553
Views
0
CrossRef citations to date
0
Altmetric
Research ArticlesIssue

Potential population-level impacts of future oil spills on Pacific herring stocks in Puget Sound

, &
Pages 138-163 | Received 23 Apr 2023, Accepted 13 Dec 2023, Published online: 19 Feb 2024

References

  • Bargmann G. 1998. Forage fish management plan: a plan for managing the forage fish resources and fisheries of Washington. Olympia (WA): Washington Department of Fish and Wildlife; p. 77.
  • Barron MG. 2017. Photoenhanced toxicity of petroleum to aquatic invertebrates and fish. Arch Environ Contam Toxicol. 73(1):40–46. doi: 10.1007/s00244-016-0360-y.
  • Barron MG, Carls MG, Heintz R, Rice SD. 2004. Evaluation of fish early life-stage toxicity models of chronic embryonic exposure to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci. 78(1):60–67. doi: 10.1093/toxsci/kfh051.
  • Barron MG, Carls MG, Short JW, Rice SD. 2003. Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Enviro Toxic Chem. 22(3):650–660. doi: 10.1002/etc.5620220326.
  • Barron MG, Ka’aihue L. 2001. Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska waters. Mar Pollut Bull. 43(1–6):86–92. doi: 10.1016/s0025-326x(01)00037-6.
  • Bishop MA, Green SP. 2001. Predation on Pacific herring (Clupea pallasi) spawn by birds in Prince William Sound, Alaska. Fish Oceanogr. 10(s1):149–158. doi: 10.1046/j.1054-6006.2001.00038.x.
  • Burger M, Sandell T, Fanshier C, Lindquist A, Biondo P, Lowry D. 2017. 2016-2017 Puget Sound Acoustic Midwater Trawl Survey. Olympia, WA: Washington Department of Fish and Wildlife Report No. FPA-29-09; p. 41.
  • Burlington LB. 2002. An update on implementation of Natural Resource Damage Assessment and Restoration under OPA. Spill Sci Tech Bull. 7(1–2):23–29. doi: 10.1016/S1353-2561(02)00064-6.
  • Carls MG, Rice SD, Hose JE. 1999. Sensitivity of fish embryos to weathered crude oil: part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ Tox Chem. 18(3):481–493.
  • Carroll J, Vikebø F, Howell D, Broch OJ, Nepstad R, Augustine S, Skeie GM, Bast R, Juselius J. 2018. Assessing impacts of simulated oil spills on the Northeast Arctic cod fishery. Mar Pollut Bull. 126:63–73. doi: 10.1016/j.marpolbul.2017.10.069.
  • Caswell H. 2001. Matrix population models: construction, analysis, and interpretation. California, USA: Sinauer Associates.
  • Caswell H, Takada T, Hunter CM. 2004. Sensitivity analysis of equilibrium in density-dependent matrix population models. Ecol Lett. 7(5):380–387. doi: 10.1111/j.1461-0248.2004.00595.x.
  • Chapman W, Katz M, Erickson D. 1941. The races of herring in the state of Washington. Olympia (WA): State of Washington Department of Fisheries.
  • Cooney RT, Allen JR, Bishop MA, Eslinger DL, Kline T, Norcross BL, McRoy CP, Milton J, Olsen J, Patrick V, et al. 2001. Ecosystem controls of juvenile pink salmon (Onchorynchus gorbuscha) and Pacific herring (Clupea pallasi) populations in Prince William Sound, Alaska. Fish Oceanogr. 10(s1):1–13. doi: 10.1046/j.1054-6006.2001.00039.x.
  • Cosco Busan Oil Spill Trustees. 2012. Cosco Busan Oil Spill Final Damage Assessment and Restoration Plan/Environmental Assessment. Prepared by California Department of Fish and Game, California State Lands Commission, National Oceanic and Atmospheric Administration, United States Fish and Wildlife Service, National Park Service, Bureau of Land Management.
  • Edmunds RC, Gill JA, Baldwin DH, Linbo TL, French BL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz J, Hoenig R, et al. 2015. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep. 5(1):17326. doi: 10.1038/srep17326.
  • Flint PL, Schamber JL, Trust KA, Miles AK, Henderson JD, Wilson BW. 2012. Chronic hydrocarbon exposure of harlequin ducks in areas affected by the Selendang Ayu oil spill at Unalaska Island, Alaska. Environ Toxicol Chem. 31(12):2828–2831. doi: 10.1002/etc.1997.
