149
Views
0
CrossRef citations to date
0
Altmetric
Review

The management of Babesia, amoeba and other zoonotic diseases provoked by protozoa

&
Pages 179-192 | Received 30 Jan 2023, Accepted 18 Apr 2023, Published online: 23 Apr 2023

References

  • Fitri LE, Candradikusuma D, Setia YD, et al. Diagnostic methods of common intestinal protozoa: current and future immunological and molecular methods. Trop Med Infect Dis. 2022 Sep 21;7(10):253. DOI:10.3390/tropicalmed7100253. PMID: 36287994; PMCID: PMC9606991.
  • RG Y. Protozoa: structure, Classification, Growth, and Development. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 77. PMID: 21413323.
  • Vermelho AB, Supuran CT. In: Antiprotozoal Drug Development and Delivery. 2022. Springer Nature: Cham. (Topics in Medicinal Chemistry).
  • E S-M. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J Biol Sci. 2021 Jan;28(1):962–969.
  • Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev. 2013 Jan;26(1):58–85.
  • La Hoz RM, Morris MI. Infectious diseases community of practice of the American Society of T. Tissue and blood protozoa including toxoplasmosis, Chagas disease, leishmaniasis, Babesia, Acanthamoeba, Balamuthia, and Naegleria in solid organ transplant recipients- Guidelines from the American society of transplantation infectious diseases community of practice. Clin Transplant. 2019 Sep;33(9):e13546.
  • Rahman MT, Sobur MA, Islam MS, et al. Zoonotic diseases: etiology, impact, and control. Microorganisms. 2020 Sep 12;8(9):1405. DOI:10.3390/microorganisms8091405. PMID: 32932606; PMCID: PMC7563794.
  • Overgaauw PAM, Vinke CM, Hagen M, et al. A one health perspective on the human-companion animal relationship with emphasis on zoonotic aspects. Int J Environ Res Public Health. 2020 May 27;17(11):3789 DOI:10.3390/ijerph17113789. PMID: 32471058; PMCID: PMC7312520.
  • Waked R, Krause PJ. Human Babesiosis. Infect Dis Clin N Am. 2022 Sep;36(3):655–670.
  • Brownstein JS, Holford TR, Fish D. Effect of climate change on lyme disease risk in North America. Ecohealth. 2005 Mar;2(1):38–46.
  • Allehebi ZO, Khan FM, Robbins M, et al. Lyme disease, Anaplasmosis, and Babesiosis, Atlantic Canada. Emerg Infect Dis. 2022 Jun;28(6):1292–1294.
  • Rojas-Pirela M, Medina L, Rojas MV, et al. Congenital transmission of apicomplexan parasites: a review. Front Microbiol . 2021 Sep 29;12:751648.DOI:0.3389/fmicb.2021.751648. PMID: 34659187; PMCID: PMC8519608.
  • Gray J, Zintl A, Hildebrandt A, et al. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis. 2010 Mar;1(1):3–10.
  • Leiby DA. Transfusion-transmitted Babesia spp.: bull’s-eye on Babesia microti. Clin Microbiol Rev. 2011 Jan;24(1):14–28.
  • Bloch EM, Day JR, Krause PJ, et al. Epidemiology of Hospitalized Patients with Babesiosis, United States, 2010-2016. Emerg Infect Dis. 2022 ;28(2):354–362. DOI:10.3201/eid2802.210213. PMID: 35076004; PMCID: PMC8798708.
  • Renard I, Ben Mamoun C. Treatment of human babesiosis: then and now. Pathogens. 2021 Sep;10(9):1120. DOI:10.3390/pathogens10091120. PMID: 34578153; PMCID: PMC8469882.
  • Jacobsen L, Husen P, Solov’yov IA. Inhibition mechanism of antimalarial drugs targeting the cytochrome bc(1) complex. J Chem Inf Model. 2021 Mar 22;61(3):1334–1345.
  • Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum anicoplast. Antimicrob Agents Ch. 2007 Oct;51(10):3485–3490.
