62
Views
0
CrossRef citations to date
0
Altmetric
Research ArticlesIssue

Priority control factors screening for soil pollution with heavy metal in southwestern China from the view of source-specific environmental risk

, , &
Pages 100-121 | Received 04 Feb 2023, Accepted 03 Dec 2023, Published online: 29 Dec 2023

References

  • Anaman R, Peng C, Jiang Z, Liu X, Zhou Z, Guo Z, Xiao X. 2022. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci Total Environ. 823:153759. doi: 10.1016/j.scitotenv.2022.153759.
  • Apeagyei E, Bank MS, Spengler JD. 2011. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos Environ. 45(13):2310–2323. doi: 10.1016/j.atmosenv.2010.11.015.
  • Bandeira FO, Alves PRL, Hennig TB, Brancalione J, Nogueira DJ, Matias WG. 2021. Chronic effects of clothianidin to non-target soil invertebrates: ecological risk assessment using the species sensitivity distribution (SSD) approach. J Hazard Mater. 419:126491. doi: 10.1016/j.jhazmat.2021.126491.
  • Bello S, Nasiru R, Garba NN, Adeyemo DJ. 2019. Carcinogenic and non-carcinogenic health risk assessment of heavy metals exposure from Shanono and Bagwai artisanal gold mines, Kano state, Nigeria. Sci Afr. 6:e 00197. doi: 10.1016/j.sciaf.2019.e00197.
  • Chae Y, Kim L, Kim D, Cui R, Lee J, An YJ. 2021. Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. J Hazard Mater. 413:125397. doi: 10.1016/j.jhazmat.2021.125397.
  • Chen H, Wang L, Hu B, Xu J, Liu X. 2022. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere. 289:133182. doi: 10.1016/j.chemosphere.2021.133182.
  • Chow JC, Watson JG. 2002. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuels. 16(2):222–260. doi: 10.1021/ef0101715.
  • CNEMC (China National Environmental Monitoring Centre). 1990. Background values of soil elements in China. Beijing: China Environmental Science Press.
  • Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, et al. 2011. Preventable exposures associated with human cancers. J Natl Cancer Inst. 103(24):1827–1839. doi: 10.1093/jnci/djr483.
  • Dong Z, Liu Y, Duan L, Bekele D, Naidu R. 2015. Uncertainties in human health risk assessment of environmental contaminants: a review and perspective. Environ Int. 85:120–132. doi: 10.1016/j.envint.2015.09.008.
  • Duan XL, Zhao XG, Wang BB, Chen YT, Cao SZ. 2014. Highlight of the Chinese exposure factors handbook (adults). China: Environmental Science Press.
  • Duan XL, Zhao XG, Wang BB, Chen YT, Cao SZ. 2016. Highlight of the Chinese exposure factors handbook (children). China: Environmental Science Press.
  • Fei X, Lou Z, Xiao R, Ren Z, Lv X. 2020. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci Total Environ. 747:141293. doi: 10.1016/j.scitotenv.2020.141293.
  • Guan Q, Liu Z, Shao W, Tian J, Luo H, Ni F, Shan Y. 2022. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China. Sci Total Environ. 833:155096. doi: 10.1016/j.scitotenv.2022.155096.
  • Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Yang Y, Luo H. 2018. Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere. 193:189–197. doi: 10.1016/j.chemosphere.2017.10.151.
  • Guo G, Wang Y, Zhang D, Lei M. 2021. Source-specific ecological and health risks of potentially toxic elements in agricultural soils in Southern Yunnan Province and associated uncertainty analysis. J Hazard Mater. 417:126144. doi: 10.1016/j.jhazmat.2021.126144.
  • Håkanson L. 1980. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Research. 14:975–1001.
  • Hossain Bhuiyan MA, Chandra Karmaker S, Bodrud-Doza M, Rakib MA, Saha BB. 2021. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of Dhaka district employing SOM, PMF and GIS methods. Chemosphere. 263:128339. doi: 10.1016/j.chemosphere.2020.128339.
  • Hu YN, He KL, Sun ZH, Chen G, Cheng HF. 2020. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J Hazard Mater. 391:122244. doi: 10.1016/j.jhazmat.2020.122244.