  • Fodrie FJ, Able KW, Galvez F, Heck KL, Jr., Jensen OP, López-Duarte PC, Martin CW, Turner RE, Whitehead A. 2014. Integrating organismal and population responses of estuarine fishes in Macondo spill research. BioScience. 64(9):778–788. doi: 10.1093/biosci/biu123.
  • Fodrie FJ, Heck KL. Jr. 2011. Response of coastal fishes to the Gulf of Mexico oil disaster. PLoS One. 6(7):e21609. doi: 10.1371/journal.pone.0021609.
  • Gao YW, Joner SH, Bargmann GG. 2001. Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound. Can J Fish Aquat Sci. 58(11):2113–2120. doi: 10.1139/f01-146.
  • Gardner LD, Peck KA, Goetz GW, Linbo TL, Cameron JR, Scholz NL, Block BA, Incardona JP. 2019. Cardiac remodeling in response to embryonic crude oil exposure involves unconventional NKX family members and innate immunity genes. J Exper Bio. 222(21):jeb205567.
  • Greene GH, Aschoff J. 2023. Oil spill assessment maps of the central Salish Sea – Marine seafloor & coastal habitats of concern – a tool for oil spill mitigation within the San Juan Archipelago, Washington State, USA. Cont Shelf Res. 253:104880. doi: 10.1016/j.csr.2022.104880.
  • Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP, Joyce JE, Short JW. 2000. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar Ecol Prog Ser. 208:205–216. doi: 10.3354/meps208205.
  • Hicken C, Linbo T, Baldwin D, Willis MJ, Myers M, Holland L, Larsen M, Stekoll M, Rice S, Collier T, et al. 2011. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Natl Acad Sci USA. 108(17):7086–7090. doi: 10.1073/pnas.1019031108.
  • Hixon MA, Johnson DW, Sogard SM. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Marine Sci. 71(8):2171–2185. doi: 10.1093/icesjms/fst200.
  • Hose JE, McGurk MD, Marty GD, Hinton DE, Brown ED, Baker TT. 1996. Sublethal effects of the Exxon Valdez Oil Spill on herring embryos and larvae: morphological, cytogenetic, and histopathological assessments, 1989-1991. Can J Fish Aquat Sci. 53:2355–2365.
  • Incardona JP. 2017. Molecular mechanisms of crude oil developmental toxicity in fish. Arch Environ Contam Toxicol. 73(1):19–32. doi: 10.1007/s00244-017-0381-1.
  • Incardona JP, Carls MG, Day HL, Sloan CA, Bolton JL, Collier TK, Scholz NL. 2009. Cardiac arrhythmia is the primary response of embryonic Pacific Herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol. 43(1):201–207. doi: 10.1021/es802270t.
  • Incardona JP, Carls MG, Holland L, Linbo TL, Baldwin DH, Myers MS, Peck KA, Tagal M, Rice SD, Scholz NL. 2015. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep. 5(1):13499. doi: 10.1038/srep13499.
  • Incardona JP, Collier TK, Scholz NL. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol. 196(2):191–205. doi: 10.1016/j.taap.2003.11.026.
  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, Labenia JS, Laetz CA, et al. 2014. Deepwater horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Nat Acad Sci. 111:e 1510–E1518.
  • Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, et al. 2021. Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. Aquat Toxicol. 235:105810. doi: 10.1016/j.aquatox.2021.105810.
  • Incardona JP, Scholz NL. 2016. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat Toxicol. 177:515–525. doi: 10.1016/j.aquatox.2016.06.016.
  • Incardona JP, Scholz NL. 2017. Environmental pollution and the fish heart. Fish Phys. 36B:373–433.
  • Incardona JP, Scholz NL. 2018. Case study: the 2010 Gulf oil spill and its environmental developmental impacts. In: W. Burggren and B. Dubansky, editors. Development and Environment. Cham Switzerland\: Springer. p. 235–283. https://doi.org/10.1007/978-3-319-75935-7_10
  • Incardona JP, Vines CA, Anulacion BF, Baldwin DH, Day HL, French BL, Labenia JS, Linbo TL, Myers MS, Olson OP, et al. 2012a. Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco Busan oil spill in San Francisco Bay. Proc Nat Acad Sci. 109(2):E51–E58.
  • Incardona JP, Vines CA, Linbo TL, Myers MS, Sloan CA, Anulacion BF, Boyd DT, Collier TK, Morgan S, Cherr GN, et al. 2012b. Potent phototoxicity of marine bunker oil to translucent herring embryos after prolonged weathering. PLoS One. 7(2):e30116. doi: 10.1371/journal.pone.0030116.
