D. L., & Wagner, M. (2011). Diversity, environmental genomics, and ecophysiology of nitrite-oxidizing bacteria. In D. J. A., Bess B. Ward, Martin G. Klotz (ed.) Nitrification., 295–322).
  • DeVries, S. L., Loving, M., Li, X. Q., & Zhang, P. (2015). The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux. Scientific Reports, 5(1), 16818. https://doi.org/10.1038/srep16818
  • Devries, S., & Zhang, P. F. (2016). Antibiotics and the terrestrial nitrogen cycle: A review. Current Pollution Reports, 2(1), 51–67. https://doi.org/10.1007/s40726-016-0027-3
  • Domeignoz-Horta, L. A., Putz, M., Spor, A., Bru, D., Breuil, M. C., Hallin, S., & Philippot, L. (2016). Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil. Soil Biology and Biochemistry, 103, 376–379. https://doi.org/10.1016/j.soilbio.2016.09.010
  • Du, J. R., Qi, W. K., Niu, Q. G., Hu, Y., Zhang, Y., Yang, M., & Li, Y. Y. (2016). Inhibition and acclimation of nitrifiers exposed to erythromycin. Ecological Engineering, 94, 337–343. https://doi.org/10.1016/j.ecoleng.2016.06.006
  • Durand, S., & Guillier, M. (2021). Transcriptional and post-transcriptional control of the nitrate respiration in bacteria. Frontiers in Molecular Biosciences, 8, 667758. https://doi.org/10.3389/fmolb.2021.667758
  • Du, J., Tang, C., Qi, W., Qin, Y., & Li, Y.-Y. (2015). Enrichment of nitrifiers and the influence of antimicrobials on nitrification during batch experiment. Journal of Water and Environment Technology, 13(1), 37–48. https://doi.org/10.2965/jwet.2015.37
  • Gödde, M., & Conrad, R. (1999). Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biology and Fertility of Soils, 30(1-2), 33–40. https://doi.org/10.1007/s003740050584
  • Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Martinez-Toledo, M. V., Garcia-Ruiz, M. J., Hontoria, E., Osorio-Robles, F., & Gonzalez–Lopez, J. (2014). Effect of ciprofloxacin antibiotic on the partial-nitritation process and bacterial community structure of a submerged biofilter. The Science of the Total Environment, 476-477, 276–287. https://doi.org/10.1016/j.scitotenv.2014.01.012
  • Graf, D. R. H., Jones, C. M., & Hallin, S. (2014). Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One, 9(12), e114118. https://doi.org/10.1371/journal.pone.0114118
  • Guo, Q., Shi, Z. J., Xu, J. L., Yang, C., Huang, M., Shi, M., & Jin, R. (2016). Inhibition of the partial nitritation by roxithromycin and Cu(II). Bioresource Technology, 214, 253–258. https://doi.org/10.1016/j.biortech.2016.04.116
  • Guo, B., Yao, L. X., Liu, Z. Z., He, Z. H., Zhou, C. M., Li, G. L., Yang, B. M., & Huang, L. X. (2012). Effects of sulfonamide veterinary drugs on soil biochemical function and nitroger. Soils, 44, 596–600.
  • Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., & Jones, C. M. (2018). Genomics and Ecology of Novel N2O -Reducing Microorganisms. Trends in Microbiology, 26(1), 43–55. https://doi.org/10.1016/j.tim.2017.07.003
  • Hou, L. J., Yin, G. Y., Liu, M., Zhou, J., Zheng, Y. L., Gao, J., Zong, H., Yang, Y., Gao, L., & Tong, C. (2014). Effects of sulfamethazine on denitrification and theassociated N2O release in estuarine and coastal sediments. Environmental Science & Technology, 49(1), 326–333. https://doi.org/10.1021/es504433r
  • Hu, H. W., Chen, D., & He, J. Z. (2015). Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39(5), 729–749. https://doi.org/10.1093/femsre/fuv021
  • Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Hu, J. J., Zhao, Y. X., Yao, X. W., Wang, J. Q., Zheng, P., Xi, C., & Hu, B. (2021). Dominance of comammox Nitrospira in soil nitrification. The Science of the Total Environment, 780, 146558. https://doi.org/10.1016/j.scitotenv.2021.146558
  • Iavicoli, I., Fontana, L., Agathokleous, E., Santocono, C., Russo, F., Vetrani, I., Fedele, M., & Calabrese, E. J. (2021). Hormetic dose responses induced by antibiotics in bacteria: A phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon. The Science of the Total Environment, 798, 149255. https://doi.org/10.1016/j.scitotenv.2021.149255
  • Janssen, L. J. J. (1976). Reduction of nitric oxide at a flow-through mercury plated nickel electrode. Electrochimica Acta, 21(10), 811–815. https://doi.org/10.1016/0013-4686(76)85014-1
  • Jin, C. X., Wei, S., Sun, R. L., Zou, W., Zhang, X., Zhou, Q., Liu, R., & Huang, L. (2020). The forms, distribution, and risk assessment of sulfonamide antibiotics in the manure–moil–vegetable system of feedlot livestock. Bulletin of Environmental Contamination and Toxicology, 105(5), 790–797. https://doi.org/10.1007/s00128-020-03010-9
  • Katipoglu-Yazan, T., Merlin, C., Pons, M.-N., Ubay-Cokgor, E., & Orhon, D. (2015). Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture. Water Research, 72, 227–238. https://doi.org/10.1016/j.watres.2014.12.041
  • Katipoglu-Yazan, T., Pala-Ozkok, I., Ubay-Cokgor, E., & Orhon, D. (2013). Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture. Bioresource Technology, 144, 410–419. https://doi.org/10.1016/j.biortech.2013.06.121
  • Kits, K.D., Jung, M.-Y., Vierheilig, J., Pjevac, P., Sedlacek, C.J., Liu, S., Herbold, C., Stein, L.Y., Richter, A., Wissel, H., Brüggemann, N., Wagner, M. and Daims, H. (2019). Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Communications, 10(1), 1836.
  • Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology, 55, 485–529.
  • Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9
  • Lawrence, N. C., Tenesaca, C. G., VanLoocke, A., & Hall, S. J. (2021). Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences, 118(46), e2112108118. https://doi.org/10.1073/pnas.2112108118
  • Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., & Schleper, C. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806–809. https://doi.org/10.1038/nature04983
  • Li, J., Zhu, Y., & Zhang, X. J. (2017). Researches on the atypical nitrous oxide reductase. Microbiology China, 44, 1714–1719.
  • Lin, H., Yuan, Q. Y., Yu, Q. G., Chen, Z., & Ma, J. W. (2022). Plants mitigate nitrous oxide emissions from antibiotic-Contaminated agricultural soils. Environmental Science & Technology, 56(8), 4950–4960. https://doi.org/10.1021/acs.est.1c06508
  • Liu, R., Hu, H. W., Suter, H., Hayden, H. L., He, J., Mele, P., & Chen, D. (2016). Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils. Frontiers in Microbiology, 7, 1373. https://doi.org/10.3389/fmicb.2016.01373
  • Liu, H. S., Li, Y. F., Pan, B. B., Zheng, X. Z., Yu, J. H., Ding, H., & Zhang, Y. S. (2022). Pathways of soil N2O uptake, consumption, and its driving factors: A review. Environmental Science and Pollution Research International, 29(21), 30850–30864. https://doi.org/10.1007/s11356-022-18619-y
  • Liu, C., Wei, W., Sheng, R., Xing, X., & Chen, X. (2018). Research progress of nitrous oxide reductase gene (nosZII) and its relationship with the environment. Applied and Environmental Biology, 24, 651–656.
  • Lyu, J., Yang, L., Zhang, L., Ye, B., & Wang, L. (2020). Antibiotics in soil and water in China-a systematic review and source analysis. Environmental Pollution (Barking, Essex: 1987), 266(Pt 1), 115147. https://doi.org/10.1016/j.envpol.2020.115147
  • Ma, J., Lin, H., Sun, W., Wang, Q., Yu, Q., Zhao, Y., & Fu, J. (2014). Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environmental Science and Pollution Research International, 21(12), 7436–7448. https://doi.org/10.1007/s11356-014-2685-2
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • Morgado, R. G., Loureiro, S., & González-Alcaraz, M. N. (2018). Chapter 3 - Changes in Soil Ecosystem Structure and Functions Due to Soil Contamination. In A. C. Duarte. (eds.) Soil Pollution.,): Academic Press.