  • Pfefferkorn ER, Borotz SE. Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrob Agents Chemother. 1994 Jan;38(1):31–37.
  • Tang YQ, Ye Q, Huang H, et al. An overview of available antimalarials: discovery, mode of action and drug resistance. Curr Mol Med. 2020;20(8):583–592.
  • Punihaole D, Workman RJ, Upadhyay S, et al. New Insights into quinine-DNA binding using raman spectroscopy and molecular dynamics simulations. J Phys Chem B. 2018 Nov 1;122(43):9840–9851.
  • Yao JM, Zhang HB, Liu CS, et al. Inhibitory effects of 19 antiprotozoal drugs and antibiotics on Babesia microti infection in BALB/c mice. J Infect Dev Countr. 2015 Sep;9(9):1004–1010.
  • Batiha GE, Beshbishy AM, Tayebwa DS, et al. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick-Borne Dis. 2019 Aug;10(5):949–958.
  • Batiha GE, Beshbishy AM, Guswanto A, et al. Phytochemical characterization and chemotherapeutic potential of cinnamomum verum extracts on the multiplication of protozoan parasites in vitro and in vivo. Molecules. 2020 Feb 24;25(4):996. DOI:10.3390/molecules25040996. PMID: 32102270; PMCID: PMC7070835.
  • Rizk MA, El-Sayed SA, AbouLaila M, et al. Large-scale drug screening against babesia divergens parasite using a fluorescence-based high-throughput screening assay. Am J Trop Med Hyg. 2017 Nov;95(5):409.
  • Batiha GE, Beshbishy AM, Tayebwa DS, et al. The effects of trans-chalcone and chalcone 4 hydrate on the growth of Babesia and Theileria. PLoS Neglect Trop D. 2019 May;13(5):e0007030. DOI:10.1371/journal.pntd.0007030. PMID: 31125333; PMCID: PMC6534319.
  • Batiha GE, Beshbishy AM, Adeyemi OS, et al. Safety and efficacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS ONE. 2020 Feb 13;15(2):e022899. DOI:10.1371/journal.pone.0228996. PMID: 32053698; PMCID: PMC7018007.
  • Omar MA, Salama A, Elsify A, et al. Evaluation of in vitro inhibitory effect of, enoxacin on Babesia and Theileria parasites. Exp Parasitol. 2016 Feb;161:62–67.
  • van Schalkwyk DA, Riscoe MK, Pou S, et al. Novel endochin-like quinolones exhibit potent in vitro activity against plasmodium knowlesi but do not synergize with proguanil. Antimicrob Agents Chemother. 2020 Apr 21;64(5) :e02549–19. DOI:10.1128/AAC.02549-19. PMID: 32094134; PMCID: PMC7179610.
  • Carvalho LJM, Tuvshintulga B, Nugraha AB, et al. Activities of artesunate-based combinations and tafenoquine against Babesia bovis in vitro and Babesia microti in vivo. Parasites Vectors. 2020 Jul 20;13(1):362.
  • Tuvshintulga B, AbouLaila M, Davaasuren B, et al. Clofazimine Inhibits the Growth of Babesia and Theileria Parasites in vitro and in vivo. Antimicrob Agents Chemother. 2016 May;60(5):2739–2746.
  • Stickles AM, de Almeida MJ, Morrisey JM, et al. Subtle Changes in Endochin-Like Quinolone Structure Alter the Site of Inhibition within the Cytochrome bc(1) Complex of Plasmodium falciparum. Antimicrob Agents Ch. 2015 Apr;59(4):1977–1982.
  • Winter R, Kelly JX, Smilkstein MJ, et al. Optimization of endochin-like quinolones for antimalarial activity. Exp Parasitol. 2011 Feb;127(2):545–551.
  • Bhanot P, Parveen N. Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol. 2019 Feb;49(2):145–151.
  • Guillen N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence. 2023 Dec;14(1):2158656.
