108
Views
0
CrossRef citations to date
0
Altmetric
Review

Biofilm and bacterial membrane vesicles: recent advances

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 14 Nov 2023, Accepted 21 Mar 2024, Published online: 05 Apr 2024

References

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322. doi:10.1126/science.284.5418.1318
  • Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608–620. doi: 10.1038/s41579-022-00767-0
  • Sutherland IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9(5):222–227. doi: 10.1016/S0966-842X(01)02012-1
  • Wang W, Chanda W, Zhong M. The relationship between biofilm and outer membrane vesicles: a novel therapy overview. FEMS Microbiol Lett. 2015;362(1):1–8. doi: 10.1093/femsle/fnv117
  • He X, Li S, Yin Y, et al. Membrane vesicles are the dominant structural components of ceftazidime-induced biofilm formation in an oxacillin-sensitive MRSA. Front Microbiol. 2019;10:1–12. doi: 10.3389/fmicb.2019.00571
  • Schooling SR, Beveridge TJ. Membrane vesicles: an overlooked component of the matrices of biofilm. J Bacteriol. 2006;188(16):5945–5957. doi: 10.1128/JB.00257-06
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28:668–681. doi: 10.1016/j.tim.2020.03.016
  • Grande R, Puca V, Muraro R. Antibiotic Resistance and Bacterial Biofilm. Expert Opin Ther Pat. 2020;30(12):897–900. doi: 10.1080/13543776.2020.1830060
  • Yin W, Wang Y, Liu L, et al. Biofilms: the microbial “protective clothing”. Extreme Envir. 2019;20(14):3423. doi: 10.3390/ijms20143423
  • Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res. 2021;251:944–5013. doi:10.1016/j.micres.2021.126829
  • Stoodley P, Sauer K, Davies DG, et al. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209. doi: 10.1146/annurev.micro.56.012302.160705
  • Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian J Microbiol. 2021;52(4):1701. doi: 10.1007/S42770-021-00624-X
  • Mirzaei R, Mohammadzadeh R, Alikhani MY, et al. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020;72:1271–1285. doi: 10.1002/IUB.2266
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81:7–11. doi: 10.1016/J.JCMA.2017.07.012
  • Zheng Y, He L, Asiamah TK, et al. Colonization of medical devices by staphylococci. Environ Microbiol. 2018;20:3141–3153. doi: 10.1111/1462-2920.14129
  • Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;10(3):276–301. doi: 10.1093/femsre/fux010
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2:114–122. doi:10.1038/nrd1008
  • McEwen SA, Collignon PJ. Antimicrobial resistance: a one health perspective. Microbiol Spectr. 2018;6(2). doi: 10.1128/MICROBIOLSPEC.ARBA-0009-2017
  • Senpuku H, Nakamura T, Iwabuchi Y, et al. Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm. Molecules. 2019;24(17):3131. doi: 10.3390/molecules24173131
  • Takahashi C, Sato M, Sato C. Biofilm formation of Staphylococcus epidermidis imaged using atmospheric scanning electron microscopy. 2021. doi: 10.1007/s00216-021-03720-x
  • Cui G, Li P, Wu R, et al. Streptococcus mutans Membrane Vesicles Inhibit the Biofilm Formation of Streptococcus gordonii and Streptococcus sanguinis. AMB Express. 2022;12:154. doi: 10.1186/s13568-022-01499-3
  • Yonezawa H, Osaki T, Fukutomi T, et al. Diversification of the AlpB outer membrane protein of Helicobacter pylori affects biofilm formation and cellular adhesion. J Bacteriol. 2017;199(6):e00729–16. doi: 10.1128/JB.00729-16
  • Toyofuku M, Schild S, Kaparakis-Liaskos M, et al. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol. 2023;21(7):415–430. doi: 10.1038/S41579-023-00875-5
