98
Views
0
CrossRef citations to date
0
Altmetric
Review

Carbonic anhydrase and bacterial metabolism: a chance for antibacterial drug discovery

&
Received 15 Nov 2023, Accepted 08 Mar 2024, Published online: 20 Mar 2024

References

  • Jurtshuk P Jr. Chapter 4 Bacterial Metabolism. In: Baron S, editor. Medical microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
  • Gralka M, Pollak S, Cordero O. Fundamental metabolic strategies of heterotrophic bacteria. Integr Comp Biol. 2023 Mar;63:S170–S171.
  • Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013 Jul;52(3):249–276. doi: 10.1016/j.plipres.2013.02.002
  • Gralka M, Pollak S, Cordero OX. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nat Microbiol. 2023 Oct;8(10):1799–1808. doi: 10.1038/s41564-023-01458-z
  • Passalacqua KD, Charbonneau ME, MXD O, et al. Bacterial metabolism shapes the host–pathogen interface. Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.VMBF-0027-2015
  • Conte G, Dimauro C, Daghio M, et al. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Animal. 2022 May;16(5):100520.
  • Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. Intrinsically Disord Proteins. 2015;3(1):e1027032. doi: 10.1080/21690707.2015.1027032
  • Gurina TS, Mohiuddin SS. Biochemistry, protein catabolism. Treasure Island (FL): StatPearls; 2023.
  • Supuran CT. Carbonic anhydrases–an overview. Curr Pharm Design. 2008 Mar;14(7):603–614. doi: 10.2174/138161208783877884
  • Capasso C. Carbonic anhydrases: a superfamily of ubiquitous enzymes. Int J Mol Sci. 2023 Apr 10;24(8):7014. doi: 10.3390/ijms24087014
  • Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzym Inhib Med Ch. 2021 Dec;36(1):1988–1995. doi: 10.1080/14756366.2021.1972995
  • Del Prete S, Nocentini A, Supuran CT, et al. Bacterial iota-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzym Inhib Med Ch. 2020 Dec;35(1):1060–1068.
  • Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat. 2018 Oct;28(10):745–754. doi: 10.1080/13543776.2018.1497161
  • Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases. Metabolites. 2017 Nov 11;7(4):56. doi: 10.3390/metabo7040056
  • Supuran CT, Capasso C. New light on bacterial carbonic anhydrases phylogeny based on the analysis of signal peptide sequences. J Enzym Inhib Med Ch. 2016 Dec;31(6):1254–1260. doi: 10.1080/14756366.2016.1201479
  • Capasso C, De Luca V, Carginale V, et al. Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from sulfurihydrogenibium yellowstonense YO3AOP1. J Enzym Inhib Med Ch. 2012 Dec;27(6):892–897.
  • Gupta A, Gupta R, Singh RL. Microbes and environment. Appl Env Sci Eng Sus. 2017:43–84.
  • van Elsas JD, Semenov AV, Costa R, et al. Survival of Escherichia coli in the environment: fundamental and public health aspects. Isme J. 2011 Feb;5(2):173–183.
  • Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol. 2012;60:91–210.
  • Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzym Inhib Med Ch. 2015 Apr;30(2):325–332. doi: 10.3109/14756366.2014.910202
  • Annunziato G, Angeli A, D’Alba F, et al. Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedchem. 2016 Sep 6;11(17):1904–1914. doi: 10.1002/cmdc.201600180
  • Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzym Inhib Med Ch. 2016 Oct;31(5):689–694. doi: 10.3109/14756366.2015.1059333
  • Del Prete S, Vullo D, De Luca V, et al. Sulfonamide inhibition studies of the beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg Med Chem. 2016 Mar 1;24(5):1115–1120. doi: 10.1016/j.bmc.2016.01.037
  • Del Prete S, De Luca V, De Simone G, et al. Cloning, expression and purification of the complete domain of the beta-carbonic anhydrase from Plasmodium falciparum. J Enzym Inhib Med Ch. 2016 Aug 15;31(sup4):54–59. doi: 10.1080/14756366.2016.1217856
  • Capasso C, Supuran CT. An overview of the carbonic Anhydrases from two pathogens of the oral cavity: streptococcus mutans and porphyromonas gingivalis. Curr Top Med Chem. 2016;16(21):2359–2368. doi: 10.2174/1568026616666160413135522
  • Pinard MA, Lotlikar SR, Boone CD, et al. Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem. 2015 Aug 1;23(15):4831–4838. doi: 10.1016/j.bmc.2015.05.029
  • Ferraroni M, Del Prete S, Vullo D, et al. Crystal structure and kinetic studies of a tetrameric type II beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2449–2456. doi: 10.1107/S1399004715018635
  • De Simone G, Monti SM, Alterio V, et al. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium sulfurihydrogenibium azorense. Bioorganic Med Chem Lett. 2015 May 1;25(9):2002–2006. doi: 10.1016/j.bmcl.2015.02.068
  • Zolnowska B, Slawinski J, Pogorzelska A, et al. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N’-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur J Med Chem. 2014 Jan;71:135–147. doi: 10.1016/j.ejmech.2013.10.081
  • De Luca L, Ferro S, Damiano FM, et al. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem. 2014 Jan;71:105–111. doi: 10.1016/j.ejmech.2013.10.071
  • Di Fiore A, Capasso C, De Luca V, et al. X-ray structure of the first; extremo-alpha-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D Biol Crystallogr. 2013 Jun;69(Pt 6):1150–1159.
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors [Review]. J Enzym Inhib Med Ch. 2012 Dec;27(6):759–72. doi: 10.3109/14756366.2012.672983
  • Hirakawa Y, Senda M, Fukuda K, et al. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol. 2021 May 18;19(1):105. doi: 10.1186/s12915-021-01039-8
  • Supuran CT, Capasso C. Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target. Pathogens. 2017 Jul 15;6(3):30. doi: 10.3390/pathogens6030030
  • Capasso C, Supuran CT. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr Med Chem. 2015;22(18):2130–2139. doi: 10.2174/0929867321666141012174921
  • Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs–antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzym Inhib Med Ch. 2014 Jun;29(3):379–387. doi: 10.3109/14756366.2013.787422
  • Capasso C, Supuran CT. Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin Ther Pat. 2013;23(6):693–704. doi: 10.1517/13543776.2013.778245
  • James P, Isupov MN, Sayer C, et al. The structure of a tetrameric alpha-carbonic anhydrase from thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2607–2618.
  • Huang S, Xue Y, Sauer-Eriksson E, et al. Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae and its complex with the inhibitor acetazolamide. J Mol Biol. 1998;283(1):301–310. doi: 10.1006/jmbi.1998.2077
  • De Simone G, Di Fiore A, Capasso C, et al. The zinc coordination pattern in the eta-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorganic Med Chem Lett. 2015 Apr 1;25(7):1385–1389. doi: 10.1016/j.bmcl.2015.02.046
  • De Luca V, Petreni A, Carginale V, et al. Effect of amino acids and amines on the activity of the recombinant iota-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzym Inhib Med Ch. 2021 Dec;36(1):1000–1006.
  • De Luca V, Petreni A, Nocentini A, et al. Effect of sulfonamides and their structurally related derivatives on the activity of ι-carbonic anhydrase from Burkholderia territorii. Int J Mol Sci. 2021 Jan 8;22(2):571. doi: 10.3390/ijms22020571
  • Petreni A, De Luca V, Scaloni A, et al. Anion inhibition studies of the Zn(II)-bound iota-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzym Inhib Med Ch. 2021 Dec;36(1):372–376.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015;19(12):1689–1704. doi: 10.1517/14728222.2015.1067685
  • Beceiro A, Tomas M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013 Apr;26(2):185–230. doi: 10.1128/CMR.00059-12
  • Asadi A, Razavi S, Talebi M, et al. Correction to: a review on anti-adhesion therapies of bacterial diseases. Infection. 2019 Feb;47(1):25–26.
  • Biondo C. New insights into bacterial pathogenesis. Pathogens. 2022 Dec 26;12(1):38. doi: 10.3390/pathogens12010038
  • Sonika S, Singh S, Mishra S, et al. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon. 2023 Apr;9(4):e14220.