  • Gupta S, Smith L, Diakiw A. Amebiasis and Amebic Liver Abscess in Children. Pediatr Clin N Am. 2022 Feb;69(1):79–97.
  • Naous A, Naja Z, Zaatari N, et al. Intestinal amebiasis: a concerning cause of acute gastroenteritis among hospitalized Lebanese children. N Am J Med Sci. 2013 Dec;5(12):689–698.
  • Shirley DAT, Watanabe K, Moonah S. Significance of amebiasis: 10 reasons why neglecting amebiasis might come back to bite us in the gut. PLoS Neglect Trop D. 2019 Nov;13(11):e0007744. DOI:10.1371/journal.pntd.0007744. PMID: 31725715; PMCID: PMC6855409.
  • Mori Y, Shimizu S, Nishiguchi Y, et al. A clinical study of fulminant amebic colitis. Nihon Shokakibyo Gakkai Zasshi. 2015 May;112(5):871–879.
  • Haque R, Huston CD, Hughes M, et al. Amebiasis. New Engl J Med. 2003 Apr 17;348(16):1565–1573.
  • Hung CC, Chang SY, Ji DD. Entamoeba histolytica infection in men who have sex with men. Lancet Infect Dis. 2012 Sep;12(9):729–736.
  • Kantor M, Abrantes A, Estevez A, et al. Entamoeba Histolytica: updates in clinical manifestation, pathogenesis, and vaccine development. Can J Gastroenterol. Dec 2018;2018:4601420. DOI:10.1155/2018/4601420. PMID: 30631758; PMCID: PMC6304615.
  • Shirley DAT, Farr L, Watanabe K, et al. A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect Di. 2018 Jul;5(7):ofy161. DOI:10.1093/ofid/ofy161. PMID: 30046644; PMCID: PMC6055529.
  • Ralston KS, Solga MD, Mackey-Lawrence NM, et al. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature. 2014 Apr 24;508(7497):526±.
  • Yu Y, Chadee K. Entamoeba histolytica stimulates interleukin 8 from human colonic epithelial cells without parasite-enterocyte contact. Gastroenterology. 1997 May;112(5):1536–1547.
  • Moonah SN, Jiang NM, Petri WA. HosT immune response to intestinal amebiasis. PLOS Pathog. 2013 Aug;9(8):e1003489. DOI:10.1371/journal.ppat.1003489. Epub 2013 Aug 22. PMID: 23990778; PMCID: PMC3749964.
  • Gonzales MLM, Dans LF, Sio-Aguilar J. Antiamoebic drugs for treating amoebic colitis. Cochrane Db Syst Rev. 2019 Jan 9;1(1):CD006085. DOI:10.1002/14651858.CD006085.pub3. PMID: 30624763; PMCID: PMC6326239.
  • Redulla R. Antiamoebic drugs for treating amoebic colitis: a Cochrane review summary. Int J Nurs Stud. 2021 Jun;118:103650. DOI:10.1016/j.ijnurstu.2020.103650. Epub 2020 May 20. PMID: 33189330.
  • Abdallah A, Kordy MI, Saif M. Paromomycin in the treatment of acute intestinal amoebiasis. J Egypt Med Assoc. 1960;43:915–922.
  • Courtney KO, Thompson PE, Hodgkinson R, et al. Paromomycin as a therapeutic substance for intestinal amoebiasis and bacterial enteritis. Ann Biochem Exp Med. 1960;20(Suppl):449–456.
  • Wagner ED, Burnett HS. Paromomycin in the treatment of amoebiasis in Nyasaland. Trans R Soc Trop Med Hyg. 1961 Sep;55:428–430.
  • Rossignol JF, Kabil SM, El-Gohary Y, et al. Nitazoxanide in the treatment of amoebiasis. T Roy Soc Trop Med H. 2007 Oct;101(10):1025–1031.
