387
Views
0
CrossRef citations to date
0
Altmetric
Crop Physiology

Cowpea (Vigna unguiculata L. Walp) morpho-physiological and yield responses to chemical, organic, and biofertilizers at various watering levels utilizing drip irrigation system

, , , ORCID Icon &
Pages 110-124 | Received 07 Jun 2023, Accepted 29 Mar 2024, Published online: 11 Apr 2024

References

  • Aboamera, M. A. (2010). Response of cowpea to water deficit under semi-portable sprinkler irrigation system. Misr Journal of Agricultural Engineering, 27(1), 170–190. https://doi.org/10.21608/mjae.2010.107154
  • Alemu, M., Asfaw, Z., Woldu, Z., & Fenta, B. A. (2016). Cowpea (Vigna unguiculata (L.) Walp.) (Fabaceae) landrace diversity in Northern Ethiopia. International Journal of Biodiversity and Conservation, 8(11), 297–309. https://doi.org/10.5897/IJBC2016.0946
  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of the Total Environment, 406(1), 43–56. https://doi.org/10.1016/j.scitotenv.2008.07.061
  • AOAC. (2010). Official methods of analysis of association of official analytical chemists (18th ed.). Washington, DC.
  • APHA. (2001). Standard methods for the examination of water and wastewater. Apha.
  • Argaw, A. (2017). Organic and inorganic fertilizer application enhances the effect of bradyrhizobium on nodulation and yield of peanut (arachis hypogea L.) in nutrient depleted and sandy soils of Ethiopia. International Journal of Recycling of Organic Waste in Agriculture, 6(3), 219–231. https://doi.org/10.1007/s40093-017-0169-3
  • Armada, E., Portela, G., Roldán, A., & Azcón, R. (2014). Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma, 232-234, 640–648. https://doi.org/10.1016/j.geoderma.2014.06.025
  • Asadu, C. O., Aneke, N. G., Egbuna, S. O., & Agulanna, A. C. (2018). Comparative studies on the impact of bio-fertilizer produced from agro-wastes using thermo-tolerant actinomycetes on the growth performance of maize (Zea mays) and okro (Abelmoschus esculentus). Environmental Technology and Innovation, 12, 55–71. https://doi.org/10.1016/j.eti.2018.07.005
  • Azimi, S., Salehi, M. B., & Bahador, N. (2018). Isolation and identification of Streptomyces ramulosus from soil and determination of antimicrobial property of its pigment. Modern Medical Laboratory Journal, 1(1), 36–41. https://doi.org/10.30699/mmlj17-01-07
  • Barbosa, D. D., Brito, S. L., Fernandes, P. D., Fernandes-Júnior, P. I., & Lima, L. M. (2018). Can bradyrhizobium strains inoculation reduce water deficit effects on peanuts? World Journal of Microbiology and Biotechnology, 34(7), 87. https://doi.org/10.1007/s11274-018-2474-z
  • Barea, J.-M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761–1778. https://doi.org/10.1093/jxb/eri197
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
  • Bhattacharyya, R., Chandra, S., Singh, R. D., Kundu, S., Srivastva, A. K., & Gupta, H. S. (2007). Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat–soybean rotation. Soil and Tillage Research, 94(2), 386–396. https://doi.org/10.1016/j.still.2006.08.014
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 164(4), 1600–1618. https://doi.org/10.1104/pp.113.233791
  • Chiappero, J., Cappellari, L. D. R., Sosa Alderete, L. G., Palermo, T. B., & Banchio, E. (2019). Plant growth promoting rhizobacteria improve the antioxidant status in mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products, 139, 111553. https://doi.org/10.1016/j.indcrop.2019.111553
  • de Almeida Leite, R., Martins, L. C., dos Santos França Ferreira, L. V., Barbosa, E. S., Alves, B. J. R., Zilli, J. E., Paulo, A. A., & da Conceição Jesus, E. (2022). Co-inoculation of rhizobium and bradyrhizobium promotes growth and yield of common beans. Applied Soil Ecology, 172, e104356. https://doi.org/10.1016/j.apsoil.2021.104356
  • Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1965). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • Dukes, M. D., Zotarelli, L., Liu, G. D., & Simonne, E. H. (2012). Principles and practices of irrigation management for vegetables. University of Florida IFAS Extension, 1–14. https://edis.ifas.ufl.edu/publication/CV107
  • El-Sawah, A. M., El-Keblawy, A., Ali, D. F. I., Ibrahim, H. M., El-Sheikh, M. A., Sharma, A., Alhaj Hamoud, Y., Shaghaleh, H., Brestic, M., Skalicky, M., Xiong, Y., & Sheteiwy, M. S. (2021). Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture, 11(3), e194. https://doi.org/10.3390/agriculture11030194
  • El-Serafy, Z. M., & El-Ghamry, A. M. (2006). Methods of soil and water analysis (practices). In Z. M. El-Serafy & A. M. El-Ghamry (Eds.), Soils Department, Faculty of Agriculture (p. 253). Mansoura University.