  • Brannon JR, Hadjifrangiskou M. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Des Dev Ther. 2016;10:1795–1806. doi: 10.2147/DDDT.S98939
  • Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1356540. doi: 10.1155/2019/1356540
  • Schulze A, Mitterer F, Pombo JP, et al. Biofilms by bacterial human pathogens: clinical relevance–development, composition and regulation–therapeutical strategies. Microb Cell. 2021 Feb 1;8(2):28–56. doi: 10.15698/mic2021.02.741
  • Abebe GM. The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol. 2020;2020:1705814. doi: 10.1155/2020/1705814
  • Chen L, Kumar S, Wu H. A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Arch Microbiol. 2023 Oct 20;205(11):356. doi: 10.1007/s00203-023-03699-2
  • Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes-Basel. 2017 Jan 18;8(1):39. doi: 10.3390/genes8010039
  • Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019 Jan;65(1):34–44. doi: 10.1139/cjm-2018-0275
  • Tao S, Chen H, Li N, et al. The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol. 2022;2022:1–11. doi: 10.1155/2022/3348695
  • Grande R, Carradori S, Puca V, et al. Selective inhibition of Helicobacter pylori carbonic anhydrases by Carvacrol and thymol could impair biofilm production and the release of outer membrane vesicles. Int J Mol Sci. 2021 Oct 27;22(21):11583. doi: 10.3390/ijms222111583
  • Kuo SH, Shen CJ, Shen CF, et al. Role of pH value in clinically relevant diagnosis. Diagn (Basel). 2020 Feb 16;10(2):107. doi: 10.3390/diagnostics10020107
  • Ansari S, Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins (Basel). 2019 Nov 19;11(11):677. doi: 10.3390/toxins11110677
  • Campestre C, De Luca V, Carradori S, et al. Carbonic anhydrases: new perspectives on protein functional role and inhibition in Helicobacter pylori. Front Microbiol. 2021;12:629163. doi: 10.3389/fmicb.2021.629163
  • Singh S, Datta S, Narayanan KB, et al. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol. 2021 Sep 23;19(1):140. doi: 10.1186/s43141-021-00242-y
  • Lee D, Hong JH. The fundamental role of bicarbonate transporters and associated carbonic anhydrase enzymes in maintaining ion and pH homeostasis in non-secretory organs. Int J Mol Sci. 2020 Jan 4;21(1):339. doi: 10.3390/ijms21010339
  • Kusian B, Sultemeyer D, Bowien B. Carbonic anhydrase is essential for growth of ralstonia eutropha at ambient CO(2) concentrations. J Bacteriol. 2002 Sep;184(18):5018–5026. doi: 10.1128/JB.184.18.5018-5026.2002
  • Cronk JD, Endrizzi JA, Cronk MR, et al. Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci. 2001 May;10(5):911–922.
  • Merlin C, Masters M, McAteer S, et al. Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol. 2003 Nov;185(21):6415–6424.
  • Modak JK, Tikhomirova A, Gorrell RJ, et al. Anti-Helicobacter pylori activity of ethoxzolamide. J Enzym Inhib Med Ch. 2019 Dec;34(1):1660–1667.
  • Ronci M, Del Prete S, Puca V, et al. Identification and characterization of the alpha-CA in the outer membrane vesicles produced by Helicobacter pylori. J Enzym Inhib Med Ch. 2019 Dec;34(1):189–195.
  • Buzas GM. Helicobacter pylori – 2010. Orv Hetil. 2010 Dec 5;151(49):2003–2010. doi: 10.1556/oh.2010.28982
  • Benito G, D’Agostino I, Carradori S, et al. Erlotinib-containing benzenesulfonamides as anti-Helicobacter pylori agents through carbonic anhydrase inhibition. Future Med Chem. 2023 Oct 27;15(20):1865–1883. doi: 10.4155/fmc-2023-0208
  • Abuaita BH, Withey JH. Bicarbonate induces vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun. 2009 Sep;77(9):4111–4120. doi: 10.1128/IAI.00409-09
  • Nishimori I, Minakuchi T, Maresca A, et al. The beta-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr Pharm Design. 2010;16(29):3300–3309. doi: 10.2174/138161210793429814
  • Kohler S, Ouahrani-Bettache S, Winum JY. Brucella suis carbonic anhydrases and their inhibitors: towards alternative antibiotics? J Enzym Inhib Med Ch. 2017 Dec;32(1):683–687. doi: 10.1080/14756366.2017.1295451
  • Singh S, Supuran CT. 3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c beta-carbonic anhydrase from mycobacterium tuberculosis and design of not yet synthesized new molecules. J Enzym Inhib Med Ch. 2014 Jun;29(3):449–455. doi: 10.3109/14756366.2013.800059
  • Ceruso M, Vullo D, Scozzafava A, et al. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three beta-class carbonic anhydrases from Mycobacterium tuberculosis. J Enzym Inhib Med Ch. 2014 Oct;29(5):686–689.