  • Huang CC, Cai LM, Xu YH, Jie L, Chen LG, Hu GC, Jiang HT, Xu XB, Mei JX. 2022a. A comprehensive exploration on the health risk quantification assessment of soil potentially toxic elements from different sources around large-scale smelting area. Environ Monitor Assess. 194:206.
  • Huang CC, Cai LM, Xu YH, Wen HH, Luo J, Hu GC, Wang HZ, Xu XB, Mei JX. 2022b. Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model. Land Degrad Develop. 27:23.
  • Huang J, Guo S, Zeng G m, Li F, Gu Y, Shi Y, Shi L, Liu W, Peng S. 2018a. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ Pollut. 243(Pt A):49–58. doi: 10.1016/j.envpol.2018.08.038.
  • Huang JL, Wu YY, Sun JX, Li X, Geng XL, Zhao ML, Sun T, Fan ZQ. 2021. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J Hazard Mater. 415:125629. doi: 10.1016/j.jhazmat.2021.125629.
  • Huang RJ, Cheng R, Jing M, Yang L, Li Y, Chen Q, Chen Y, Yan J, Lin C, Wu Y, et al. 2018b. Source-specific health risk analysis on particulate trace elements: coal combustion and traffic emission as major contributors in wintertime, Beijing. Environ Sci Technol. 52(19):10967–10974. doi: 10.1021/acs.est.8b02091.
  • IARC (International Agency for Research on Cancer). 2011. Agents Classified by the IARC Monographs. 1–102.
  • IRIS (Integrated Risk Information System) of USEPA. 2013. IRIS Assessment
  • Jiang HH, Cai LM, Hu GC, Wen HH, Luo J, Xu HQ, Chen LG. 2021. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicol Environ Saf. 208:111489. doi: 10.1016/j.ecoenv.2020.111489.
  • Jiang HH, Cai LM, Wen HH, Hu GC, Chen LG, Luo J. 2020. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci Total Environ. 701:134466. doi: 10.1016/j.scitotenv.2019.134466.
  • Jin Z, Lv J. 2021. Evaluating source-oriented human health risk of potentially toxic elements: a new exploration of multiple age groups division. Sci Total Environ. 787:147502. doi: 10.1016/j.scitotenv.2021.147502.
  • Kabala C, Galka B, Jezierski P. 2020. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Sci Total Environ. 738:139918. doi: 10.1016/j.scitotenv.2020.139918.
  • Karimi B, Masson V, Guilland C, Leroy E, Pellegrinelli S, Giboulot E, Maron PA, Ranjard L. 2021. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ Chem Lett. 19(3):2013–2030. doi: 10.1007/s10311-020-01155-x.
  • Kebonye NM, Eze PN, John K, Gholizadeh A, Dajčl J, Drábek O, Němeček K, Borůvka L. 2021. Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils. J. Geochem Explor. 222:106680. doi: 10.1016/j.gexplo.2020.106680.
  • Khan S, Munir S, Sajjad M, Li G. 2016. Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. J Geochem Explor. 165:102–110. doi: 10.1016/j.gexplo.2016.03.007.
  • Lei M, Li K, Guo GH, Ju TN. 2022. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci Total Environ. 817:152899. doi: 10.1016/j.scitotenv.2021.152899.
  • Li P, Wu T, Jiang G, Pu L, Li Y, Zhang J, Xu F, Xie X. 2021. An integrated approach for source apportionment and health risk assessment of heavy metals in subtropical agricultural soils, eastern China. Land. 10(10):1016. doi: 10.3390/land10101016.
  • Li YY, Wang HB, Wang HJ, Yin F, Yang XY, Hu YJ. 2014. Heavy metal pollution in vegetables grown in the vicinity of amulti-metalmining area in Gejiu, China: total concentrations, speciation analysis, and health risk. Environ Sci Pollut Res Int. 21(21):12569–12582. doi: 10.1007/s11356-014-3188-x.
  • Li YZ, Chen HY, Teng YG. 2020. Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Sci Total Environ. 737:140310. doi: 10.1016/j.scitotenv.2020.140310.
  • Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Li X, He X, Fang Y. 2017. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut. 225:681–690. doi: 10.1016/j.envpol.2017.03.057.
