114
Views
0
CrossRef citations to date
0
Altmetric
Review Article

cGAS-STING and PD1/PDL-1 pathway in breast cancer: a window to new therapies

&
Received 30 Oct 2023, Accepted 23 Feb 2024, Published online: 12 Mar 2024

References

  • Ibrahimi M, Jamalzei B, Akbari M, et al. Association between interleukin 4 (IL-4) VNTR, gene polymorphism, and breast cancer susceptibility in Iranian population: experimental and web base analysis. Bratisl Lek Listy. 2018;119(10):651–654. doi: 10.4149/BLL_2018_116.
  • Ibrahimi R, Ibrahimi M, Jamalzei B, et al. Association between interleukin‐1 receptor antagonist (IL‐1ra) VNTR, gene polymorphism and breast cancer susceptibility in Iranian population: experimental and web‐based analysis. Int J Immunogenet. 2022;49(4):254–259. doi: 10.1111/iji.12584.
  • Mokashi AA, Bhatia NM. Bioactive natural products for breast cancer chemoprevention and treatment. CBC. 2023;19(10):38–67. doi: 10.2174/1573407219666230529151351.
  • Genel ME, Adacan K, Selvi S, et al. Apoptosis-inducing, anti-angiogenic and anti-migratory effects of a dinuclear Pd (II) complex on breast cancer: a promising novel compound. Microvasc Res. 2024;151:104619. doi: 10.1016/j.mvr.2023.104619.
  • Zhou J, Zhong Y. Breast cancer immunotherapy. Cell Mol Immunol. 2004;1(4):247–255.
  • Debien V, De Caluwé A, Wang X, et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer. 2023;9(1):7. doi: 10.1038/s41523-023-00508-3.
  • Moossavi M, Shojaee M, Musavi M, et al. The polymorphism of miR-146a (rs2910164) and breast cancer risk: a Meta-Analysis of 17 studies. Microrna. 2020;9(4):310–320. doi: 10.2174/2211536609666201125115019.
  • Loibl S, Poortmans P, Morrow M, et al. Breast cancer. Lancet. 2021;397(10286):1750–1769. doi: 10.1016/S0140-6736(20)32381-3.
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742.
  • Mohammadoo‐Khorasani M, Karami Tehrani F, Atri M. Soluble guanylate cyclase isoenzymes: the expression of α1, α2, β1, and β2 subunits in the benign and malignant breast tumors. J Cell Physiol. 2020;235(2):1358–1365. doi: 10.1002/jcp.29054.
  • Khorasani MM, Tehrani FK, Parizadeh SMR, et al. Differential expression of alternative transcripts of soluble guanylyl cyclase, GYCY1a3 and GUCY1b3 genes, in the malignant and benign breast tumors. Nitric Oxide. 2019;83:65–71. doi: 10.1016/j.niox.2018.12.009.
  • Ou L, Zhang A, Cheng Y, et al. The cGAS-STING pathway: a promising immunotherapy target. Front Immunol. 2021;12:795048. doi: 10.3389/fimmu.2021.795048.
  • Moossavi M, Rastegar M, Moossavi SZ, et al. Molecular function of cGAS-STING in SARS-CoV-2: a novel approach to COVID-19 treatment. Biomed Res Int. 2022;2022:6189254–6189210. doi: 10.1155/2022/6189254.
  • Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339(6121):826–830. doi: 10.1126/science.1229963.
  • Khorasani M. Role of cGAS-STING in colorectal cancer: a new window for treatment strategies. Cytokine. 2024;173:156422. doi: 10.1016/j.cyto.2023.156422.
  • Zhang X, Bai X-C, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53(1):43–53. doi: 10.1016/j.immuni.2020.05.013.
  • Kranzusch PJ, Lee AS-Y, Berger JM, et al. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 2013;3(5):1362–1368. doi: 10.1016/j.celrep.2013.05.008.
  • Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332–337. doi: 10.1038/nature12305.
  • Zhang X, Wu J, Du F, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 2014;6(3):421–430. doi: 10.1016/j.celrep.2014.01.003.
  • Liu N, Pang X, Zhang H, et al. The cGAS-STING pathway in bacterial infection and bacterial immunity. Front Immunol. 2021;12:814709. doi: 10.3389/fimmu.2021.814709.
  • Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature. 2017;549(7672):394–398. doi: 10.1038/nature23890.
  • Herzner A-M, Hagmann CA, Goldeck M, et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol. 2015;16(10):1025–1033. doi: 10.1038/ni.3267.
  • Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704–709. doi: 10.1126/science.aat1022.
  • Li X, Shu C, Yi G, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019–1031. doi: 10.1016/j.immuni.2013.10.019.
  • Gao P, Ascano M, Wu Y, et al. Cyclic [G (2′, 5′) pA (3′, 5′) p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153(5):1094–1107. doi: 10.1016/j.cell.2013.04.046.
  • Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science. 2019;363(6431):eaat8657. doi: 10.1126/science.aat8657.
