153
Views
0
CrossRef citations to date
0
Altmetric
RNA Biology

LncRNA AA465934 Improves Podocyte Injury by Promoting Tristetraprolin-Mediated HMGB1 DownRegulation in Diabetic Nephropathy

, , , , , & ORCID Icon show all
Pages 87-102 | Received 08 Nov 2023, Accepted 26 Feb 2024, Published online: 23 Mar 2024

References

  • Guilbert JJ. The World Health Report 2006: working together for health. Educ Health (Abingdon). 2006;19:385–387. doi:10.1080/13576280600937911.
  • Scott RP, Quaggin SE. Review series: the cell biology of renal filtration. J Cell Biol. 2015;209:199–210. doi:10.1083/jcb.201410017.
  • Garg P. A review of podocyte biology. Am J Nephrol. 2018;47 Suppl 1:3–13. doi:10.1159/000481633.
  • Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13:3005–3015. doi:10.1097/01.asn.0000039661.06947.fd.
  • Zhang H, Yan Y, Hu Q, Zhang X. LncRNA MALAT1/microRNA let-7f/KLF5 axis regulates podocyte injury in diabetic nephropathy. Life Sci. 2021;266:118794. doi:10.1016/j.lfs.2020.118794.
  • Wang Z, Chang Y, Liu Y, Liu B, Zhen J, Li X, Lin J, Yu Q, Lv Z, Wang R. Inhibition of the lncRNA MIAT prevents podocyte injury and mitotic catastrophe in diabetic nephropathy. Mol Ther Nucleic Acids. 2022;28:136–153. doi:10.1016/j.omtn.2022.03.001.
  • Long B, Wan Y, Zhang S, Lv L. LncRNA XIST protects podocyte from high glucose-induced cell injury in diabetic nephropathy by sponging miR-30 and regulating AVEN expression. Arch Physiol Biochem. 2023;129:610–617. doi:10.1080/13813455.2020.1854307.
  • Jing F, Zhao J, Jing X, Lei G. Long noncoding RNA Airn protects podocytes from diabetic nephropathy lesions via binding to Igf2bp2 and facilitating translation of Igf2 and Lamb2. Cell Biol Int. 2020;44:1860–1869. doi:10.1002/cbin.11392.
  • Jin J, Gong J, Zhao L, Li Y, He Q. LncRNA Hoxb3os protects podocytes from high glucose-induced cell injury through autophagy dependent on the Akt-mTOR signaling pathway. Acta Biochim Pol. 2021;68:619–625. doi:10.18388/abp.2020_5483.
  • Liu DW, Zhang JH, Liu FX, Wang XT, Pan SK, Jiang DK, Zhao ZH, Liu ZS. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp Mol Med. 2019;51:1–15. doi:10.1038/s12276-019-0259-6.
  • Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond). 2022;42:117–140. doi:10.1002/cac2.12254.
  • Turner M, Díaz-Muñoz MD. RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol. 2018;19:120–129. doi:10.1038/s41590-017-0028-4.
  • Hu J, Wang Q, Fan X, Zhen J, Wang C, Chen H, Liu Y, Zhou P, Zhang T, Huang T, et al. Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis. 2023;14:130. doi:10.1038/s41419-023-05658-7.
  • Liu F, Guo J, Qiao Y, Pan S, Duan J, Liu D, Liu Z. MiR-138 plays an important role in diabetic nephropathy through SIRT1-p38-TTP regulatory axis. J Cell Physiol. 2021;236:6607–6618. doi:10.1002/jcp.30238.
  • Ren C, Yang T, Qiao P, Wang L, Han X, Lv S, Sun Y, Liu Z, Du Y, Yu Z. PIM2 interacts with tristetraprolin and promotes breast cancer tumorigenesis. Mol Oncol. 2018;12:690–704. doi:10.1002/1878-0261.12192.
  • Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, Huang H. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019;10:95. doi:10.1186/s13287-019-1177-1.
  • Yuan S, Liang X, He W, Liang M, Jin J, He Q. ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte. Ren Fail. 2021;43:968–979. doi:10.1080/0886022X.2021.1936040.
  • Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS. Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res. 2022;9:23. doi:10.1186/s40779-022-00385-0.
  • Li XZ, Jiang H, Xu L, Liu YQ, Tang JW, Shi JS, Yu XJ, Wang X, Du L, Lu Q, et al. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3beta signaling pathway. Biochem Pharmacol. 2021;192:114675. doi:10.1016/j.bcp.2021.114675.
  • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Asanuma K, et al. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy. Diabetes. 2016;65:755–767. doi:10.2337/db15-0473.
  • Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, Ding H, Tan S, Chen A, Zhang F, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy. 2020;16:1482–1505. doi:10.1080/15548627.2019.1687985.
  • Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–1455. doi:10.1080/15548627.2018.1474314.
  • Jin J, Gong J, Zhao L, Zhang H, He Q, Jiang X. Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J Diabetes. 2019;11:826–836. doi:10.1111/1753-0407.12914.
  • Schievenbusch S, Strack I, Scheffler M, Nischt R, Coutelle O, Hösel M, Hallek M, Fries JWU, Dienes H-P, Odenthal M, et al. Combined paracrine and endocrine AAV9 mediated expression of hepatocyte growth factor for the treatment of renal fibrosis. Mol Ther. 2010;18:1302–1309. doi:10.1038/mt.2010.71.
  • Chen W, Peng R, Sun Y, Liu H, Zhang L, Peng H, Zhang Z. The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathy via the miR-449a/b/Trim11/Mek signaling pathway. Faseb J. 2019;33:11492–11506. doi:10.1096/fj.201900522R.
  • Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17:106–116. doi:10.1093/bib/bbv031.
  • Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, Guan X, Yang K, Bai Y. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. 2018;25:1980–1995. doi:10.1038/s41418-018-0084-9.
  • Guo J, Lei M, Cheng F, Liu Y, Zhou M, Zheng W, Zhou Y, Gong R, Liu Z. RNA-binding proteins tristetraprolin and human antigen R are novel modulators of podocyte injury in diabetic kidney disease. Cell Death Dis. 2020;11:413. doi:10.1038/s41419-020-2630-x.
  • Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, Liu D, Xiao J, Liu Z, Zhao Z. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep. 2017;7:2314. doi:10.1038/s41598-017-01027-5.
  • Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 induces PD-L1 expression and promotes tumor growth in breast cancer. Cancer Res. 2019;79:5233–5244. doi:10.1158/0008-5472.CAN-19-0063.
  • Park J, Rah S-Y, An HS, Lee JY, Roh GS, Ryter SW, Park JW, Yang CH, Surh Y-J, Kim U-H, et al. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis. Metabolism. 2023;141:155516. doi:10.1016/j.metabol.2023.155516.
  • Ngoc LV, Wauquier C, Soin R, Bousbata S, Twyffels L, Kruys V, Gueydan C. Rapid proteasomal degradation of posttranscriptional regulators of the TIS11/tristetraprolin family is induced by an intrinsically unstructured region independently of ubiquitination. Mol Cell Biol. 2014;34:4315–4328. doi:10.1128/MCB.00643-14.
  • Zhao M, Zhang Y, Jiang Y, Wang K, Wang X, Zhou D, Wang Y, Yu R, Zhou X. YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res. 2021;40:99. doi:10.1186/s13046-021-01897-8.
  • Feng B, Yang F, Liu J, Sun Q, Meng R, Zhu D. Amelioration of diabetic kidney injury with dapagliflozin is associated with suppressing renal HMGB1 expression and restoring autophagy in obese mice. J Diabetes Complications. 2023;37:108409. doi:10.1016/j.jdiacomp.2023.108409.
  • Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy. 2022;18:320–339. doi:10.1080/15548627.2021.1926655.
  • Wang H, Chen Y, Guo J, Shan T, Deng K, Chen J, Cai L, Zhou H, Zhao Q, Jin S, et al. Dysregulation of tristetraprolin and human antigen R promotes gastric cancer progressions partly by upregulation of the high-mobility group box 1. Sci Rep. 2018;8:7080. doi:10.1038/s41598-018-25443-3.
  • Kim YH, Kwak MS, Lee B, Shin JM, Aum S, Park IH, Lee MG, Shin JS. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy. 2021;17:2345–2362. doi:10.1080/15548627.2020.1826690.
  • Wang Z, Zhou H, Zheng H, Zhou X, Shen G, Teng X, Liu X, Zhang J, Wei X, Hu Z, et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin in fl ammation. Autophagy. 2021;17:529–552. doi:10.1080/15548627.2020.1725381.
  • He M, Chu T, Wang Z, Feng Y, Shi R, He M, Feng S, Lu L, Cai C, Fang F, et al. Inhibition of macrophages inflammasome activation via autophagic degradation of HMGB1 by EGCG ameliorates HBV-induced liver injury and fibrosis. Front Immunol. 2023;14:1147379. doi:10.3389/fimmu.2023.1147379.
  • Zhang Y. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-beta1 pathway. Biosci Rep. 2021;41:BSR20203131. doi:10.1042/BSR20203131.
  • Gao D, Wang S, Lin Y, Sun Z. In vivo AAV delivery of glutathione reductase gene attenuates anti-aging gene klotho deficiency-induced kidney damage. Redox Biol. 2020;37:101692. doi:10.1016/j.redox.2020.101692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.