  • Capparelli EV, Bricker-Ford R, Rogers MJ, et al. Phase I clinical trial results of auranofin, a novel antiparasitic agent. Antimicrob Agents Ch. 2017 Dec 27;61(1):e01947-16. DOI:10.1128/AAC.01947-16. PMID: 27821451; PMCID: PMC5192119.
  • Deloer S, Nakamura R, Mi-Ichi F, et al. Mouse models of amoebiasis and culture methods of amoeba. Parasitol Int. 2016 Oct;65(5 Pt B):520–525.
  • Becker S, Hoffman P, Houpt ER. Efficacy of antiamebic drugs in a mouse model. Am J Trop Med Hyg. 2011 Apr;84(4):581–586.
  • Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012 Apr;25(2):264–296.
  • Delgado ILS, Z S, Santos D, et al. The Apicomplexan Parasite Toxoplasma gondii. Encyclopedia. 2022;2:189–211.
  • Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998 Apr;11(2):267–299.
  • Lima TS, Lodoen MB. Mechanisms of Human Innate Immune Evasion by Toxoplasma gondii. Front Cell Infect Microbiol. 2019;9:103.
  • Chulanetra M, Chaicumpa W. Revisiting the mechanisms of immune evasion employed by human parasites. Front Cell Infect Microbiol. 2021;11:702125.
  • Fox BA, Guevara RB, Rommereim LM, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019 Jul 2;10:(4):e00589-19. DOI:10.1128/mBio.00589-19. PMID: 31266861; PMCID: PMC6606796.
  • Uddin A, Hossain D, Ahsan MI, et al. Review on diagnosis and molecular characterization of Toxoplasma gondii in humans and animals. Trop Biomed. 2021 Dec 1;38(4):511–539.
  • Hajj RE, Tawk L, Itani S, et al. Toxoplasmosis: current and emerging parasite druggable targets. Microorganisms. 2021 Dec;9(12):2531. DOI:10.3390/microorganisms9122531. PMID: 34946133; PMCID: PMC8707595.
  • Spalenka J, Escotte-Binet S, Bakiri A, et al. Discovery of new inhibitors of toxoplasma gondii via the pathogen box. Antimicrob Agents Ch. 2018 Jan;62(2):e01640-17. DOI:10.1128/AAC.01640-17. PMID: 29133550; PMCID: PMC5786798.
  • Konstantinovic N. Treatment of toxoplasmosis: current options and future perspectives. Food Waterb Parasit. 2019 [2020 Dec; 21];15:e00036.
  • Konstantinovic N, Guegan H, Stajner T, et al. Treatment of toxoplasmosis: current options and future perspectives. Food Waterb Parasit. 2019 Apr;1:e00036. DOI:10.1016/j.fawpar.2019.e00036. Erratum in: Food Waterborne Parasitol. 2020 Dec 15;21:e00105. PMID: 32095610; PMCID: PMC7033996.
  • Robert-Gangneux F. It is not only the cat that did it: how to prevent and treat congenital toxoplasmosis. J Infection. 2014 Jan;68:S125–133.
  • Torre D, Casari S, Speranza F, et al. Randomized trial of trimethoprim-sulfamethoxazole versus pyrimethamine-sulfadiazine for therapy of toxoplasmic encephalitis in patients with AIDS. Italian Collaborative Study Group. Antimicrob Agents Chemother. 1998 Jun;42(6):1346–1349.
  • Valentini P, Annunziata ML, Angelone DF, et al. Role of spiramycin/cotrimoxazole association in the mother-to-child transmission of toxoplasmosis infection in pregnancy (vol 28, pg 298, 2009). Eur J Clin Microbiol. 2009 Jul;28(7):879.
  • Djurkovic-Djakovic O, Nikolic T, Robert-Gangneux F, et al. Synergistic effect of clindamycin and atovaquone in acute murine toxoplasmosis. Antimicrob Agents Ch. 1999 Sep;43(9):2240–2244.
  • Heath RJ, Rock CO. Enoyl-Acyl carrier protein reductase (Fabi) plays a determinant role in completing cycles of fatty-acid elongation in Escherichia-coli. J Biol Chem. 1995 Nov 3;270(44):26538–26542.