  • Landis WG, Bryant PT. 2010. Using weight of evidence characterization and modeling to investigate the cause of the changes in Pacific herring (Clupea pallasi) population dynamics in Puget Sound and at Cherry Point, Washington. Risk Anal. 30(2):183–202. doi: 10.1111/j.1539-6924.2009.01288.x.
  • Langangen Ø, Ohlberger J, Stige LC, Patin R, Buttay L, Stenseth NC, Ono K, Durant JM. 2023. Effects of early life mass mortality events on fish populations. Fish Fisheries. 24(1):176–186. doi: 10.1111/faf.12718.
  • Langangen Ø, Olsen E, Stige LC, Ohlberger J, Yaragina NA, Vikebø FB, Bogstad B, Stenseth NC, Hjermann DØ. 2017. The effects of oil spills on marine fish: implications of spatial variation in natural mortality. Mar Pollut Bull. 119(1):102–109. doi: 10.1016/j.marpolbul.2017.03.037.
  • Laurel BJ, Copeman LA, Iseri P, Spencer ML, Hutchinson G, Nordtug T, Donald CE, Meier S, Allan SE, Boyd DT, et al. 2019. Embryonic crude oil exposure impairs growth and lipid allocation in a keystone Arctic forage fish. iScience. 19:1101–1113. doi: 10.1016/j.isci.2019.08.051.
  • Marty GD, Hose JE, McGurk MD, Brown ED, Hinton DE. 1997. Histopathology and cytogenetic evaluation of Pacific herring larvae exposed to petroleum hydrocarbons in the laboratory or in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Can J Fish Aquat Sci. 54(8):1846–1857. doi: 10.1139/f97-091.
  • McGurk MD, Brown ED. 1996. Egg–larval mortality of Pacific herring in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Can J Fishand Aquat Sci. 53(10):2343–2354.
  • Michel J, Owens EH, Zengel S, Graham A, Nixon Z, Allard T, Holton W, Reimer PD, Lamarche A, White M, et al. 2013. Extent and degree of shoreline oiling: deepwater horizon oil spill, Gulf of Mexico, USA. PLoS One. 8(6):e65087. doi: 10.1371/journal.pone.0065087.
  • Morris JM, Gielazyn M, Krasnec MO, Takeshita R, Forth HP, Labenia JS, Linbo TL, French BL, Gill JA, Baldwin DH, et al. 2018. Crude oil cardiotoxicity to red drum embryos is independent of oil dispersion energy. Chemosphere. 213:205–214. doi: 10.1016/j.chemosphere.2018.09.015.
  • Nixon Z, Michel J. 2018. A review of distribution and quantity of lingering subsurface oil from the Exxon Valdez oil spill. Deep-Sea Res Part II. 147:20–26. doi: 10.1016/j.dsr2.2017.07.009.
  • Norcross BL, Brown ED. 2001. Estimation of first-year survival of Pacific Herring from a review of recent stage-specific studies. In: F. Funk, J. Blackburn, and D. Hay, editors. Herring: expectations for a new millenium. Fairbanks, AK: University of Alaska Sea Grant, AK-SG-01-04; p. 800.
  • Norcross BL, Brown ED, Foy RJ, Frandsen M, Gay SM, Kline TC, Mason DM, Patrick EV, Paul AJ, Stokesbury KDE. 2001. A synthesis of the life history and ecology of juvenile Pacific herring in Prince William Sound, Alaska. Fisheries Oceanogr. 10(s1):42–57. doi: 10.1046/j.1054-6006.2001.00040.x.
  • Norcross BL, Hose JE, Frandsen M, Brown ED. 1996. Distribution, abundance, morphological condition, and cytogenetic abnormalities of larval herring in Prince William Sound, Alaska, following the Exxon Valdez oil spill. Can J Fish Aquat Sci. 53(10):2376–2387. doi: 10.1139/f96-212.
  • Ohlberger J, Langangen Ø. 2015. Population resilience to catastrophic mortality events during early life stages. Ecol Appl. 25(5):1348–1356. doi: 10.1890/14-1534.1.
  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB. 2003. Long-term ecosystem response to the Exxon Valdez Oil Spill. Science. 302(5653):2082–2086. doi: 10.1126/science.1084282.
  • Raimondo S, McKenney Jr CL Jr, Barron MG. 2006. Application of perterbation simulations in population risk assessment for different life history strategies and elasticity patterns. Human Ecol Risk Assmt. 12(5):983–999. doi: 10.1080/10807030600826904.