  • Mulder, A., Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177–184. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  • Nowka, B., Daims, H., & Spieck, E. (2015). Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation. Applied and Environmental Microbiology, 81(2), 745–753. https://doi.org/10.1128/AEM.02734-14
  • Okereke, G. U. (1993). Growth yield of denitrifiers using nitrous oxide as a terminal electron acceptor. World Journal of Microbiology & Biotechnology, 9(1), 59–62. https://doi.org/10.1007/BF00656518
  • Omirou, M., Stephanou, C., Anastopoulos, I., Philippot, L., & Ioannides, I. M. (2022). Differential response of N2O emissions, N2O -producing and N2O-reducing bacteria to varying tetracycline doses in fertilized soil. Environmental Research, 214(Pt 3), 114013. https://doi.org/10.1016/j.envres.2022.114013
  • Pandey, C. B., Kumar, U., Kaviraj, M., Minick, K. J., Mishra, A. K., & Singh, J. S. (2020). DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. The Science of the Total Environment, 738, 139710. https://doi.org/10.1016/j.scitotenv.2020.139710
  • Park, B. J., Park, S. J., Yoon, D. N., Schouten, S., Sinninghe Damsté, J. S., & Rhee, S. K. (2010). Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 76(22), 7575–7587. https://doi.org/10.1128/AEM.01478-10
  • Park, H. D., Wells, G. F., Bae, H., Criddle, C. S., & Francis, C. A. (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and Environmental Microbiology, 72(8), 5643–5647. https://doi.org/10.1128/AEM.00402-06
  • Patel, P., Naik, A., & Sharma, A. (2021). Isolation and identification of nitrite-oxidizing microbes Springer Protocols Handbooks., 219–221). Humana.
  • Philippot, L., Andert, J., Jones, C., Bru, D., & Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 17(3), 1497–1504. https://doi.org/10.1111/j.1365-2486.2010.02334.x
  • Pihlatie, M., Syväsalo, E., Simojoki, A., Esala, M., & Regina, K. (2004). Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sand soils under different soil moisture conditions. Nutrient Cycling in Agroecosystems, 70(2), 135–141. https://doi.org/10.1023/B:FRES.0000048475.81211.3c
  • Prosser, J. I. (1990). Autotrophic Nitrification in Bacteria. In A. H. Rose and D. W. Tempest (eds.) Advances in Microbial Physiology., 125–181): Academic Press.
  • Qasim, W., Xia, L., Lin, S., Wan, L., Zhao, Y., & Butterbach-Bahl, K. (2021). Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environmental Pollution (Barking, Essex: 1987), 272, 116372. https://doi.org/10.1016/j.envpol.2020.116372
  • Qian, X. Y., Wang, Z. Q., Zhang, H. C., Gu, H., & Shen, G. (2022). Occurrence of veterinary antibiotics in animal manure, compost, and agricultural soil, originating from different feedlots in suburbs of Shanghai, East China. Environmental Monitoring and Assessment, 194(5), 379. https://doi.org/10.1007/s10661-022-10010-1
  • Qian, M., Wu, H., Wang, J., Zhang, H., Zhang, Z., Zhang, Y., Lin, H., & Ma, J. (2016). Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. The Science of the Total Environment, 559, 174–181. https://doi.org/10.1016/j.scitotenv.2016.03.123
  • Qing, Y., Li, H., Zhang, M., Lu, S., Wu, J., & Liu, F. (2021). Effects of sulfadiazine in swine wastewater on microorganisms and nitrogen transformation processes in wetland sediment. Research of Environmental Sciences, 34, 2191–2199.
  • Roose Amsaleg, C., David, V., Alliot, F., Guigon, E., Crouzet, O., & Laverman, A. M. (2021). Synergetic effect of antibiotic mixtures on soil bacterial N2O-reducing communities. Environmental Chemistry Letters, 19(2), 1873–1878. https://doi.org/10.1007/s10311-020-01117-3
  • Samocha, T. M., & Prangnell, D. I. (2019). Chapter 6 - System Treatment and Preparation. In T. M. Samocha (ed.) Sustainable Biofloc Systems for Marine Shrimp., 119–131): Academic Press.