  • Fageria, N. K. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43(16), 2063–2113. https://doi.org/10.1080/00103624.2012.697234
  • Falagán, N., Artés, F., Artés-Hernández, F., Gómez, P. A., Pérez-Pastor, A., & Aguayo, E. (2015). Comparative study on postharvest performance of nectarines grown under regulated deficit irrigation. Postharvest Biology and Technology, 110, 24–32. https://doi.org/10.1016/j.postharvbio.2015.07.011
  • Faloye, O. T., & Alatise, M. O. (2015). Effect of varying water applications on evapotranspiration and yield of cowpea under sprinkler irrigation system. International Journal of Agriculture and Crop Sciences, 8(3), 307–319. https://org/IJACS/2015/8-3/307-319
  • Gerrano, A. S., Rensburg Van, W. S. J., Venter, S. L., Shargie, N. G., Amelework, B. A., Shimelis, H. A., & Labuschagne, M. T. (2019). Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, Section B Soil & Plant Science, 69(2), 155–166. https://doi.org/10.1080/09064710.2018.1520290
  • Hoenig, M., Baeten, H., Vanhentenrijk, S., Vassileva, E., & Quevauviller, P. (1998). Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods. Analytica Chimica Acta, 358(1), 85–94. https://doi.org/10.1016/S0003-2670(97)00594-1
  • Htwe, A. Z., Moh, S. M., Moe, K., & Yamakawa, T. (2019). Biofertilizer production for agronomic application and evaluation of its symbiotic effectiveness in soybeans. Agronomy, 9(4), 1–16. https://doi.org/10.3390/agronomy9040162
  • Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/s13213-015-1112-3
  • Khan, N., Bano, A., Rahman, M. A., Guo, J., Kang, Z., & Babar, M. A. (2019). Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports, 9(1), e2097. https://doi.org/10.1038/s41598-019-38702-8
  • Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, e111118. https://doi.org/10.1016/j.jenvman.2020.111118
  • Lesueur, D., Deaker, R., Herrmann, L., Bräu, L., & Jansa, J. (2016). The production and potential of biofertilizers to improve crop yields. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations: for sustainable agriculture (pp. 71–92). Springer India. https://doi.org/10.1007/978-81-322-2779-3_4.
  • Liang, X., Chen, Q., Rana, M. S., Dong, Z., Liu, X., Hu, C., Tan, Q., Zhao, H., Sun, X., & Wu, S. (2021). Effects of soil amendments on soil fertility and fruit yield through alterations in soil carbon fractions. Journal of Soils and Sediments, 21(7), 2628–2638. https://doi.org/10.1007/s11368-021-02932-z
  • Malr, E. (2018). The ministry of agriculture and land reclamation. Annual Bulletin of Indicators of Agricultural Statistics.