  • Marinacci B, Krzyżek P, Pellegrini B, et al. Latest update on outer membrane vesicles and their role in horizontal gene transfer: a mini-review. Membranes. 2023;13(11):1–16. doi: 10.3390/membranes13110860
  • Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019;43:273–303. doi:10.1093/femsre/fuy042
  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;64(1):163–184. doi: 10.1146/annurev.micro.091208.073413
  • Altindis E, Fu Y, Mekalanos JJ. Proteomic analysis of Vibrio cholerae outer membrane vesicles. 2014. doi: 10.1073/pnas.1403683111
  • Wang Y, Hoffmann JP, Baker SM, et al. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles. BMC Microbiol. 2021;21:234. doi: 10.1186/s12866-021-02296-x
  • Ma G, Ding Y, Wu Q, et al. Yersinia enterocolitica-derived outer membrane vesicles inhibit initial stage of biofilm formation. Microorganisms. 2022;10(12):2357. doi: 10.3390/MICROORGANISMS10122357
  • Ho M-H, Chen C-H, Goodwin JS, et al. Functional advantages of Porphyromonas gingivalis vesicles. Vesicles. 2015;10(4):e0123448. doi: 10.1371/journal.pone.0123448
  • Wu R, Tao Y, Cao Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment Candida albicans. Front Microbiol. 2020;11. doi: 10.3389/fmicb.2020.581184
  • Hazlett KRO, Caldon SD, McArthur DG, et al. Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect Immun. 2008;76:4479–4488. doi: 10.1128/IAI.00610-08
  • Tsolakos N, Lie K, Bolstad K, et al. Characterization of meningococcal serogroup B outer membrane vesicle vaccines from strain 44/76 after growth in different media. Vaccine. 2010;28:3211–3218. doi: 10.1016/j.vaccine.2010.02.023
  • Klimentová J, Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res. 2015;170:1–9. doi:10.1016/j.micres.2014.09.006
  • Morales-Aparicio JC, Lara Vasquez P, Mishra S, et al. The impacts of sortase a and the 4′-phosphopantetheinyl transferase homolog Sfp on Streptococcus mutans extracellular membrane vesicle biogenesis. Front Microbiol. 2020;11. doi: 10.3389/fmicb.2020.570219
  • Nakamura T, Iwabuchi Y, Hirayama S, et al. Roles of membrane vesicles from streptococcus mutans for the induction of antibodies to glucosyltransferase in mucosal immunity. Microb Pathog. 2020;149:104260. doi: 10.1016/j.micpath.2020.104260
  • Cao Y, Zhou Y, Chen D, et al. Proteomic and metabolic characterization of membrane vesicles derived from streptococcus mutans at different PH values. Appl Microbiol Biotechnol. 2020;104:9733–9748. doi: 10.1007/s00253-020-10563-6
  • Wagner T, Joshi B, Janice J, et al. Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. 2018. doi: 10.1016/j.jprot.2018.05.017
  • Lee JH, Choi CW, Lee T, et al. Transcription factor ΣB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PloS One. 2013;8(8):73196. doi: 10.1371/JOURNAL.PONE.0073196
  • Lee T, Jun SH, Choi CW, et al. Salt stress affects global protein expression profiles of extracellular membrane-derived vesicles of listeria monocytogenes. Microb Pathog. 2018;115:272–279. doi: 10.1016/j.micpath.2017.12.071
  • He X, Yuan F, Lu F, et al. Vancomycin-induced biofilm formation by methicillin-resistant staphylococcus aureus is associated with the secretion of membrane vesicles. Microb Pathog. 2017;110:225–231. doi: 10.1016/j.micpath.2017.07.004
  • Im H, Lee S, Soper SA, et al. Staphylococcus aureus extracellular vesicles (EVs): surface-binding antagonists of biofilm formation. Mol Biosyst. 2017;13:2704–2714. doi: 10.1039/C7MB00365J