  • Carta F, Maresca A, Covarrubias AS, et al. Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active beta-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c. Bioorganic Med Chem Lett. 2009 Dec 1;19(23):6649–6654. doi: 10.1016/j.bmcl.2009.10.009
  • Rollenhagen C, Bumann D. Salmonella enterica highly expressed genes are disease specific. Infect Immun. 2006 Mar;74(3):1649–1660. doi: 10.1128/IAI.74.3.1649-1660.2006
  • Nishimori I, Minakuchi T, Vullo D, et al. Inhibition studies of the beta-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium with sulfonamides and sulfamates. Bioorg Med Chem. 2011 Aug 15;19(16):5023–5030. doi: 10.1016/j.bmc.2011.06.038
  • Vullo D, Nishimori I, Minakuchi T, et al. Inhibition studies with anions and small molecules of two novel beta-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar typhimurium. Bioorganic Med Chem Lett. 2011 Jun 15;21(12):3591–3595. doi: 10.1016/j.bmcl.2011.04.105
  • Lotlikar SR, Kayastha BB, Vullo D, et al. Pseudomonas aeruginosa beta-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell Calcium. 2019 Dec;84:102080. doi: 10.1016/j.ceca.2019.102080
  • Capasso C, Supuran CT. Developing novel bacterial targets: carbonic anhydrases as antibacterial drug targets. Novel Antimicrobial Agents Strategies. 2015. 31–45.
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol. 2011;2:34. doi: 10.3389/fphar.2011.00034
  • Nocentini A, Capasso C, Supuran CT. Carbonic anhydrase inhibitors as novel antibacterials in the era of antibiotic resistance: where are we Now? Antibiotics. 2023 Jan 10;12(1):142. doi: 10.3390/antibiotics12010142
  • Salam MA, Al-Amin MY, Salam MT, et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare. 2023 Jul 5;11(13):1946. doi: 10.3390/healthcare11131946
  • Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov. 2017 Jan;12(1):61–88. doi: 10.1080/17460441.2017.1253677
  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016 Jul 15;473(14):2023–2032. doi: 10.1042/BCJ20160115
  • Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother. 2016 Aug;16(8):961–968. doi: 10.1080/14737175.2016.1193009
  • Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol. 2016;12(4):423–431. doi: 10.1517/17425255.2016.1154534
  • Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat. 2020 Dec;30(12):963–982. doi: 10.1080/13543776.2020.1811853
  • Nakashima N, Miyazaki K. Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014 Feb 18;15(2):2773–93.
  • Jiang Y, Chen B, Duan C, et al. Erratum for Jiang., Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Appl Environ Microb. 2016 Jun 15;82(12):3693.
