459
Views
0
CrossRef citations to date
0
Altmetric
Genetic Resources Evaluation

Effect of nitrogen fixation enhancing type SEN1 gene on soybean growth

, , , , , , , & show all
Pages 137-149 | Received 21 Aug 2023, Accepted 25 Feb 2024, Published online: 09 Mar 2024

References

  • Aloo, F., & Ojija, B. N. (2023). The role of Rhizobia toward food production, food and soil security through microbial agro-input utilization in developing countries. Case Studies in Chemical and Environmental Engineering, 8, 100404. https://doi.org/10.1016/j.cscee.2023.100404
  • Bohlool, B. B., Ladha, J. K., Garrity, D. P., & George, T. (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. Plant and Soil, 141(1–2), 1–11. https://doi.org/10.1007/BF00011307
  • Bosse, M. A., da Silva, M. B., de Oliveira, N. G. R. M., de Araujo, M. A., Rodrigues, C., de Azevedo, J. P., & Dos Reis, A. R. (2021). Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiology and Biochemistry, 166, 512–521. https://doi.org/10.1016/j.plaphy.2021.06.007
  • Brear, E. M., Bedon, F., Gavrin, A., Kryvoruchko, I. S., Torres‐Jerez, I., Udvardi, M. K., Smith, P. M. (2020). GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist, 228(2), 667–681. https://doi.org/10.1111/nph.16734
  • Broughton, W. J., & Dilworth, M. (1971). Control of leghaemoglobin synthesis in snake beans. Biochemical Journal, 125(4), 1075–1080. https://doi.org/10.1042/bj1251075
  • Cao, J. (2019). Molecular evolution of the vacuolar iron transporter (VIT) family genes in 14 plant species. Genes (Basel), 10(2), 144. https://doi.org/10.3390/genes10020144
  • Che, J., Yamaji, N., & Ma, J. F. (2021). Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytologist, 230(3), 1049–1062. https://doi.org/10.1111/nph.17219
  • Connorton, J. M., Jones, E. R., Rodríguez-Ramiro, I., Fairweather-Tait, S., Uauy, C., & Balk, J. (2017). Wheat vacuolar iron transporter TaVIT2 transports fe and mn and is effective for biofortification. Plant Physiology, 174(4), 2434–2444. https://doi.org/10.1104/pp.17.00672
  • Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. https://doi.org/10.1016/0014-4827(68)90403-5
  • Gao, M., Qiu, J., Li, C., Wang, L., Li, H., & Gao, C. (2014). Modeling nitrogen loading from a watershed consisting of cropland and livestock farms in China using manure-DNDC. Agriculture. Agriculture, Ecosystems & Environment, 185, 88–98. https://doi.org/10.1016/j.agee.2013.10.023
  • Hakoyama, T., Niimi, K., Watanabe, H., Tabata, R., Matsubara, J., Sato, S., Suganuma, N. (2009). Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature, 462(7272), 514–517. https://doi.org/10.1038/nature08594
  • Hakoyama, T., Niimi, K., Yamamoto, T., Isobe, S., Sato, S., Nakamura, Y., Suganuma, N. (2012). The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in lotus japonicus nodules. Plant and Cell Physiology, 53(1), 225–236. https://doi.org/10.1093/pcp/pcr167
  • Hasibuan, R. F. M., Miyatake, M., Sugiura, H., Agake, S. I., Yokoyama, T., Bellingrath-Kimura, S. D., Ohkama-Ohtsu, N. (2021). Application of biofertilizer containing bacillus pumillus TUAT1 on soybean without inhibiting infection by Bradyrhizobium diazoefficiens USDA110. Soil Science and Plant Nutrition, 67(5), 535–539. https://doi.org/10.1080/00380768.2021.1959837