  • Schmidt, I., van Spanning, R. J. M., & Jetten, M. S. M. (2004). Denitrification and ammonia oxidation by nitrosomonas europaea wild-type, and nirK- and norB-deficient mutants. Microbiology (Reading, England), 150(Pt 12), 4107–4114. https://doi.org/10.1099/mic.0.27382-0
  • Semedo, M., Song, B., Sparrer, T., & Phillips, R. L. (2018). Antibiotic effects on microbial communities responsible for denitrification and N2O production in grassland soils. Frontiers in Microbiology, 9, 2121. https://doi.org/10.3389/fmicb.2018.02121
  • Sgouridis, F., & Ullah, S. (2017). Soil greenhouse gas fluxes, environmental controls, and the partitioning of N2O Sources in UK natural and seminatural land use types. Journal of Geophysical Research: Biogeosciences, 122(10), 2617–2633. https://doi.org/10.1002/2017JG003783
  • Shan, J., Yang, P. P., Rahman, M. M., Shang, X., & Yan, X. (2018). Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields. Environmental Pollution (Barking, Essex: 1987), 242(Pt A), 788–796. https://doi.org/10.1016/j.envpol.2018.07.061
  • Shao, Y., Wang, Y., Yuan, Y., & Xie, Y. (2021). A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. The Science of the Total Environment, 798, 149205. https://doi.org/10.1016/j.scitotenv.2021.149205
  • Shen, T. L., Stieglmeier, M., Dai, J. L., Urich, T., & Schleper, C. (2013). Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiology Letters, 344(2), 121–129. https://doi.org/10.1111/1574-6968.12164
  • Subba Rao, A., Jha, P., Meena, B. P., Biswas, A. K., Lakaria, B. L., & Patra, A. K. (2017). 5 - Nitrogen Processes in Agroecosystems of India. In Y. P. Abrol. (eds.) The Indian Nitrogen Assessment.,): Elsevier.
  • Sun, X. X., & Chen, J. H. (2020). Research progress on nitrification process of lake microorganisms. Acta Microbiologica Sinica, 60, 1148–1161.
  • Sun, W., Ye, J., Lin, H., Yu, Q., Wang, Q., Chen, Z., Ma, J., & Ma, J. (2023). Dynamic characteristics of heavy metal accumulation in agricultural soils after continuous organic fertilizer application: Field-scale monitoring. Chemosphere, 335, 139051. https://doi.org/10.1016/j.chemosphere.2023.139051
  • Sutka, R. L., Adams, G. C., Ostrom, N. E., & Ostrom, P. H. (2008). Isotopologue fractionation during N2O production by fungal denitrification. Rapid Communications in Mass Spectrometry: RCM, 22(24), 3989–3996. https://doi.org/10.1002/rcm.3820
  • Takaya, N. (2009). Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. Bioscience, Biotechnology, and Biochemistry, 73(1), 1–8. https://doi.org/10.1271/bbb.80487
  • Tang, Q., Xia, L., Ti, C., Zhou, W., Fountain, L., Shan, J., & Yan, X. (2020). Oxytetracycline, copper, and zinc effects on nitrification processes and microbial activity in two soil types. Food and Energy Security, 9(4), e248. https://doi.org/10.1002/fes3.248
  • Tian, H. Q., Xu, R. T., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., … Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586-020-2780-0
  • Tong, X., Wang, X., He, X., Xu, K., & Mao, F. (2019). Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland. The Science of the Total Environment, 656, 503–511. https://doi.org/10.1016/j.scitotenv.2018.11.358
  • Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., & Schleper, C. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8420–8425. https://doi.org/10.1073/pnas.1013488108
  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
  • Van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M., & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature, 528(7583), 555–559. https://doi.org/10.1038/nature16459
  • Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications. Plos One, 12(1), e0169254. https://doi.org/10.1371/journal.pone.0169254
  • Wang, B. Z., Ni, B. J., Yuan, Z. G., & Guo, J. H. (2019). Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine. Environmental Pollution (Barking, Essex: 1987), 255(Pt 1), 113160. https://doi.org/10.1016/j.envpol.2019.113160
  • Wang, Y. L., Zhao, R. X., Liu, L., Li, B., & Zhang, T. (2021). Selective enrichment of comammox from activated sludge using antibiotics. Water Research, 197, 117087. https://doi.org/10.1016/j.watres.2021.117087
  • Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33(12-13), 1723–1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  • Wuebbles, D. J. (2009). Nitrous oxide: No laughing matter. Science (New York, N.Y.), 326(5949), 56–57. https://doi.org/10.1126/science.1179571
  • Wu, J., Li, Z. L., Xu, J. Y., Wang, Y., & Jiang, J. Y. (2019). Effects of the veterinary antibiotic sulfamethazine on N2O emissions and the associated microbiological mechanism in a mice field. Environmental Science, 40, 2847–2857.