  • Ling Y, Li ZH, Miranda K, et al. The Farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J Biol Chem. 2007 Oct 19;282(42):30804–30816.
  • Scheele S, Geiger JA, DeRocher AE, et al. Toxoplasma calcium-dependent protein kinase 1 inhibitors: probing activity and resistance using cellular thermal shift assays. Antimicrob Agents Ch. 2018 May 25;62(6):e00051-18. DOI:10.1128/AAC.00051-18. PMID: 29555627; PMCID: PMC5971589.
  • Montazeri M, Mehrzadi S, Sharif M, et al. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res. 2018 Oct;117(10):3045–3057.
  • Bonardi A, Parkkila S, Supuran CT. Inhibition studies of the protozoan alpha-carbonic anhydrase from Trypanosoma cruzi with phenols. J Enzyme Inhib Med Chem. 2022 Dec;37(1):2417–2422.
  • Capasso C, Supuran CT. Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin Ther Pat. 2013;23(6):693–704.
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond). 2021 May 28;135(10):1233–1249.
  • Winum JY, Supuran CT. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2015 Apr;30(2):321–324.
  • Emameh RZ, Barker H, Tolvanen MEE, et al.Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans.Parasite Vector.72014 Jan 21;7:38. DOI:10.1186/1756-3305-7-38. PMID: 24447594; PMCID: PMC3907363.
  • Parkkila AK, Scarim AL, Parkkila S, et al. Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J Biol Chem. 1998 Sep 18;273(38):24620–24623.
  • Ramakrishnan S, Serricchio M, Striepen B, et al. Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res. 2013 Oct;52(4):488–512.
  • Mansoldo FRP, Carta F, Angeli A, et al.Chagas disease: perspectives on the past and present and challenges in drug discoveryMolecules. 2020Nov 23;2522:5483. DOI:10.3390/molecules25225483. PMID: 33238613; PMCID: PMC7700143.
  • Britto CC. Revisiting Chagas’ disease diagnostic strategies in light of different scenarios of Trypanosoma cruzi infection. Mem I Oswaldo Cruz. 2022 May 23;117:e210444chgsb. DOI:10.1590/0074-02760210444chgsb. PMID: 35613158; PMCID: PMC9164940.
  • Lidani KCF, Andrade FA, Bavia L, et al.Chagas disease: from discovery to a worldwide health problem.Front Public Health. 2019 Jul 2;7:166. DOI:10.3389/fpubh.2019.00166. PMID: 31312626; PMCID: PMC6614205.
  • Beatty NL, Forsyth CJ, Burkett-Cadena N, et al. Our current understanding of chagas disease and trypanosoma cruzi infection in the state of Florida - an update on research in this region of the USA. Curr Trop Med Rep. 2022 Sep 20;9:150–159. DOI:10.1007/s40475-022-00261-w
  • 2020: a crucial year for neglected tropical diseases. The Lancet. 2019 Dec 14;394(10215):2126. DOI:10.1016/S0140-6736(19)33070-3. PMID: 31839179.
  • Ramalho E, Albuquerque J, Cristino C, et al. Congenital and blood transfusion transmission of chagas disease: a framework using mathematical modeling. Complexity. 2018 Nov 1[cited 2023 Apr 21]; Volume 2018. Available from: https://hdl.handle.net/2117/12731
  • Roca C, Malaga-Machaca ES, Verastegui MR, et al. IgG subclasses and congenital transmission of chagas disease. Am J Trop Med Hyg. 2021 Nov;105(5):1187–1192.
  • Kingwell K. New therapeutic candidate for Chagas disease. Nat Rev Drug Discov. 2022 Nov;21(11):796.
  • Caldas IS, Santos EG, Novaes RD. An evaluation of benznidazole as a Chagas disease therapeutic. Expert Opin Pharmaco. 2019 Oct 13;20(15):1797–1807.
