173
Views
1
CrossRef citations to date
0
Altmetric
Research

Scientific evaluations and plausibility judgements in middle school students’ learning about geoscience topics

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 170-184 | Received 25 Aug 2021, Accepted 05 Apr 2023, Published online: 18 May 2023

References

  • Abdi, H., & Williams, L. J. (2010). Jackknife. In N. Salkind (Ed.), Encyclopedia of research design. Sage.
  • Alexander, P. A., Kulikowich, J. M., & Schulze, S. K. (1994). How subject-matter knowledge affects recall and interest. American Educational Research Journal, 31(2), 313–337. https://doi.org/10.3102/00028312031002313
  • Allen, K., Reed‐Rhoads, T., Terry, R. A., Murphy, T. J., & Stone, A. D. (2008). Coefficient alpha: An engineer’s interpretation of test reliability. Journal of Engineering Education, 97(1), 87–94. https://doi.org/10.1002/j.2168-9830.2008.tb00956.x
  • Amrhein, V., Greenland, S., & McShane, B. (2019, March 20). Scientists rise up against statistical significance. Nature, 567(7748), 305–307.https://www.nature.com/articles/d41586-019-00857-9?fbclid=IwAR258v566K49c_cig0f9FhPov_UnuGFt3DZ0YbM095emw4iK87Zmz1ovY0s https://doi.org/10.1038/d41586-019-00857-9
  • Arthurs, L. (2018). How explicit is the cognitive science foundation of geoscience education research? A study of syntactical units in JGE articles. Journal of Geoscience Education, 66(1), 77–91. https://doi.org/10.1080/10899995.2018.1411710
  • Bae, C. L., & DeBusk-Lane, M. (2019). Middle school engagement profiles: Implications for motivation and achievement in science. Learning and Individual Differences, 74, 101753. https://doi.org/10.1016/j.lindif.2019.101753
  • Bailey, J. M., Jamani, S., Klavon, T. G., Jaffe, J., & Mohan, S. (2022). Climate crisis learning through scaffolded instructional tools. Educational and Developmental Psychologist, 39(1), 85–99. https://doi.org/10.1080/20590776.2021.1997065
  • Bailey, J. M., Klavon, T. G., & Dobaria, A. (2020). The Origins build-a-MEL: Introducing a scaffold to explore the origins of the Universe. The Earth Scientist, 36(3), 7–11.
  • Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.4324/9780203764565-0
  • Borgerding, L. A., & Raven, S. (2018). Children’s ideas about fossils and foundational concepts related to fossils. Science Education, 102(2), 414–439. https://doi.org/10.1002/sce.21331
  • Braasch, J. L., & Goldman, S. R. (2010). The role of prior knowledge in learning from analogies in science texts. Discourse Processes, 47(6), 447–479. https://doi.org/10.1080/01638530903420960
  • Ceyhan, G. D., Mugaloglu, E. Z., & Tillotson, J. W. (2019). Teaching socio-scientific issues through evidence-based thinking practices: Appropriateness, benefits, and challenges of using an instructional scaffold. İlköğretim Online, 18(4), 1405–1417. https://doi.org/10.17051/ilkonline.2019.630305
  • Chi, M. T. H., Adams, J., Bogusch, E. B., Bruchok, C., Kang, S., Lancaster, M., Levy, R., Li, N., McEldoon, K. L., Stump, G. S., Wylie, R., Xu, D., & Yaghmourian, D. L. (2018). Translating the ICAP theory of cognitive engagement into practice. Cognitive Science, 42(6), 1777–1832. https://doi.org/10.1111/cogs.12626
  • Collie, R. J. (2020). The development of social and emotional competence at school: An integrated model. International Journal of Behavioral Development, 44(1), 76–87. https://doi.org/10.1177/0165025419851864
  • Creamer, E. G. (2018). An introduction to fully integrated mixed methods research. SAGE Publications.
  • Darner, R. (2019). How can educators confront science denial? Educational Researcher, 48(4), 229–238. https://doi.org/10.3102/0013189X19849415
  • Dauer, J. M., Sorensen, A. E., & Wilson, J. (2021, May) Students’ civic engagement self-efficacy varies across socioscientific issues contexts. Frontiers in Education, 6, 154. https://doi.org/10.3389/feduc.2021.628784
  • Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5(1), 61–84. https://doi.org/10.1080/03057267808559857
  • Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: An entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1(1), 1–9. https://doi.org/10.1186/s40594-014-0012-6
  • Ford, M. J. (2015). Educational implications of choosing “practice” to describe science in the Next Generation Science Standards. Science Education, 99(6), 1041–1048. https://doi.org/10.1002/sce.21188
  • Gormally, C., Brickman, P., & Lutz, M. (2012). Developing a test of scientific literacy skills (TOSLS): Measuring undergraduates’ evaluation of scientific information and arguments. CBE Life Sciences Education, 11(4), 364–377. https://doi.org/10.1187/cbe.12-03-0026
