101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel TaqMan qPCR system for the detection of Diaporthe citri, the causative agent of citrus melanose

, , , , , ORCID Icon & show all
Article: 2338437 | Received 10 Dec 2023, Accepted 29 Mar 2024, Published online: 22 Apr 2024

References

  • Wolf FA, Bach WJ. The isolation of the fungus that causes citrus melanose and the pathological anatomy of the host. J Agric Res. 1928;37:1–10.
  • Chaisiri C, Liu X, Lin Y, et al. Diaporthe citri: a fungal pathogen causing melanose disease. Plants. 2022;11(12):1600. doi: 10.3390/plants11121600.
  • Timmer LW, Zitko SE, Albrigo LG. Split applications of copper fungicides improve control of melanose on grapefruit in Florida. Plant Dis. 1998;82(9):983–986. doi: 10.1094/PDIS.1998.82.9.983.
  • Rehman FU, Kalsoom M, Sultan A. Citrus melanose and quality degradation of fruit by this disease: a review. JBGSR. 2020;39(5):1–4. doi: 10.46718/JBGSR.2020.03.000081.
  • Hyun JW, Yi PH, Hwang RY, et al. Aspect of incidence of the major citrus diseases recently. Res Plant Dis. 2013;19:102–107. doi: 10.5423/RPD.2013.19.2.102.
  • Shin YH, Ko EJ, Kim SJ, et al. Suppression of melanose caused by Diaporthe citri on citrus leaves pretreated with bio-sulfur. Plant Pathol J. 2019;35(5):417–424. doi: 10.5423/PPJ.OA.03.2019.0067.
  • Yutaka A, Yasuo H, Tomomasa M. Studies on citrus melanose and citrus stem-end rot by Diaporthe citri Wolf. Jpn J Phytopathol. 1986;52:39–46.
  • Jiang LY, Xu FS, Huang ZD, et al. Occurrence and control of citrus melanose caused by diaporthe citri. Acta Agric Zhejiangensis. 2012;24(4):647–653. doi: 10.3969/j.issn.1004-1524.2012.04.022.
  • Zeng BL, Zeng ZF, Zhu XY, et al. Occurrence regularity and comprehensive control measures of nanfeng orange fruit black spot disease. Zhejiang Ganju. 2010;27(20):24–26. doi: 10.3969/j.issn.1009-0584.2010.02.009.
  • Mondal SN, Agostini JP, Zhang L, et al. Factors affecting pycnidium production of Diaporthe citri on detached citrus twigs. Plant Dis. 2004;88(4):379–382. doi: 10.1094/PDIS.2004.88.4.379.
  • Huang XB, Kh L, Huang ZD. Study on the suitable time and medication method of controlling citrus black spot disease. Zhejiang Ganju. 2010;27(2):26–29. doi: 10.3969/j.issn.1009-0584.2010.02.010.
  • Chen GQ, Jiang LY, Fs X, et al. In vitro and in vivo screening of fungicides for controlling citrus melanose caused by Diaporthe citri. J Zhejiang Univ Agric Life Sci. 2010;36(4):440–444. doi: 10.4028/www.scientific.net/AMM.37-38.1549.
  • Noguchi M. Appropriate period control of citrus melanose using simple rain gauge. Fruit Jpn. 2013;68(8):53–55 [Japanese]. Available from: https://ndlsearch.ndl.go.jp/books/R000000004-I024777105
  • Yi PH, Hyun JW, Hwang RY, et al. Improvement of control efficacy of mancozeb wettable powder against citrus melanose by mixing with paraffin oil. Res Plant Dis. 2014;20(3):196–200. doi: 10.5423/RPD.2014.20.3.196.
  • Miyoshi T, Kawahata Y, Shimizu S. The effect of mancozeb wp (wettable powder) on mancozeb adhesion and melanose control after application on wet citrus trees. Jpn J Phytopathol. 2007;73(3):149–154. doi: 10.3186/jjphytopath.73.149.
  • Klymus KE, Merkes CM, Allison MJ, et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA. 2020;2(3):271–282. doi: 10.1002/edn3.29.
  • Carisse O, Tremblay DM, Lévesque CA, et al. Development of a TaqMan real-time PCR assay for quantification of airborne conidia of Botrytis squamosa and management of botrytis leaf blight of onion. Phytopathology. 2009;99(11):1273–1280. doi: 10.1094/PHYTO-99-11-1273.
  • Marimon N, Eduardo I, León M, et al. A qPCR-based method for the detection and quantification of the peach powdery mildew (Podosphaera pannosa) in epidemiological studies. Eur J Plant Pathol. 2020;158(4):1005–1016. doi: 10.1007/s10658-020-02136-0.
  • Calderon C, Ward E, Freeman J, et al. Detection of airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae in oilseed rape crops by polymerase chain reaction (PCR) assays. Plant Pathol. 2002;51(3):303–310. doi: 10.1046/j.1365-3059.2002.00721.x.