  • Teixeira ARL, Hecht MM, Guimaro MC, et al. Pathogenesis of Chagas’ disease: parasite persistence and autoimmunity. Clinical Microbiology Reviews. 2011 Jul;24(3):592–630.
  • Filardy AA, Guimaraes-Pinto K, Nunes MP, et al.Human Kinetoplastid Protozoan infections: where are we going next?Front Immunol. 92018 Jul 25;9:1493. DOI:10.3389/fimmu.2018.01493. PMID: 30090098; PMCID: PMC6069677.
  • Echeverria LE, Morillo CA. American Trypanosomiasis (Chagas Disease). Infect Dis Clin N Am. 2019 Mar;33(1):119±.
  • Ley V, Robbins ES, Nussenzweig V, et al. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med. 1990 Feb 1;171(2):401–413.
  • Dunn N, Wang S, Adigun R. African Trypanosomiasis. In: StatPearls [Internet]. Treasure Island (FL): StarPearls Publishing; 20222023 Jan–. PMID: 30137864.
  • Caradonna KL, Burleigh BA. Mechanisms of host cell invasion by Trypanosoma cruzi. Adv Parasitol. 2011;76:33–61.
  • Luquetti AO, Schmunis GA. American trypanosomiasis Chagas disease: one hundred years of research. 2nd. Elsevier; 2017687–730. DOI:10.1016/B978-0-12-801029-7.00030-7. ISBN 9780128010297.
  • Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem I Oswaldo Cruz. 2009 Jul;104:311–318.
  • Villalta F, Dobish MC, Nde PN, et al. VNI cures acute and chronic experimental chagas disease. J Infect Dis. 2013 Aug 1;208(3):504–511.
  • Torrico F, Gascon J, Ortiz L, et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis. 2018 Apr;18(4):419–430.
  • Urbina JA. The long road towards a safe and effective treatment of chronic Chagas disease. Lancet Infect Dis. 2018 Apr;18(4):363–365.
  • Guedes-da-Silva FH, Batista DGJ, Da Silva CF, et al. Antitrypanosomal Activity of Sterol 14 alpha-Demethylase (CYP51) inhibitors vni and vfv in the swiss mouse models of chagas disease induced by the trypanosoma cruzi Y strain. Antimicrob Agents Ch. 2017 Mar 24;61(4):e02098-16. DOI: 10.1128/AAC.02098-16. PMID: 28167559; PMCID: PMC5365685.
  • Friggeri L, Hargrove TY, Rachakonda G, et al. Structural basis for rational design of inhibitors targeting trypanosoma cruzi sterol 14 alpha-demethylase: two regions of the enzyme molecule potentiate its inhibition. J Med Chem. 2014 Aug 14;57(15):6704–6717.
  • Konkle ME, Hargrove TY, Kleshchenko YY, et al. Indomethacin amides as a novel molecular scaffold for targeting trypanosoma cruzi sterol 14 alpha-demethylase. J Med Chem. 2009 May 14;52(9):2846–2853.
  • Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi Sterol 14 alpha-Demethylase (CYP51). Adv Parasit. 2011;75:65–87.
  • Bonardi A, Vermelho AB, Cardoso VD, et al. N-Nitrosulfonamides as carbonic anhydrase inhibitors: a promising chemotype for targeting chagas disease and leishmaniasis. ACS Med Chem Lett. 2019 Apr;10(4):413–418.
  • Nocentini A, Cadoni R, Dumy P, et al. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles. J Enzym Inhib Med Ch. 2017 Dec 27;33(1):286–289.
  • Supuran CT. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity. Future Med Chem. 2016;8(3):311–324.
  • Syrjanen L, Vermelho AB, Rodrigues ID, et al. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem. 2013 Sep 26;56(18):7372–7381.
  • Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Dis. 2019 Nov 2;14(11):1175–1197.
  • D’Ambrosio K, Supuran CT, De Simone G. Are carbonic anhydrases suitable targets to fight protozoan parasitic diseases? Curr Med Chem. 2018;25(39):5266–5278.
  • Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Dis. 2020 Jun 2;15(6):671–686.
  • Bourguignon SC, Cavalcanti DFB, de Souza AMT, et al. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. Exp Parasitol. 2011 Jan;127(1):160–166.
  • Silva JV, Santos SD, Machini MT, et al. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target. 2021 Mar 16;29(3):269–283.
  • Salas-Sarduy E, Landaburu LU, Karpiak J, et al. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep-UK. 2017 [2018 Jun 4];7(8):12073.
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016 Sep 8;537(7619):229±.
  • Zmuda F, Sastry L, Shepherd SM, et al. Identification of novel trypanosoma cruzi proteasome inhibitors using a luminescence-based high-throughput screening assay. Antimicrob Agents Chemother. 2019 Aug;63(9):e00309-19. DOI:10.1128/AAC.00309-19. PMID: 31307977; PMCID: PMC6709497.
  • Padilla AM, Wang W, Akama T, et al. Discovery of an orally active benzoxaborole prodrug effective in the treatment of Chagas disease in non-human primates. Nat Microbiol. 2022 Oct;7(10):1536±.
  • Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, et al. Leishmaniasis: a review. F1000Res. 2017;6:750.
  • Ives A, Ronet C, Prevel F, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011 Feb 11;331(6018):775–778.
  • Peters NC. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies (vol 321, pg 970, 2008). Science. 2008 Dec 12;322(5908):1634.
  • Tesh RB. Control of zoonotic visceral leishmaniasis - is it time to change strategies. Am J Trop Med Hyg. 1995 Mar;52(3):287–292.
  • Reguera RM, Perez-Pertejo Y, Gutierrez-Corbo C, et al. Current and promising novel drug candidates against visceral leishmaniasis. Pure Appl Chem. 2019 Aug;91(8):1385–1404.
  • Ben Salah N, Aounallah A, Manaa L, et al. Systemic meglumine antimoniate-induced severe dilated cardiomyopathy. Dermatol Ther. 2022 Dec;35(12):e15896. DOI:10.1111/dth.15896. Epub 2022 Oct 17. PMID: 36193752.
  • Salari S, Bamorovat M, Sharifi I, et al. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal. 2022 Aug;36(8):e24599. DOI:10.1002/jcla.24599. Epub 2022 Jul 9. PMID: 35808933; PMCID: PMC9396204.
  • Sundar S, Chakravarty J, Agarwal D, et al. Single-Dose Liposomal Amphotericin B for Visceral Leishmaniasis in India. New Engl J Med. 2010 Feb 11;362(6):504–512.
  • Ouellette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Update. 2004 Aug;7(4–5):257–266.
  • Torrado JJ, Espada R, Ballesteros MP, et al. Amphotericin B formulations and drug targeting. J Pharm Sci-Us. 2008 Jul;97(7):2405–2425.
  • Bagnis CI, Deray G. Amphotericin B nephrotoxicity. Saudi J Kidney Dis Transpl. 2002 Oct;13(4):481–491.
  • Purkait B, Kumar A, Nandi N, et al. Mechanism of Amphotericin B Resistance in Clinical Isolates of Leishmania donovani. Antimicrob Agents Ch. 2012 Feb;56(2):1031–1041.
  • Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Ch. 2004 Aug;48(8):3010–3015.
  • Rakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM. Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob Agents Ch. 2005 Jul;49(7):2677–2686.
  • Maarouf M, Lawrence F, Brown S, et al. Biochemical alterations in paromomycin-treated Leishmania donovani promastigotes. Parasitol Res. 1997 Feb;83(2):198–202.
  • Diro E, Ritmeijer K, Boelaert M, et al. Long-term clinical outcomes in visceral leishmaniasis/human immunodeficiency virus-coinfected patients during and after pentamidine secondary prophylaxis in Ethiopia: a single-arm clinical trial. Clin Infect Dis. 2018 Feb 1;66(3):444–451.