  • Capobianchi MR, Uleri E, Caglioti C, et al. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev. 2015;26(2):103–111. doi: 10.1016/j.cytogfr.2014.10.011.
  • Ferlazzo G, Pack M, Thomas D, et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A. 2004;101(47):16606–16611. doi: 10.1073/pnas.0407522101.
  • Fang R, Wang C, Jiang Q, et al. NEMO–IKKβ are essential for IRF3 and NF-κB activation in the cGAS–STING pathway. J Immunol. 2017;199(9):3222–3233. doi: 10.4049/jimmunol.1700699.
  • de Oliveira Mann CC, Orzalli MH, King DS, et al. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep. 2019;27(4):1165–1175. e5. doi: 10.1016/j.celrep.2019.03.098.
  • Stempel M, Chan B, Juranić Lisnić V, et al. The herpesviral antagonist m152 reveals differential activation of STING‐dependent IRF and NF‐κB signaling and STING's dual role during MCMV infection. Embo J. 2019;38(5):e100983. doi: 10.15252/embj.2018100983.
  • Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034–a000034. doi: 10.1101/cshperspect.a000034.
  • D'Ignazio L, Batie M, Rocha S. TNFSF14/LIGHT, a non-canonical NF-κB stimulus, induces the HIF pathway. Cells. 2018;7(8):102. doi: 10.3390/cells7080102.
  • House CD, Grajales V, Ozaki M, et al. IΚΚε cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer. 2018;18(1):595. doi: 10.1186/s12885-018-4507-2.
  • Wan D, Jiang W, Hao J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front Immunol. 2020;11:615. doi: 10.3389/fimmu.2020.00615.
  • Zhou W, Whiteley AT, de Oliveira Mann CC, et al. Structure of the human cGAS–DNA complex reveals enhanced control of immune surveillance. Cell. 2018;174(2):300–311. e11. doi: 10.1016/j.cell.2018.06.026.
  • Cheng Z, Dai T, He X, et al. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Target Ther. 2020;5(1):91. doi: 10.1038/s41392-020-0198-7.
  • Chen H, Sun H, You F, et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell. 2011;147(2):436–446. doi: 10.1016/j.cell.2011.09.022.
  • Du S-S, Chen G-W, Yang P, et al. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation. Int J Radiat Oncol Biol Phys. 2022;112(5):1243–1255. doi: 10.1016/j.ijrobp.2021.12.162.
  • Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009;69(7):3077–3085. doi: 10.1158/0008-5472.CAN-08-2281.
  • Marcus A, Mao AJ, Lensink-Vasan M, et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity. 2018;49(4):754–763. e4. doi: 10.1016/j.immuni.2018.09.016.
  • Crasta K, Ganem NJ, Dagher R, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482(7383):53–58. doi: 10.1038/nature10802.
  • Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov. 2020;10(1):26–39. doi: 10.1158/2159-8290.CD-19-0761.
  • Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. 2017;109(1):djw199. doi: 10.1093/jnci/djw199.
  • Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med. 2011;208(10):2005–2016. doi: 10.1084/jem.20101159.
  • Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208(10):1989–2003. doi: 10.1084/jem.20101158.
  • Woo S-R, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–842. doi: 10.1016/j.immuni.2014.10.017.
  • Dunn GP, Bruce AT, Sheehan KC, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–729. doi: 10.1038/ni1213.
  • Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–852. doi: 10.1016/j.immuni.2014.10.019.
  • Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215(5):1287–1299. doi: 10.1084/jem.20180139.
  • Ka N-L, Park MK, Kim S-S, et al. NR1D1 stimulates antitumor immune responses in breast cancer by activating cGAS-STING signaling. Cancer Res. 2023;83(18):3045–3058. doi: 10.1158/0008-5472.CAN-23-0329.
  • Pantelidou C, Sonzogni O, De Oliveria Taveira M, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722–737. doi: 10.1158/2159-8290.CD-18-1218.
  • Chen M, Yu S, van der Sluis T, et al. cGAS-STING pathway expression correlates with genomic instability and immune cell infiltration in breast cancer. NPJ Breast Cancer. 2024;10(1):1. doi: 10.1038/s41523-023-00609-z.
  • Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24(8):560–575. doi: 10.1038/s41580-023-00585-z.
  • Lu Q, Chen Y, Li J, et al. Crosstalk between cGAS-STING pathway and autophagy in cancer immunity. Front Immunol. 2023;14:1139595. doi: 10.3389/fimmu.2023.1139595.
  • Xun J, Zhang Z, Lv B, et al. A conserved ion channel function of STING mediates noncanonical autophagy and cell death. EMBO Rep. 2024;25(2):544–569.
  • Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27(6):421–429. doi: 10.1247/csf.27.421.
  • Deretic V, Levine B. Autophagy balances inflammation in innate immunity. Autophagy. 2018;14(2):243–251. doi: 10.1080/15548627.2017.1402992.
  • Gui X, Yang H, Li T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567(7747):262–266. doi: 10.1038/s41586-019-1006-9.