  • Zaborowska M, Taulé Flores C, Vazirisani F, et al. Extracellular vesicles influence the growth and adhesion of Staphylococcus epidermidis under antimicrobial selective pressure. Front Microbiol. 2020;11:1–15. doi: 10.3389/fmicb.2020.01132
  • Contreras-Rodriguez A, Tashiro Y, Puccia R, et al. Vesicles from Vibrio cholerae contain AT-Rich DNA and shorter MRNAs that do not correlate with their protein products. Front Microbiol. 2019;10:2708. www.frontiersin.org. doi: 10.3389/fmicb.2019.02708
  • Fernández-Rojas MA, Vaca S, Reyes-López M, et al. Outer membrane vesicles of Pasteurella multocida contain virulence factors. Microbiologyopen. 2014;3:711. doi: 10.1002/MBO3.201
  • Knoke LR, Abad Herrera S, Götz K, et al. Agrobacterium tumefaciens small lipoprotein Atu8019 is involved in selective outer membrane vesicle (OMV) docking to bacterial cells. Front Microbiol. 2020;11:1–20. doi: 10.3389/fmicb.2020.01228
  • Seike S, Kobayashi H, Ueda M, et al. Outer membrane vesicles released from Aeromonas strains are involved in the biofilm formation. Front Microbiol. 2021;11:1–14. doi: 10.3389/fmicb.2020.613650
  • Fulsundar S, Kulkarni HM, Jagannadham MV, et al. Molecular characterization of outer membrane vesicles released from Acinetobacter radioresistens and their potential roles in pathogenesis. 2015. doi: 10.1016/j.micpath.2015.04.005
  • Song H, Ruan Y, Li Y, et al. Proteomic and functional analyses of outer membrane vesicles secreted by Vibrio splendidus. J Ocean Univ China. 2023;22(5):1361–1369. doi: 10.1007/S11802-023-5481-0/METRICS
  • Baeza N, Mercade E. Relationship between membrane vesicles, extracellular ATP and biofilm formation in Antarctic gram-negative bacteria. Microb Ecol. 2021;81:645–656. doi:10.1007/s00248-020-01614-6
  • Zhao Z, Wang L, Miao J, et al. Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles. Sci Total Environ. 2022;806:151403. doi: 10.1016/J.SCITOTENV.2021.151403
  • Lu J, Lianyue L, Pan F, et al. PagC is involved in Salmonella pullorum OMVs production and affects biofilm production. Vet Microbiol. 2020;247. doi: 10.1016/j.vetmic.2020.108778
  • Esoda CN, Kuehn MJ, Bomberger JM. Pseudomonas aeruginosa leucine aminopeptidase influences early biofilm composition and structure via vesicle-associated antibiofilm activity. MBio. 2019;10(6). doi: 10.1128/MBIO.02548-19
  • Goes A, Vidakovic L, Drescher K, et al. Interaction of myxobacteria-derived outer membrane vesicles with biofilms: antiadhesive and antibacterial effects. Nanoscale. 2021;13:14287–14296. doi: 10.1039/d1nr02583j
  • Ionescu M, Zaini PA, Baccari C, et al. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc Natl Acad Sci USA. 2014;111(37):E3910–18. doi: 10.1073/PNAS.1414944111/-/DCSUPPLEMENTAL/PNAS.201414944SI.PDF
  • Siebert C, Lindgren H, Ferré S, et al. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. 2019. doi: 10.1080/22221751.2019.1615848
  • Liao S, Klein MI, Heim KP, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol. 2014;196:2355–2366. doi: 10.1128/JB.01493-14
  • Demuth DR, Lammey MS, Huck M, et al. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb Pathog. 1990;9:199–211. doi: 10.1016/0882-4010(90)90022-I
  • Oli MW, Otoo HN, Crowley PJ, et al. Functional amyloid formation by Streptococcus mutans. Microbiology. 2012;158:2903–2916. doi: 10.1099/mic.0.060855-0
  • Wen ZT, Scott‐Anne K, Liao S, et al. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol. 2018;33:353–363. doi: 10.1111/omi.12230