  • Lu A, Wang J, Qin X, Wang K, Han P, Zhang S. 2012. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ. 425:66–74. doi: 10.1016/j.scitotenv.2012.03.003.
  • Mbengue S, Alleman LY, Flament P. 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmos Res. 183:202–211. doi: 10.1016/j.atmosres.2016.08.014.
  • Men C, Liu R, Xu L, Wang Q, Guo L, Miao Y, Shen Z. 2020. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J Hazard Mater. 388:121763. doi: 10.1016/j.jhazmat.2019.121763.
  • Men C, Wang YF, Liu RM, Wang QR, Miao Y, Jiao LJ, Shoaib M, Shen ZY. 2021. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere. 270:129434. doi: 10.1016/j.chemosphere.2020.129434.
  • MEP (Ministry of Environmental Protection). 2018. Soil environmental quality: risk control standard for soil contamination of agricultural land (GB15618-2018). Beijing, China: China Environmental Science Press.
  • Mitra P, Sharma S, Purohit P, Sharma P. 2017. Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci. 54(7–8):506–528. doi: 10.1080/10408363.2017.1408562.
  • Norris G. 2014. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the US Environmental Protection. Washington (DC): Agency Office of Research and Development.
  • Paatero P, Hopke PK, Hoppenstock J, Eberly SI. 2003. Advanced factor analysis of spatial distributions of PM2.5 in the eastern United States. Environ Sci Technol. 37(11):2460–2476. doi: 10.1021/es0261978.
  • Pardyjak E, Speckart S, Yin F, Veranth J. 2008. Near source deposition of vehicle generated fugitive dust on vegetation and buildings: model development and theory. Atmos Environ. 42(26):6442–6452. doi: 10.1016/j.atmosenv.2008.04.024.
  • Patlolla AK, Todorov TI, Tchounwou PB, van der Voet G, Centeno JA. 2012. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats. Microchem J. 105:101–107. doi: 10.1016/j.microc.2012.08.013.
  • Proshad R, Islam MS, Kormoker T, Sayeed A, Khadka S, Idris AM. 2021. Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Sci Total Environ. 789:147962. doi: 10.1016/j.scitotenv.2021.147962.
  • Rahman Z, Singh VP. 2019. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 191(7):419. doi: 10.1007/s10661-019-7528-7.
  • Ran H, Guo Z, Yi L, Xiao X, Zhang L, Hu Z, Li C, Zhang Y. 2021. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. J Hazard Mater. 413:125382. doi: 10.1016/j.jhazmat.2021.125382.
  • SBG (Statitics Bureau of Gejiu). 2021. National Economic and Social Development Statistical Bulletin of Gejiu. 13.
  • Shi Y, Wang R, Lu Y, Song S, Johnson AC, Sweetman A, Jones K. 2016. Regional multi-compartment ecological risk assessment: establishing cadmium pollution risk in the northern Bohai Rim, China. Environ Int. 94:283–291. doi: 10.1016/j.envint.2016.05.024.
  • Shi Y, Xu X, Li Q, Zhang M, Li J, Lu Y, Liang R, Zheng X, Shao X. 2018. Integrated regional ecological risk assessment of multiple metals in the soils: a case in the region around the Bohai Sea and the Yellow Sea. Environ Pollut. 242(Pt A):288–297. doi: 10.1016/j.envpol.2018.06.058.
  • Shiel AE, Weis D, Orians KJ. 2010. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Total Environ. 408(11):2357–2368. doi: 10.1016/j.scitotenv.2010.02.016.
  • Solomon K, Giesy J, Jones P. 2000. Probabilistic risk assessment of agrochemicals in the environment. Crop. Prot. 19(8–10):649–655. doi: 10.1016/S0261-2194(00)00086-7.
  • Sun J, Zhao M, Huang J, Liu Y, Wu Y, Cai B, Han Z, Huang H, Fan Z. 2022. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. J Hazard Mater. 423(Pt A):127116. doi: 10.1016/j.jhazmat.2021.127116.