  • Holdgate GA, Meek TD, Grimley RL. Erratum: mechanistic enzymology in drug discovery: a fresh perspective. Nat Rev Drug Discov. 2018 Jan;17(1):78. doi: 10.1038/nrd.2017.257
  • De Luca V, Giovannuzzi S, Supuran CT, et al. May sulfonamide inhibitors of carbonic anhydrases from Mammaliicoccus sciuri prevent antimicrobial resistance due to gene transfer to other harmful staphylococci? Int J Mol Sci. 2022 Nov 10;23(22):13827. doi: 10.3390/ijms232213827
  • Bonardi A, Nocentini A, Bua S, et al. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: improving Ligand/Isoform matching and selectivity of action. J Med Chem. 2020 Jul 9;63(13):7422–7444. doi: 10.1021/acs.jmedchem.0c00733
  • Del Prete S, Vullo D, Osman SM, et al. Sulfonamide inhibition profiles of the beta-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Bioorg Med Chem. 2017 Jul 1;25(13):3555–3561. doi: 10.1016/j.bmc.2017.05.007
  • Vullo D, Del Prete S, Di Fonzo P, et al. Comparison of the sulfonamide inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium burkholderia pseudomallei. Molecules. 2017 Mar 7;22(3):421. doi: 10.3390/molecules22030421
  • Del Prete S, Vullo D, De Luca V, et al. Comparison of the sulfonamide inhibition profiles of the alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium vibrio cholerae. Bioorganic Med Chem Lett. 2016 Apr 15;26(8):1941–1946. doi: 10.1016/j.bmcl.2016.03.014
  • Dedeoglu N, DeLuca V, Isik S, et al. Sulfonamide inhibition study of the beta-class carbonic anhydrase from the caries producing pathogen streptococcus mutans. Bioorganic Med Chem Lett. 2015 Jun 1;25(11):2291–2297. doi: 10.1016/j.bmcl.2015.04.037
  • De Luca V, Carginale V, Supuran CT, et al. The gram-negative bacterium Escherichia coli as a model for testing the effect of carbonic anhydrase inhibition on bacterial growth. J Enzym Inhib Med Ch. 2022 Dec;37(1):2092–2098.
  • Rogato A, Del Prete S, Nocentini A, et al. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzym Inhib Med Ch. 2019 Dec;34(1):510–518.
  • Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem. 2020 Sep 10;63(17):9540–9562. doi: 10.1021/acs.jmedchem.0c00734
  • An W, Holly KJ, Nocentini A, et al. Structure-activity relationship studies for inhibitors for vancomycin-resistant enterococcus and human carbonic anhydrases. J Enzym Inhib Med Ch. 2022 Dec;37(1):1838–1844.
  • Palmieri A, Martinelli M, Pellati A, et al. Prevalence of enterococci and vancomycin resistance in the throat of non-hospitalized individuals randomly selected in central Italy. Antibiotics. 2023 Jul 7;12(7):1161. doi: 10.3390/antibiotics12071161
  • de Kraker ME, Jarlier V, Monen JC, et al. The changing epidemiology of bacteraemias in Europe: trends from the European antimicrobial resistance surveillance system. Clin Microbiol Infect. 2013 Sep;19(9):860–868.
  • Chilambi GS, Wang YH, Wallace NR, et al. Carbonic anhydrase inhibition as a target for antibiotic synergy in enterococci. Microbiol Spectr. 2023 Aug 17;11(4):e0396322. doi: 10.1128/spectrum.03963-22
  • Abutaleb NS, Elkashif A, Flaherty DP. et al. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Ch. 2021 Mar 18;65(4). doi: 10.1128/AAC.01715-20
  • Abutaleb NS, Shrinidhi A, Bandara AB, et al. Evaluation of 1,3,4-thiadiazole carbonic anhydrase inhibitors for gut decolonization of vancomycin-resistant enterococci. ACS Med Chem Lett. 2023 Apr 13;14(4):487–492. doi: 10.1021/acsmedchemlett.3c00032.
  • An WW, Holly KJ, Nocentini A, et al. Structure-activity relationship studies for inhibitors for vancomycin-resistant enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem. 2022 Dec 31;37(1):1838–1844. doi: 10.1080/14756366.2022.2092729
  • Abutaleb NS, Elhassanny AEM, Nocentini A, et al. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzym Inhib Med Ch. 2022 Dec;37(1):51–61.
  • Giovannuzzi S, Abutaleb NS, Hewitt CS, et al. Dithiocarbamates effectively inhibit the alpha-carbonic anhydrase from Neisseria gonorrhoeae. J Enzym Inhib Med Ch. 2022 Dec;37(1):1–8.
  • Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis. 2021 Jul 9;7(7):1969–1984. doi: 10.1021/acsinfecdis.1c00055
  • Nocentini A, Hewitt CS, Mastrolorenzo MD, et al. Anion inhibition studies of the alpha-carbonic anhydrases from Neisseria gonorrhoeae. J Enzym Inhib Med Ch. 2021 Dec;36(1):1061–1066.
  • Flaherty DP, Seleem M. Carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae infection. US Pat; 2022. p. 0213047.
  • Carta F, Angeli A, Selleri S, et al. Carbamoselenoyl derivatives as antiinfective agents. WO. 2023. 073634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.