  • Mittra, B. N., Karmakar, S., Swain, D. K., & Ghosh, B. C. (2005). Fly ash—a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 84(11), 1447–1451. https://doi.org/10.1016/j.fuel.2004.10.019
  • Mndzebele, B., Ncube, B., Nyathi, M., Kanu, S. A., Fessehazion, M., Mabhaudhi, T., Amoo, S., & Modi, A. T. (2020). Nitrogen fixation and nutritional yield of cowpea-amaranth intercrop. Agronomy, 10(4), e565. https://doi.org/10.3390/agronomy10040565
  • Nunes, H. G. G. C., de Pinho Sousa, D., Moura, V. B., Ferreira, D. P., de Nóvoa Pinto, J. V., de Oliveira Vieira, I. C., da Silva Farias, V. D., de Oliveira, E. C., & de Souza, P. J. (2019). Performance of the aquacrop model in the climate risk analysis and yield prediction of cowpea (Vigna unguiculatta L. Walp). Australian Journal of Crop Science, 13(7), 1105–1112. https://doi.org/10.21475/ajcs.19.13.07.p1590
  • Nunes, C., Moreira, R., Pais, I., Semedo, J., Simões, F., Veloso, M. M., & Scotti-Campos, P. (2022). Cowpea physiological responses to terminal drought-Comparison between four landraces and a commercial variety. Plants, 11(5), e593. https://doi.org/10.3390/plants11050593
  • Ortuani, B., Facchi, A., Mayer, A., Bianchi, D., Bianchi, A., & Brancadoro, L. (2019). Assessing the effectiveness of variable-rate drip irrigation on water use efficiency in a vineyard in northern Italy. Water, 11(10), e–1964. https://doi.org/10.3390/w11101964
  • Osipitan, O. A., Fields, J. S., Lo, S., & Cuvaca, I. (2021). Production systems and prospects of cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy, 11(11), e2312. https://doi.org/10.3390/agronomy11112312
  • Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and biofertilizers, ecofriendly tools for reclamation of degraded soil environs (pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1.
  • Razavipour, T., Moghaddam, S. S., Doaei, S., Noorhosseini, S. A., & Damalas, C. A. (2018). Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agricultural Water Management, 209, 1–10. https://doi.org/10.1016/j.agwat.2018.05.020
  • Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., Ray, K., & Brahmachari, K. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 12(23), e9808. https://doi.org/10.3390/su12239808
  • Shahrokhnia, M. H., & Sepaskhah, A. R. (2016). Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower. Agricultural Water Management, 172, 18–30. https://doi.org/10.1016/j.agwat.2016.04.010
  • Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science and Bio/technology, 14(3), 407–426. https://doi.org/10.1007/s11157-015-9372-8
  • Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K., & Kumar, A. (2019). Plant growth promoting rhizobacteria: Application in biofertilizers and biocontrol of phytopathogens. In A. K. Singh, A. Kumar, & P. K. Singh (Eds.), PGPR Amelioration in Sustainable Agriculture (pp. 41–66). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815879-1.00003-3.
  • Sinha, R. K., Valani, D., Chauhan, K., & Agarwal, S. (2010). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. Journal of Agricultural Biotechnology and Sustainable Development, 2(7), 113–128.
  • Sofi, P. A., Baba, Z. A., Hamid, B., & Meena, R. S. (2018). Harnessing soil rhizobacteria for improving drought resilience in legumes. In R. S. Meena, A. Das, G. S. Yadav, & R. Lal (Eds.), Legumes for soil health and sustainable management (pp. 235–275). Springer Singapore. https://doi.org/10.1007/978-981-13-0253-4_8.
  • Sun, R., Guo, X., Wang, D., & Chu, H. (2015). Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Applied Soil Ecology, 95, 171–178. https://doi.org/10.1016/j.apsoil.2015.06.010
  • Tartoura, K. A. H. (2010). Alleviation of oxidative-stress induced by drought through application of compost in wheat (Triticum aestivum L.) plants. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(2), 208–216.
  • Ting, A. S. Y., Hermanto, A., & Peh, K. L. (2014). Indigenous actinomycetes from empty fruit bunch compost of oil palm: Evaluation on enzymatic and antagonistic properties. Biocatalysis and Agricultural Biotechnology, 3(4), 310–315. https://doi.org/10.1016/j.bcab.2014.03.004
  • Topak, R., Acar, B., Uyanöz, R., & Ceyhan, E. (2016). Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area. Agricultural Water Management, 176, 180–190. https://doi.org/10.1016/j.agwat.2016.06.004
  • Varughese, A., Balan, M. T., Sajna, A., & Swetha, K. P. (2014). Cowpea inside polyhouse with varying irrigation and fertigation levels. International Journal of Engineering Research and Development, 10(8), 18–21. https://org/a5679b2d7f0fd989fbbcfdbf563e01353038b95
  • Verma, B. C., Pramanik, P., & Bhaduri, D. (2020). Organic fertilizers for sustainable soil and environmental management. In R. S. Meena (Ed.), Nutrient dynamics for sustainable crop production (pp. 289–313). Springer Singapore. https://doi.org/10.1007/978-981-13-8660-2_10.
  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003