  • Traas TP. 2001. Guidance Document on Deriving Environmental Risk Limit. Report 6015010112. The National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands USEPA, 1998. Guidelines for Ecological Risk Assessment. Washington (DC): U.S. Environmental Protection Agency.
  • Traas TP, Van de Meent D, Posthuma L, Hamers T, Kater BJ, De Zwart D, Aldenberg T. 2002. The potentially affected fraction as a measure of ecological risk. Species sensitivity distributions in ecotoxicology; p. 315–344. FL, USA: Boca Raton.
  • Uchinaka S, Yoganathan V, Osburg VS. 2019. Classifying residents’ roles as online place-ambassadors. Tourism Manag. 71:137–150. doi: 10.1016/j.tourman.2018.10.008.
  • USEPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A) (EPA/540/1-89/002). Washington (DC).
  • USEPA (The United States Environmental Protection Agency). 2011. Exposure Factors Handbook, 2011 ed. (Final). EPA/600/R-09/052F. Washington (DC.)
  • USEPA (The United States Environmental Protection Agency). 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. EPA/600/R-14/108. U.S. Environmental Protection Agency.
  • Wang BB, Lin CY, Zhang X, Duan XL, Xu DQ, Cheng HG, Wang Q, Liu XT, Ma J, Ma J, et al. 2018. A soil ingestion pilot study for teenage children in China. Chemosphere. 202:40–47. doi: 10.1016/j.chemosphere.2018.03.067.
  • Wang HZ, Cai LM, Wang QS, Hu GC, Chen LG. 2021. A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: a case study from a large Cu smelter in central China. Catena. 196:104930. doi: 10.1016/j.catena.2020.104930.
  • Wang MS, Han Q, Gui CL, Cao JL, Liu YP, He XD, He YC. 2019. Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China. Sci Total Environ. 676:1–10. doi: 10.1016/j.scitotenv.2019.03.396.
  • Wang S, Cai LM, Wen HH, Luo J, Wang QS, Liu X. 2019. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci Total Environ. 655:92–101. doi: 10.1016/j.scitotenv.2018.11.244.
  • Wang YT, Guo GH, Zhang DG, Lei M. 2021. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis. Environ Pollut. 276:116666. doi: 10.1016/j.envpol.2021.116666.
  • Watanabe Y, Nogawa K, Nishijo M, Sakurai M, Ishizaki M, Morikawa Y, Kido T, Nakagawa H, Suwazono Y. 2020. Relationship between cancer mortality and environmental cadmium exposure in the general Japanese population in cadmium nonpolluted areas. Int J Hyg Environ Health. 223(1):65–70. doi: 10.1016/j.ijheh.2019.10.005.
  • Wilding L. 1985. Spatial variability: its documentation, accomodation and implication to soil surveys. Soil spatial variability. Las Vegas (NV); p. 166–194.
  • Wu J, Li J, Teng Y, Chen H, Wang Y. 2020. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J Hazard Mater. 388:121766. doi: 10.1016/j.jhazmat.2019.121766.
  • Xiong X, Li YX, Li W, Lin CY, Han W, Yang M. 2010. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour Conserv Recycl. 54(11):985–990. doi: 10.1016/j.resconrec.2010.02.005.
  • Xu X, Wang T, Sun M, Bai Y, Fu C, Zhang L, Hu X, Hagist S. 2019. Management principles for heavy metal contaminated farmland based on ecological risk—A case study in the pilot area of Hunan province, China. Sci Total Environ. 684:537–547. doi: 10.1016/j.scitotenv.2019.05.015.
  • Yang S, Zhao J, Chang SX, Collins C, Xu J, Liu X. 2019. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: a synthesis. Environ Int. 128:165–174. doi: 10.1016/j.envint.2019.04.044.
  • Zhang K, Chai FH, Zheng ZL, Yang Q, Zhong XC, Fomba KW, Zhou GZ. 2018. Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J Environ Sci. 9:147–153.
  • Zhang J, Liu Z, Tian B, Li J, Luo J, Wang Xusheng, Ai S, Wang Xiaonan. 2023. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. J. Hazard. Mater. 441:129891.
  • Zhao S, Qiu S, He P. 2018. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China. Plant Nut. 41(15):1970–1979. doi: 10.1080/01904167.2018.1485158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.