  • Hossain, M. S., Umehara, Y., & Kouchi, H. (2006). A novel fix symbiotic mutant of Lotus japonicus, Ljsym105, shows impaired development and premature deterioration of nodule infected cells and symbiosomes. Molecular Plant-Microbe Interactions, 19(7), 780–788. https://doi.org/10.1094/MPMI-19-0780
  • Kajiya-Kanegae, H., Nagasaki, H., Kaga, A., Hirano, K., Ogiso-Tanaka, E., Matsuoka, M., Iwata, H. (2021). Whole-genome sequence diversity and association analysis of 198 soybean accessions in mini-core collections. DNA Research, 28(1), dsaa032. https://doi.org/10.1093/dnares/dsaa032
  • Kato, T., Kumazaki, K., Wada, M., Taniguchi, R., Nakane, T., Yamashita, K., Nureki, O. (2019). Crystal structure of plant vacuolar iron transporter VIT1. Nature Plants, 5(3), 308–315. https://doi.org/10.1038/s41477-019-0367-2
  • Kawaguchi, M., Imaizumi-Anraku, H., Koiwa, H., Niwa, S., Ikuta, A., Syono, K., & Akao, S. (2002). Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions, 15(1), 17–26. https://doi.org/10.1094/MPMI.2002.15.1.17
  • Klein, M. A., Grusak, M. A., & Francki, M. (2009). Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome, 52(8), 677–691. https://doi.org/10.1139/G09-039
  • Krusell, L., Krause, K., Ott, T., Desbrosses, G., Kramer, U., Sato, S., Udvardi, M. K. (2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in lotus japonicus root nodules. The Plant Cell, 17(5), 1625–1636. https://doi.org/10.1105/tpc.104.030106
  • Kumagai, H., Hakoyama, T., Umehara, Y., Sato, S., Kaneko, T., Tabata, S., & Kouchi, H. (2007). A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiology, 143(3), 1293–1305. https://doi.org/10.1104/pp.106.095356
  • Liu, S., Liao, L. L., Nie, M. M., Peng, W. T., Zhang, M. S., Lei, J. N., Chen, Z. C. (2020). A VIT‐like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytologist, 226(5), 1413–1428. https://doi.org/10.1111/nph.16506
  • Long, S. R. (1989). Rhizobium-legume nodulation: Life together in the underground. Cell, 56(2), 203–214. https://doi.org/10.1016/0092-8674(89)90893-3
  • Maekawa, T., Kusakabe, M., Shimoda, Y., Sato, S., Tabata, S., Murooka, Y., & Hayashi, M. (2008). Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in lotus japonicus. Molecular Plant-Microbe Interactions, 21(4), 375–382. https://doi.org/10.1094/MPMI-21-4-0375
  • Mylona, P., Pawlowski, K., & Bisseling, T. (1995). Symbiotic nitrogen fixation. The Plant Cell, 7(7), 869. https://doi.org/10.2307/3870043
  • Nishida, Y., Hiraoka, R., Kawano, S., Suganuma, N., Sato, S., Watanabe, S., Suzuki, A. (2020). SEN1 gene from Lotus japonicus MG20 improves nitrogen fixation and plant growth. Soil Science and Plant Nutrition, 66(6), 864–869. https://doi.org/10.1080/00380768.2020.1834829
  • Ohyama, T., Ohtake, N., Sueyoshi, K., Tewari, K., Takahashi, Y., Ito, S., Nishiwaki, T., Nagumo, Y., Ishii, S., & Sato, T. (2009). Nitrogen fixation and metabolism in soybean plants. Nova Science Publishes, IncNitrogen Fixation Research Progres.