  • Krivega M, Stiefel CM, Karbassi S, et al. Genotoxic stress in constitutive trisomies induces autophagy and the innate immune response via the cGAS-STING pathway. Commun Biol. 2021;4(1):831. doi: 10.1038/s42003-021-02278-9.
  • Liu D, Wu H, Wang C, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019;26(9):1735–1749. doi: 10.1038/s41418-018-0251-z.
  • Krivega M, Stiefel CM, Storchova Z. Consequences of chromosome gain: a new view on trisomy syndromes. Am J Hum Genet. 2022;109(12):2126–2140. doi: 10.1016/j.ajhg.2022.10.014.
  • Margolis SR, Dietzen PA, Hayes BM, et al. The cyclic dinucleotide 2′ 3′-cGAMP induces a broad antibacterial and antiviral response in the sea anemone nematostella vectensis. Proc Natl Acad Sci USA. 2021;118(51):e2109022118. doi: 10.1073/pnas.2109022118.
  • Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–998. doi: 10.1038/ni1102-991.
  • Hamanishi J, Mandai M, Matsumura N, et al. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21(3):462–473. doi: 10.1007/s10147-016-0959-z.
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. American Journal of Cancer Research. 2020;10(3):727.
  • Meng X, Huang Z, Teng F, et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868–876. doi: 10.1016/j.ctrv.2015.11.001.
  • Kuol N, Stojanovska L, Nurgali K, et al. PD-1/PD-L1 in disease. Immunotherapy. 2018;10(2):149–160. doi: 10.2217/imt-2017-0120.
  • Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J. 1992;11(11):3887–3895. doi: 10.1002/j.1460-2075.1992.tb05481.x.
  • Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways of costimulation and inhibition of immune responses. Annu Rev Immunol. 2002;20(1):29–53. doi: 10.1146/annurev.immunol.20.091101.091806.
  • Vibhakar R, Juan G, Traganos F, et al. Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res. 1997;232(1):25–28. doi: 10.1006/excr.1997.3493.
  • Saresella M, Rainone V, M Al-Daghri N, et al. The PD-1/PD-L1 pathway in human pathology. Curr Mol Med. 2012;12(3):259–267. doi: 10.2174/156652412799218903.
  • Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23(1):515–548. doi: 10.1146/annurev.immunol.23.021704.115611.
  • Guo ZS. The 2018 nobel prize in medicine goes to cancer immunotherapy. BMC cancer, 18(1), 1086. DOI: 10.1186/s12885-018-5020-3
  • Shimauchi T, Kabashima K, Nakashima D, et al. Augmented expression of programmed death‐1 in both neoplastic and non‐neoplastic CD4+ T‐cells in adult T‐cell leukemia/lymphoma. Int J Cancer. 2007;121(12):2585–2590. doi: 10.1002/ijc.23042.
  • Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
  • Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–122. doi: 10.1016/j.immuni.2007.05.016.
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. doi: 10.1084/jem.192.7.1027.
  • Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–268. doi: 10.1038/85330.
  • Rodig N, Ryan T, Allen JA, et al. Endothelial expression of PD‐L1 and PD‐L2 down‐regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 2003;33(11):3117–3126. doi: 10.1002/eji.200324270.
  • Grabosch S, Bulatovic M, Zeng F, et al. Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene. 2019;38(13):2380–2393. doi: 10.1038/s41388-018-0581-9.
  • Li A, Yi M, Qin S, et al. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019;12(1):35. doi: 10.1186/s13045-019-0721-x.
  • Taniguchi H, Caeser R, Chavan SS, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39(7):110814. doi: 10.1016/j.celrep.2022.110814.
  • Manoury B, De Berardinis P. Targeted antigen delivery: bridging innate and adaptive immunity. Front Immunol. 2019;10:368. doi: 10.3389/fimmu.2019.00368.
  • Hu Z, Yang Y, Fang L, et al. Insight into the dichotomous regulation of STING activation in immunotherapy. Immunopharmacol Immunotoxicol. 2021;43(2):126–137. doi: 10.1080/08923973.2021.1890118.
  • Cheng N. Sting activating particles for cancer immunotherapy. (Doctoral dissertation). The University of North Carolina at Chapel Hill; 2018.
  • Hu Y, Manasrah BK, McGregor SM, et al. Paclitaxel induces micronucleation and activates pro-inflammatory cGAS–STING signaling in triple-negative breast cancer. Mol Cancer Ther. 2021;20(12):2553–2567. doi: 10.1158/1535-7163.MCT-21-0195.
  • Takahashi-Ruiz L, Fermaintt CS, Wilkinson NJ, et al. The microtubule destabilizer eribulin synergizes with STING agonists to promote antitumor efficacy in triple-negative breast cancer models. Cancers (Basel). 2022;14(23):5962. doi: 10.3390/cancers14235962.
  • Carlino F, Diana A, Piccolo A, et al. Immune-based therapy in triple-negative breast cancer: from molecular biology to clinical practice. Cancers (Basel). 2022;14(9):2102. doi: 10.3390/cancers14092102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.