  • Wu R, Cui G, Cao Y, et al. Streptococcus mutans membrane vesicles enhance Candida albicans pathogenicity and carbohydrate metabolism. Front Cell Infect Microbiol. 2022;12. doi: 10.3389/fcimb.2022.940602
  • Tanzer JM, Thompson AM, Grant LP, et al. Streptococcus gordonii’s sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Archives Of Oral Biology. 2008;53(2):133–140. doi: 10.1016/j.archoralbio.2007.08.011
  • Yoshida Y, Konno H, Nagano K, et al. The influence of a glucosyltransferase, encoded by gtfP, on biofilm formation by Streptococcus sanguinis in a dual-species model. APMIS. 2014;122(10):951–960. doi: 10.1111/apm.12238
  • Paganelli FL, de Been M, Braat JC, et al. Distinct SagA from hospital-associated clade A1 Enterococcus faecium strains contributes to biofilm formation. Appl Environ Microbiol. 2015;81(19):6873–6882. doi: 10.1128/AEM.01716-15
  • Teng F, Kawalec M, Weinstock GM, et al. An enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium Growth. Growth Infect Immun. 2003;71(9):5033–5041. doi: 10.1128/IAI.71.9.5033-5041.2003
  • Kim B, Wang YC, Hespen CW, et al. Enterococcus faecium secreted antigen a generates muropeptides to enhance host immunity and limit bacterial pathogenesis. Elife. 2019;8. doi: 10.7554/ELIFE.45343
  • Anantharaman V, Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 2003;4(2):11. doi: 10.1186/gb-2003-4-2-r11
  • Espinosa J, Lin T-Y, Estrella Y, et al. Enterococcus NlpC/P60 peptidoglycan hydrolase SagA localizes to sites of cell division and only requires catalytic dyad for protease activity. 2020. doi: 10.1021/acs.biochem.0c00755
  • Paganelli FL, Willems RJLW, Jansen P, et al. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated acm surface localization, and atlaefm-independent extracellular DNA release. MBio. 2013;4(2). doi: 10.1128/MBIO.00154-13
  • Parida SK, Domann E, Ronde M, et al. Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol Microbiol. 1998;28(1):81–93. doi: 10.1046/J.1365-2958.1998.00776.X
  • Van Ngo H, Bhalla M, Chen DY, et al. A role for host cell exocytosis in inlb-mediated internalisation of Listeria monocytogenes. Cell Microbiol. 2017;19:e12768. doi: 10.1111/CMI.12768
  • Chen BY, Kim TJ, Jung YS, et al. Attachment strength of Listeria monocytogenes and its internalin-negative mutants. Food Biophys. 2008;3:329–332. doi: 10.1007/s11483-008-9090-7
  • Giglio KM, Fong JC, Yildiz FH, et al. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J Bacteriol. 2013;195:3277–3286. doi: 10.1128/JB.00374-13
  • Fong JC, Rogers A, Michael AK, et al. Structural dynamics of RbmA governs plasticity of Vibrio cholerae. Biofilms. 2017. doi: 10.7554/eLife.26163.001
  • Huang X, Nero T, Weerasekera R, et al. Vibrio cholerae Biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization. 2023. doi: 10.1038/s41467-023-37660-0
  • Odenbreit S, Faller G, Haas R. Role of the AlpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue. Int J Med Microbiol. 2002;292(3–4):247–256. doi: 10.1078/1438-4221-00204
  • De Jonge R, Durrani Z, Rijpkema SG, et al. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J Med Microbiol. 2004;53:375–379. doi: 10.1099/jmm.0.45551-0
  • Lu H, Yih Wu J, Beswick EJ, et al. Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB Adhesin from Western and East Asian Strains. 2006. doi: 10.1074/jbc.M611178200
  • Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun. 2009;77:3150–3160. doi:10.1128/IAI.00096-09