  • Xu LY, Zhao LW, Hu YF, et al. Development of a qPCR detection method for monitoring conidial density of rice blast fungus in the air. Acta Agric Zhejiangensiss. 2016;28(8):1368–1373. doi: 10.3969/j.issn.1004-1524.2016.08.14.
  • Zeng YT, Xiong T, Li HY. Rapid molecular detection of Diaporthe citri, the pathogen of citrus melanose. Acta Agric Zhejiangensis. 2022;34(7):1457–1465. doi: 10.3969/j.issn.1004-1524.2022.07.13.
  • Huang F, Hou X, Dewdney MM, et al. Diaporthe species occurring on citrus in China. Fungal Divers. 2013a;61(1):237–250. doi: 10.1007/s13225-013-0245-6.
  • Huang F, Chen GQ, Hou X, et al. Colletotrichum species associated with cultivated citrus in China. Fungal Divers. 2013b;61(1):61–74. doi: 10.1007/s13225-013-0232-y.
  • Luo M, Dong ZY, Bin SY, et al. First report of fruit rot disease on pomelo caused by Lasiodiplodia theobromae in China. Plant Dis. 2011;95(9):1190–1190. doi: 10.1094/PDIS-03-11-0214.
  • Phillips AJL, Alves A, Abdollahzadeh J, et al. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76(1):51–167. doi: 10.3114/sim0021.
  • Wulandari NF, To-Anun C, Hyde KD, et al. Phyllosticta citriasiana sp. nov., the cause of citrus tan spot of citrus maxima in Asia. Fungal Divers. 2009;34:23–39.
  • Li Y, Tan P, Zhao DG. Diaporthe nobilis, a new record on camellia sinensis in Guizhou province, China. Mycosphere. 2017;8(1):1–8. doi: 10.5943/mycosphere/8/1/1.
  • Gao YH, Su YY, Sun W, et al. Diaporthe species occurring on lithocarpus glabra in China, with descriptions of five new species. Fungal Biol. 2015;119(5):295–309. doi: 10.1016/j.funbio.2014.06.006.
  • Bartlett JMS, Stirling D. DNA extraction from fungi, yeast, and bacteria. Methods Mol Biol. 2003;226:53. doi: 10.1385/1-59259-384-4:53.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054.
  • Rodríguez A, Rodríguez M, Córdoba JJ, et al. Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol. 2015;1275:31–56. doi: 10.1007/978-1-4939-2365-6_3.
  • Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323–1330. doi: 10.1128/aem.61.4.1323-1330.
  • Udayanga D, Liu X, Crous PW, et al. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers. 2012;56(1):157–171. doi: 10.1007/s13225-012-0190-9.
  • Van der Heyden H, Dutilleul P, Charron JB, et al. Monitoring airborne inoculum for improved plant disease management. A review. Agron Sustain Dev. 2021;41(3):1–23. doi: 10.1007/s13593-021-00694-z.
  • Yan ZY, Fan JR, Liu W, et al. Models of disease index estimation of wheat powdery mildew based on the concentrations of Blumeria graminis f.sp. tritici conidia in the fields. Acta Phytopathol Sin. 2017;47(2):253–261.
  • Jeremiah KS, Jeness C, Cheng Q, et al. Detection and quantification of airborne Claviceps purpurea sensu lato ascospores from hirst-type spore traps using real-time quantitative PCR. Plant Dis. 2018;102(12):2487–2493. doi: 10.1094/PDIS-02-18-0310-RE.
  • Rogers SL, Atkins SD, West JS. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorumusing quantitative PCR. Plant Pathol. 2009;58(2):324–331. doi: 10.1111/j.1365-3059.2008.01945.x.
  • Araujo GT, Amundsen E, Frick M, et al. Detection and quantification of airborne spores from six important wheat fungal pathogens in Southern Alberta. Can J Plant Pathol. 2021;43(3):439–454. doi: 10.1080/07060661.2020.1817795.
  • Cao X, Yao D, Zhou Y, et al. Detection and quantification of airborne inoculum of Blumeria graminisf.s p. tritici using quantitative PCR. Eur J Plant Pathol. 2016;146(1):225–229. doi: 10.1007/s10658-016-0908-8.
  • Cai ZG, Zhuang ZY. Citrus melanose and its control. ZhongGuo Yuan Yi (Horticulture of Chinese). 1985;31(3):132–140.
  • Liu X, Wang MS, Mei XF, et al. Sensitivity evaluation of Diaporthe citri populations to mancozeb and screening of alternative fungicides for citrus melanose control. J Plant Protect. 2018;45(2):373–381. doi: 10.13802/j.cnki.zwbhxb.2018.2016175.
  • Dhar N, Mamo BE, Subbarao KV, et al. Measurements of aerial spore load by qPCR facilitates lettuce downy mildew risk advisement. Plant Dis. 2019;104(1):82–93. doi: 10.1094/PDIS-03-19-0441-RE.
  • Thiessen LD, Neill TM, Mahaffee WF. Timing fungicide application intervals based on airborne Erysiphe necator concentrations. Plant Dis. 2017;101(7):1246–1252. doi: 10.1094/PDIS-12-16-1727-RE.