  • Van Bocxlaer K, Caridha D, Black C, et al. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol-Drug. 2019 Dec;11:129–138.
  • Calvo-Alvarez E, Stamatakis K, Punzon C, et al. Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Neglect Trop D. 2015 Mar;9(3):e0003666. DOI:10.1371/journal.pntd.0003666. PMID: 25826250; PMCID: PMC4380447.
  • Wyllie S, Thomas M, Patterson S, et al. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature. 2018 Aug 9;560(7717):192±.
  • Garcia AR, Oliveira DMP, Amaral ACF, et al. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. J Enzym Inhib Med Ch. 2019 Jan 1;34(1):1100–1109.
  • Nocentini A, Osman SM, Almeida IA, et al. Appraisal of anti-protozoan activity of nitroaromatic benzenesulfonamides inhibiting carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani. J Enzym Inhib Med Ch. 2019 Jan 1;34(1):1164–1171.
  • Ceruso M, Carta F, Osman SM, et al. Inhibition studies of bacterial, fungal and protozoan beta-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorgan Med Chem. 2015 Aug 1;23(15):4181–4187.
  • Vermelho AB, Capaci GR, Rodrigues IA, et al. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets. Bioorgan Med Chem. 2017 Mar 1;25(5):1543–1555.
  • Debnath A. Drug discovery for primary amebic meningoencephalitis: from screen to identification of leads. Expert Rev Anti-Infe. 2021 Sep 2;19(9):1099–1106.
  • Kofman A, Guarner J. Infections caused by free-living amoebae. J Clin Microbiol. 2022 Jan 19;60(1):e0022821.
  • Vannier E, Jr C JJ, inventors COMPOSITIONS and METHODS for the PROPHYLAXIS and TREATMENT of BABESIOSIS. US2022409713.
  • LI X, WANG J, LI Y, et al. Application of cinnefungin in preparation of medicine for preventing or treating babesia disease. https://patents.google.com/patent/CN115177628A/en?oq=LI+X%2c+WANG+J%2c+LI+Y%2c+et+al.+Application+of+cinnefungin+in+preparation+of+medicine+for+preventing+or+treating+babesia+disease.+CN115177628
  • Y PAN, ZHANG J, QU W, et al. Quinoxaline-N1, N4-dioxide derivatives. CN114621195.
  • Avila-Bonilla RG, Velazquez-Guzman JA, Reyes-Zepeda EI, et al. Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: entamoeba histolytica as a working model. Biosci Rep. 2023 Feb 27;43(2):BSR20221911. DOI:10.1042/BSR20221911. PMID: 36651565; PMCID: PMC9912109.
  • Marchat LA, Ospina Villa JD. Aptameros with amebicide activity and their use as biomarkers. https://patents.google.com/patent/MX2019002502A/en?oq=+Marchat+LA%2c+Ospina+Villa+JD.+Aptameros+with+amebicide+activity+and+their+use+as+biomarkers.+MX2019002502
  • R SG, Ángeles OT. NOVEL AMOEBICIDAL COMPOUNDS DERIVED from ETHYL and METHYL QUINOXALINE-7-CARBOXYLATE. MX2014006538. https://patents.google.com/patent/MX2014006538A/en?q=(NOVEL+AMOEBICIDAL+COMPOUNDS+DERIVED+from+ETHYL+METHYL+QUINOXALINE-7-CARBOXYLATE)&oq=NOVEL+AMOEBICIDAL+COMPOUNDS+DERIVED+from+ETHYL+and+METHYL+QUINOXALINE-7-CARBOXYLATE
  • world-malaria-report. 2022 Available from. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
  • Supuran CT. Coronaviruses. Expert Opin Ther Pat. 2021 Apr;31(4):291–294.
  • Mori M, Capasso C, Carta F, et al. A deadly spillover: sARS-CoV-2 outbreak. Expert Opin Ther Pat. 2020 Jul;30(7):481–485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.