  • Sandell T, Lindquist A, Dionne P, Lowry D. 2019. 2016 Washington State Herring Status Report. Olympia, WA, Washington Department of Fish and Wildlife Report No FPT 19-07; p. 87.
  • Scholz NL, Incardona JP. 2015. Scaling PAH toxicity to fish early life stages. Environ Toxicol Chem. 34(3):459–461. doi: 10.1002/etc.2830.
  • Shelton AO, Francis TB, Feist B, Williams GD, Lindquist A, Levin PS. 2017. Forty years of seagrass population stability and resilience in an urbanizing estuary. Ecology. 105(2):458–470. doi: 10.1111/1365-2745.12682.
  • Shelton AO, Francis TB, Williams GD, Feist B, Stick K, Levin PS. 2014. Habitat limitation and spatial variation in Pacific herring egg survival. Mar Ecol Prog Ser. 514:231–245. doi: 10.3354/meps10941.
  • Short J. 2003. Long-term effects of crude oil on developing fish: lessons from the Exxon Valdez oil spill. Energy Sources. 25(6):509–517. doi: 10.1080/00908310390195589.
  • Short J. 2017. Advances in understanding the fate and effects of oil from accidental spills in the United States beginning with the Exxon Valdez. Arch Environ Contam Toxicol. 73(1):5–11. doi: 10.1007/s00244-016-0359-4.
  • Siple MC, Francis TB. 2016. Population diversity in Pacific herring of the Puget Sound, USA. Oecologia. 180(1):111–125. doi: 10.1007/s00442-015-3439-7.
  • Siple MC, Shelton AO, Francis TB, Lowry D, Lindquist AP, Essington TE. 2017. Contributions of adult mortality to declines of Puget Sound Pacific herring. ICES J of Mar Sci. 75(1):319–329. doi: 10.1093/icesjms/fsx094
  • Small MP, Loxterman JL, Frye AE, Von Bargen JF, Bowman C, Young SF. 2005. Temporal and spatial genetic structure among some Pacific Herring populations in Puget Sound and the southern Strait of Georgia. Trans Am Fish Soc. 134(5):1329–1341. doi: 10.1577/T05-050.1.
  • Sørhus E, Donald CE, da Silva D, Thorsen A, Karlsen Ø, Meier S. 2021. Untangling mechanisms of crude oil toxicity: linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish. Sci Total Environ. 757:143896. doi: 10.1016/j.scitotenv.2020.143896.
  • Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. 2017. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. Elife. 6:e20707. doi: 10.7554/eLife.20707.
  • Stick KC, Lindquist A, Lowry D. 2014. 2012 Washington State Herring Stock Status Report. Olympia, WA, Washington Department of Fish and Wildlife Report No. FPA-14-09; p. 107.
  • Thorne RE, Thomas GL. 2008. Herring and the “Exxon Valdez” oil spill: an investigation into historical data conflicts. ICES J Mar Sci. 65(1):44–50. doi: 10.1093/icesjms/fsm176.
  • U.S. Environmental Protection Agency. 2021. EPA Geographic Funding at Work on Puget Sound Recovery. EPA-910-K-21-001. p. 48.
  • Ward EJ, Adkison M, Couture J, Dressel SC, Litzow MA, Moffitt S, Hoem Neher T, Trochta J, Brenner R. 2017. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska. PLoS One. 12(3):e0172898. doi: 10.1371/journal.pone.0172898.
  • White JW, Barceló C, Hastings A, Botsford LW. 2022. Pulse disturbances in age structured populations: life history predicts initial impact and recovery time. J Anim Ecol. 91(12):2370–2383. doi: 10.1111/1365-2656.13828.
  • Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. 2017. Larval red drum (Sciaenops ocellatus) sublethal exposure to weathered Deepwater Horizon crude oil: developmental and transcriptomic consequences. Environ Sci Technol. 51(17):10162–10172. doi: 10.1021/acs.est.7b02037.
  • Xu EG, Mager EM, Grosell M, Pasparakis C, Schlenker LS, Stieglitz JD, Benetti D, Hazard ES, Courtney SM, Diamante G, et al. 2016. Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae. Environ Sci Technol. 50(14):7842–7851. doi: 10.1021/acs.est.6b02205.
  • Yin F, John GF, Hayworth JS, Clement TP. 2015. Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci Total Environ. 508:46–56. doi: 10.1016/j.scitotenv.2014.10.105.