  • Governor, D., Lombardi, D., & Duffield, C. (2021). Negotiations in scientific argumentation: An interpersonal analysis. Journal of Research in Science Teaching, 58(9), 1389–1424. https://doi.org/10.1002/tea.21713
  • Governor, D., Strickland, K., & Bailey, J. M. (2020). Climate changes of the past: Engaging in evidence-based argumentation. The Earth Scientist, 36(3), 13–17.
  • Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580. https://doi.org/10.1007/s00180-012-0317-1
  • Heyd-Metzuyanim, E., & Schwarz, B. B. (2017). Conceptual change within dyadic interactions: The dance of conceptual and material agency. Instructional Science, 45(5), 645–677. https://doi.org/10.1007/s11251-017-9419-z
  • Hopkins, J., Crones, P., Burrell, S., Bailey, J. M., & Lombardi, D. (2016). Evaluating the connections between fracking and earthquakes. The Earth Scientist, 32(2), 23–30.
  • Jurecki, K., & Wander, M. C. (2012). Science literacy, critical thinking, and scientific literature: Guidelines for evaluating scientific literature in the classroom. Journal of Geoscience Education, 60(2), 100–105. https://doi.org/10.5408/11-221.1
  • Kastens, K., & Krumhansl, R. (2017). Identifying curriculum design patterns as a strategy for focusing geoscience education research: A proof of concept based on teaching and learning with geoscience data. Journal of Geoscience Education, 65(4), 373–392. https://doi.org/10.5408/16-217.1
  • Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 11-IT. https://doi.org/10.2466/11.IT.3.1
  • Klosterman, M. L., & Sadler, T. D. (2010). Multi‐level assessment of scientific content knowledge gains associated with socioscientific issues‐based instruction. International Journal of Science Education, 32(8), 1017–1043. https://doi.org/10.1080/09500690902894512
  • Kock, N. (2016). Non-normality propagation among latent variables and indicators in PLS-SEM simulations. Journal of Modern Applied Statistical Methods, 15(1), 299–315. https://doi.org/10.22237/jmasm/1462076100
  • Kock, N. (2020). WarpPLS user manual: Version 7.0. ScriptWarp Systems.
  • LaDue, N. D., McNeal, P. M., Ryker, K., St. John, K., & van der Hoeven Kraft, K. J. (2022). Using an engagement lens to model active learning in the geosciences. Journal of Geoscience Education, 70(2), 144–160. https://doi.org/10.1080/10899995.2021.1913715
  • Lin, T. C., Hsu, Y. S., Lin, S. S., Changlai, M. L., Yang, K. Y., & Lai, T. L. (2012). A review of empirical evidence on scaffolding for science education. International Journal of Science and Mathematics Education, 10(2), 437–455. https://doi.org/10.1007/s10763-011-9322-z
  • Lombardi, D. (2016). Beyond the controversy: Instructional scaffolds to promote critical evaluation and understanding of Earth science. The Earth Scientist, 32(2), 5–10.
  • Lombardi, D., Bailey, J. M., Bickel, E. S., & Burrell, S. (2018). Scaffolding scientific thinking: Students’ evaluations and judgments during Earth science knowledge construction. Contemporary Educational Psychology, 54, 184–198. https://doi.org/10.1016/j.cedpsych.2018.06.008
  • Lombardi, D., Bickel, E. S., Bailey, J. M., & Burrell, S. (2018). High school students’ evaluations, plausibility (re) appraisals, and knowledge about topics in Earth science. Science Education, 102(1), 153–177. https://doi.org/10.1002/sce.21315
  • Lombardi, D., Brandt, C. B., Bickel, E. S., & Burg, C. (2016). Students’ evaluations about climate change. International Journal of Science Education, 38(8), 1392–1414. https://doi.org/10.1080/09500693.2016.1193912
  • Lombardi, D., Matewos, M. M., Jaffe, J., Zohery, V., Mohan, S., Bock, K., & Jamani, S. (2022). Discourse and agency during scaffolded middle school science instruction. Online publication. Advance, 59(5–6), 379–400. Discourse Processes. https://doi.org/10.1080/0163853X.2022.2068317
  • Lombardi, D., Nussbaum, E. M., & Sinatra, G. M. (2016). Plausibility judgments in conceptual change and epistemic cognition. Educational Psychologist, 51(1), 35–56. https://doi.org/10.1080/00461520.2015.1113134
  • Lombardi, D., Shipley, T. F., Bailey, J. M., Bretones, P. S., Prather, E. E., Ballen, C. J., Knight, J. K., Smith, M. K., Stowe, R. L., Cooper, M. M., Prince, M., Atit, K., Uttal, D. H., LaDue, N. D., McNeal, P. M., Ryker, K., St. John, K., van der Hoeven Kraft, K. J., & Docktor, J. L. (2021). The curious construct of active learning. Psychological Science in the Public Interest, 22(1), 8–43. https://doi.org/10.1177/1529100620973974
  • Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and shifts in middle school students’ climate change conceptions. Learning and Instruction, 27, 50–62. https://doi.org/10.1016/j.learninstruc.2013.03.001
  • McCarthy, K. S., & McNamara, D. S. (2021). The multidimensional knowledge in text comprehension framework. Educational Psychologist, 56(3), 196–214. https://doi.org/10.1080/00461520.2021.1872379
  • McNeal, K. S., John, K. S., Kortz, K., Nagy-Shadman, E., & Riggs, E. (2017). Introduction to the theme: Synthesizing results and defining future directions of geoscience education research. Journal of Geoscience Education, 65(4), 347–352. https://doi.org/10.5408/1089-9995-65.4.347
  • Medrano, J., Jaffe, J., Lombardi, D., Holzer, M. A., & Roemmele, C. (2020). Students’ scientific evaluations of water resources. Water, 12(7), 2048. https://doi.org/10.3390/w12072048
  • National Academies of Sciences, Engineering and Medicine (NASEM). (2021). Call to action for science education: Building opportunity for the future. The National Academies Press. https://doi.org/10.17226/26152
  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press. https://doi.org/10.17226/13165
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press. http://www.nextgenscience.org/
  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner and A. L. Stevens (Eds.), Mental models (pp. 7–14). Lawrence Erlbaum Associates.
  • Nussbaum, E. M. (2014). Categorical and nonparametric data analysis: Choosing the best statistical technique. Routledge.
  • Nussbaum, E. M. (2021). Critical integrative argumentation: Toward complexity in students’ thinking. Educational Psychologist, 56(1), 1–17. https://doi.org/10.1080/00461520.2020.1845173
  • Patall, E. A., Pituch, K. A., Steingut, R. R., Vasquez, A. C., Yates, N., & Kennedy, A. A. (2019). Agency and high school science students’ motivation, engagement, and classroom support experiences. Journal of Applied Developmental Psychology, 62, 77–92. https://doi.org/10.1016/j.appdev.2019.01.004
  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13(3), 423–451. https://doi.org/10.1207/s15327809jls1303_6
  • Quenouille, M. H. (1949). On a method of trend elimination. Biometrika, 36(1–2), 75–91. https://doi.org/10.2307/2332532
  • Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579–595.
  • Reeve, J., & Shin, S. H. (2020). How teachers can support students’ agentic engagement. Theory into Practice, 59(2), 150–161. https://doi.org/10.1080/00405841.2019.1702451
  • Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring student engagement in science. Educational Psychologist, 50(1), 1–13. https://doi.org/10.1080/00461520.2014.1002924
  • Sinatra, G. M., & Lombardi, D. (2020). Evaluating sources of scientific evidence and claims in the post-truth era may require reappraising plausibility judgments. Educational Psychologist, 55(3), 120–131. https://doi.org/10.1080/00461520.2020.1730181
  • Smith, R. J. (2020). P > 0.05: The incorrect interpretation of “not significant” results is a significant problem. American Journal of Physical Anthropology, 172(4), 521–527. https://doi.org/10.1002/ajpa.24092
  • St. John, K. S., & McNeal, K. S. (2017). The strength of evidence pyramid: One approach for characterizing the strength of evidence of geoscience education research (GER) community claims. Journal of Geoscience Education, 65(4), 363–372. https://doi.org/10.5408/17-264.1
  • Tukey, J. W. (1958). A problem of Berkson, and minimum variance orderly estimators. The Annals of Mathematical Statistics, 29(2), 588–592. https://doi.org/10.1214/aoms/1177706637
  • US Census. (2021). Blinded for anonymity.
  • van der Hoeven Kraft, K. J. (2017). Developing student interest: An overview of the research and implications for geoscience education research and teaching practice. Journal of Geoscience Education, 65(4), 594–603. https://doi.org/10.5408/16-215.1
  • Walsh, C., Quinn, K. N., Wieman, C., & Holmes, N. G. (2019). Quantifying critical thinking: Development and validation of the physics lab inventory of critical thinking. Physical Review Physics Education Research, 15(1), 010135. https://doi.org/10.1103/PhysRevPhysEducRes.15.010135
  • Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “p < 0.05”. The American Statistician, 73(sup1), 1–19. https://doi.org/10.1080/00031305.2019.1583913

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.