  • Ma Q, Wood TK. OmpA Influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system. Environ Microbiol. 2009;11:2735–2746. doi:10.1111/J.1462-2920.2009.02000.X
  • González Barrios AF, Zuo R, Ren D, et al. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnol Bioeng. 2006;93(1):188–200. doi: 10.1002/BIT.20681
  • Wilson MM, Bernstein HD. Surface-exposed lipoproteins: an emerging secretion phenomenon in gram-negative bacteria. Trends Microbiol. 2016;24:198–208. doi:10.1016/j.tim.2015.11.006
  • Kitagawa R, Takaya A, Ohya M, et al. Biogenesis of Salmonella enterica Serovar typhimurium membrane vesicles provoked by induction of PagC. J Bacteriol. 2010;192:5645–5656. doi: 10.1128/JB.00590-10
  • Hasson SO, Judi HK, Salih HH, et al. Intimin (Eae) and virulence membrane protein PagC genes are associated with biofilm formation and multidrug resistance in Escherichia coli and Salmonella enterica isolates from calves with diarrhea. BMC Res Notes. 2022;15:1–6. doi: 10.1186/s13104-022-06218-6
  • Maldonado RF, Sà-Correia I, Valvano MA, et al. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016;7(4):480–493. doi: 10.1093/femsre/fuw007
  • Meng J, Xu J, Huang C, et al. Molecules Rcs phosphorelay responses to truncated lipopolysaccharide-induced cell envelope stress in Yersinia enterocolitica. 2020. doi: 10.3390/molecules25235718
  • Bendaoud M, Vinogradov E, Balashova NV, et al. Broad-spectrum biofilm inhibition by Kingella kingae Exopolysaccharide. J Bacteriol. 2011;193(15):3879–3886. doi: 10.1128/JB.00311-11
  • Valle J, Da Re S, Henry M, et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA. 2006;103(33):12558–12563. doi: 10.1073/pnas.0605399103
  • Cahan R, Axelrad I, Safrin M, et al. A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J Biol Chem. 2001;276:43645–43652. doi: 10.1074/jbc.M106950200
  • Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006;8:2400–2408. doi:10.1016/j.micinf.2006.05.001
  • Toyofuku M, Roschitzki B, Riedel K, et al. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res. 2012;11(10):4906–4915. doi: 10.1021/pr300395j
  • Schulz E, Goes A, Garcia R, et al. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J Control Release. 2018;290:46–55. doi: 10.1016/j.jconrel.2018.09.030
  • Goes A, Lapuhs P, Kuhn T, et al. Myxobacteria-derived outer membrane vesicles: potential applicability against intracellular infections. Cells. 2020;9:194. doi: 10.3390/cells9010194
  • Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014. doi: 10.1155/2014/476068
  • Aleksijević LH, Aleksijević M, Škrlec I, et al. Porphyromonas gingivalis virulence factors and clinical significance in periodontal disease and coronary artery diseases. Pathogens. 2022;11(10):1173. doi: 10.3390/pathogens11101173
  • Beveridge TJ, Makin SA, Kadurugamuwa JL, et al. Interactions between biofilms and the environment. FEMS Microbiol Rev. 1997;20(3–4):291–303. doi: 10.1016/S0168-6445(97)00012-0
  • Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: current knowledge and future challenges. Wound Repair Regen. 2021;29:864–880. doi:10.1111/wrr.12949
  • Begić M, Josić D. Biofilm formation and extracellular microvesicles – the way of foodborne pathogens toward resistance. Electrophoresis. 2020;41:1718–1739. doi:10.1002/elps.202000106
  • Park AJ, Surette MD, Khursigara CM. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm. Front Microbiol. 2014;5:1–12. doi:10.3389/fmicb.2014.00464
  • Couto N, Schooling SR, Dutcher JR, et al. Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J Proteome Res. 2015;14(10):4207–4222. doi: 10.1021/acs.jproteome.5b00312