  • Wu, J., Wang, J. Y., Li, Z. T., Guo, S. M., Li, K., Pinshang, X., Ok, Y. S., Jones, D., & Zou, J. (2022). Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Critical Reviews in Environmental Science and Technology, 53(7), 847–864. https://doi.org/10.1080/10643389.2022.2094693
  • Wu, Y.-F., Whitaker, J., Toet, S., Bradley, A., Davies, C. A., & McNamara, N. P. (2021). Diurnal variability in soil nitrous oxide emissions is a widespread phenomenon. Global Change Biology, 27(20), 4950–4966. https://doi.org/10.1111/gcb.15791
  • Wu, J., Zhang, Y., Huang, M., Zou, Z., Guo, S., Wang, J., & Zou, J. (2022). Sulfonamide antibiotics alter gaseous nitrogen emissions in the soil-plant system: A mesocosm experiment and meta-analysis. The Science of the Total Environment, 828, 154230. https://doi.org/10.1016/j.scitotenv.2022.154230
  • Xiang, H., Hong, Y. G., Wu, J. P., Wang, Y., Ye, F., Hu, Z., Qu, Z., & Long, A. (2023). NosZ–II–type N2O -reducing bacteria play dominant roles in determining the release potential of N2O from sediments in the Pearl River Estuary, China. Environmental Pollution (Barking, Essex: 1987), 329, 121732. https://doi.org/10.1016/j.envpol.2023.121732
  • Xu, H., Lu, G., & Xue, C. (2020). Effects of sulfamethoxazole and 2-Ethylhexyl-4-Methoxycinnamate on the dissimilatory nitrate reduction processes and N2O release in sediments in the Yarlung Zangbo river. International Journal of Environmental Research and Public Health, 17(6), 1822. https://doi.org/10.3390/ijerph17061822
  • Xu, L. S., Wang, W. Z., Deng, J. B., & Xu, W. H. (2023). The residue of tetracycline antibiotics in soil and Brassica juncea var. gemmifera, and the diversity of soil bacterial community under different livestock manure treatments. Environmental Geochemistry and Health, 45(1), 7–17. https://doi.org/10.1007/s10653-022-01213-z
  • Yanai, Y., Toyota, K., Morishita, T., Takakai, F., Hatano, R., Limin, S. H., Darung, U., & Dohong, S. (2007). Fungal N2O production in an arable peat soil in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 53(6), 806–811. https://doi.org/10.1111/j.1747-0765.2007.00201.x
  • Yang, Y., Liu, H. X., & Lv, J. L. (2022). Response of N2O emission and denitrification genes to different inorganic and organic amendments. Scientific Reports, 12(1), 3940. https://doi.org/10.1038/s41598-022-07753-9
  • Yang, J. F., Ying, G. G., Lai, H. J., Zhao, J., & Zhou, L. J. (2014). Effects of three types of antibiotics on soil respiration and nitrification. Ecology and Environmental Sciences, 23, 1050–1056.
  • Yang, T., Zhang, X., Huang, S. Q., Xu, Y. F., Mo, Y. J., Zhao, S. L., & Ren, Y. (2018). Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal. Environmental Chemistry, 37, 471–479.
  • Yoon, S., Song, B., Phillips, R. L., Chang, J., & Song, M. J. (2019). Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiology Ecology, 95(6), fiz066. https://doi.org/10.1093/femsec/fiz066
  • You, L., Ros, G. H., Chen, Y., Yang, X., Cui, Z., Liu, X., Jiang, R., Zhang, F., & de Vries, W. (2022). Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biology and Biochemistry, 165, 108523. https://doi.org/10.1016/j.soilbio.2021.108523
  • Yu, B. B., Wang, X., Yu, S., Li, Q., & Zhou, Q. (2014). Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Applied Microbiology and Biotechnology, 98(1), 263–272. https://doi.org/10.1007/s00253-013-5311-1
  • Zhou, L. J., Han, P., Yu, Y. C., Wang, B., Men, Y., Wagner, M., & Wu, Q. L. (2019). Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Research, 159, 444–453. https://doi.org/10.1016/j.watres.2019.05.031
  • Zhou, L. J., Han, P., Zhao, M. Y., Yu, Y., Sun, D., Hou, L., Liu, M., Zhao, Q., Tang, X., Klümper, U., Gu, J.-D., Men, Y., & Wu, Q. L. (2021). Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox: A comparison of removal, pathways, and mechanisms. Water Research, 196, 117003. https://doi.org/10.1016/j.watres.2021.117003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.