  • Ram, H., Sardar, S., & Gandass, N. (2021). Vacuolar iron transporter (like) proteins: Regulators of cellular iron accumulation in plants. Physiologia Plantarum, 171(4), 823–832. https://doi.org/10.1111/ppl.13363
  • Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1–13. https://doi.org/10.1016/j.fcr.2008.03.001
  • Schauser, L., Roussis, A., Stiller, J., & Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature, 402(6758), 191–195. https://doi.org/10.1038/46058
  • Seefeldt, L. C., Hoffman, B. M., & Dean, D. R. (2009). Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry, 78(1), 701–722. https://doi.org/10.1146/annurev.biochem.78.070907.103812
  • Shi, Z., Zhang, Y., Zhou, J., Chen, M., & Wang, X. (2013). Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresource Technology, 148, 144–148. https://doi.org/10.1016/j.biortech.2013.08.052
  • Sorribes-Dauden, R., Peris, D., Martínez-Pastor, M. T., & Puig, S. (2020). Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi. Computational and Structural Biotechnology Journal, 18, 3712–3722. https://doi.org/10.1016/j.csbj.2020.10.044
  • Subbarao, G. V., Kishii, M., Nakahara, K., Ishikawa, T., Ban, T., Tsujimoto, H., Ito, O. (2009). Biological nitrification inhibition (BNI)—Is there potential for genetic interventions in the Triticeae? Breeding Science, 59(5), 529–545. https://doi.org/10.1270/jsbbs.59.529
  • Suganuma, N., Nakamura, Y., Yamamoto, M., Ohta, T., Koiwa, H., Akao, S., & Kawaguchi, M. (2003). The lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Molecular Genetics and Genomics, 269(3), 312–320. https://doi.org/10.1007/s00438-003-0840-4
  • Suzuki, A., Yamashita, K., Ishihara, M., Nakahara, K. I., Abe, M., Kucho, K. I., Arima, S. (2008). Enhanced symbiotic nitrogen fixation by Lotus japonicus containing an antisense β-1, 3-glucanase gene. Plant Biotechnology, 25(4), 357–360. https://doi.org/10.5511/plantbiotechnology.25.357
  • Takahashi, M., Arihara, J., Nakayama, N., & Kokubun, M. (2003). Characteristics of growth and yield formation in the improved genotype of supernodulating soybean (glycine max L. Merr.). Plant Production Science, 6(2), 112–118. https://doi.org/10.1626/pps.6.112
  • Takahashi, Y., Chinushi, T., Nakano, T., & Ohyama, T. (1992). Evaluation of N2 fixation and N absorption activity by relative ureide method in field-grown soybean plants with deep placement of coated urea. Soil Science and Plant Nutrition, 38(4), 699–708. https://doi.org/10.1080/00380768.1992.10416700
  • Tominaga, A., Gondo, T., Akashi, R., Zheng, S. H., Arima, S., & Suzuki, A. (2012). Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus. Journal of Plant Research, 125(3), 395–406. https://doi.org/10.1007/s10265-011-0459-1
  • Tominaga, A., Nagata, M., Futsuki, K., Abe, H., Uchiumi, T., Abe, M., Suzuki, A. (2009). Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiology, 151(4), 1965–1976. https://doi.org/10.1104/pp.109.142638
  • Tsujimoto, R., Kotani, H., Yokomizo, K., Yamakawa, H., Nonaka, A., & Fujita, Y. (2018). Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Scientific Reports, 8(1), 7380. https://doi.org/10.1038/s41598-018-25396-7
  • Walton, J. H., Kontra‐Kováts, G., Green, R. T., Domonkos, Á., Horváth, B., Brear, E. M., Balk, J. (2020). The Medicago truncatula Vacuolar iron Transporter‐Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process. New Phytologist, 228(2), 651–666. https://doi.org/10.1111/nph.16735
  • Win, K. T., Oo, A. Z., Ohkama-Ohtsu, N., & Yokoyama, T. (2018). Bacillus pumilus strain TUAT-1 and nitrogen application in nursery phase promote growth of rice plants under field conditions. Agronomy, 8(10), 216. https://doi.org/10.3390/agronomy8100216
  • Yamagata, Y., Yoshimura, A., Anai, T., & Watanabe, S. (2018). Selection criteria for SNP loci to maximize robustness of high-resolution melting analysis for plant breeding. Breeding Science, 68(4), 488–498. https://doi.org/10.1270/jsbbs.18048
  • Zhang, X. N. A. U., Huang, G. N. A. U., Bian, X. N. A. U., & Zhao, Q. C. A. O. (2013). Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Soil and Environment, 59(2), 80–88. https://doi.org/10.17221/613/2012-PSE
  • Zhang, Y., Xu, Q., Wang, G., & Shi, K. (2023). Mixed enterobacter and klebsiella bacteria enhance soybean biological nitrogen fixation ability when combined with rhizobia inoculation. Soil Biology and Biochemistry, 184, 109100. https://doi.org/10.1016/j.soilbio.2023.109100