  • Mozaheb N, Van Der Smissen P, Opsomer T, et al. Contribution of membrane vesicle to reprogramming of bacterial membrane fluidity in Pseudomonas aeruginosa. mSphere 7. 2022. doi: 10.1128/msphere.00187-22
  • Terán LC, Distefano M, Bellich B, et al. Proteomic Studies of the biofilm matrix including outer membrane vesicles of Burkholderia multivorans C1576, a strain of clinical importance for cystic fibrosis. Microorganisms. 2020;8:1–18. doi: 10.3390/microorganisms8111826
  • Cooke AC, Nello AV, Ernst RK, et al. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PloS One. 2019;14(2):1–21. doi: 10.1371/journal.pone.0212275
  • Potter M, Hanson C, Anderson AJ, et al. Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: raman spectroscopy characterization. Sci Rep. 2020;10:1–14. doi: 10.1038/s41598-020-78357-4
  • Cooke AC, Florez C, Dunshee EB, et al. Pseudomonas quinolone signal-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa. mSphere. 2020;5(6):e01109–20. doi: 10.1128/msphere.01109-20
  • Johnston EL, Zavan L, Bitto NJ, et al. Planktonic and biofilm-derived Pseudomonas aeruginosa outer membrane vesicles facilitate horizontal gene transfer of plasmid DNA. Microbiol Spectr. 2023;11(2). doi: 10.1128/SPECTRUM.05179-22
  • Moshynets OV, Pokholenko I, Iungin O, et al. eDNA, amyloid fibers and membrane vesicles identified in Pseudomonas fluorescens SBW25 biofilms. Int J Mol Sci. 2022;23(23):15096. doi: 10.3390/ijms232315096
  • Carriquiriborde F, Martin Aispuro P, Ambrosis N, et al. Pertussis vaccine candidate based on outer membrane vesicles derived from biofilm culture. Front Immunol. 2021;12. doi: 10.3389/FIMMU.2021.730434
  • Guo J, Zhu J, Zhao T, et al. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front Microbiol. 2022;13:1–17. doi: 10.3389/fmicb.2022.968592
  • Ronci M, Del Prete S, Puca V, et al. Identification and characterization of the α-CA in the outer membrane vesicles produced by Helicobacter pylori. J Enzyme Inhib Med Chem. 2019;34:189. doi: 10.1080/14756366.2018.1539716
  • Grande R, Di Marcantonio MC, Robuffo I, et al. Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (EDNA). Front Microbiol. 2015;6:1369. doi: 10.3389/FMICB.2015.01369
  • Grande R, Celia C, Mincione G, et al. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front Microbiol. 2017;8:1040. doi: 10.3389/fmicb.2017.01040
  • Welch A, Awah CU, Jing S, et al. Promiscuous partnering and independent activity of mexb, the multidrug transporter protein from Pseudomonas aeruginosa. Biochem J. 2010;364(2):355–364. doi: 10.1042/BJ20091860
  • Ohene-Agyei T, Lea JD, Venter H. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol Lett. 2012;333(1):20–27. doi: 10.1111/j.1574-6968.2012.02594.x
  • Gervasoni S, Mehla J, Bergen CR, et al. Molecular determinants of avoidance and inhibition of Pseudomonas aeruginosa MexB efflux pump. mBio. 2023;14:e0140323. doi: 10.1128/mbio.01403-23
  • Cigana C, Curcuru L, Leone MR, et al. Pseudomonas aeruginosa exploits lipid a and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PloS One. 2009;4(12):e8439. doi: 10.1371/journal.pone.0008439
  • Ernst RK, Adams KN, Moskowitz SM, et al. The Pseudomonas aeruginosa lipid a deacylase: selection for expression and loss within the cystic fibrosis airway. J Bacteriol. 2006;188:191–201. doi: 10.1128/JB.188.1.191-201.2006
  • Wilhelm S, Gdynia A, Tielen P, et al. The autotransporter esterase EstA of Pseudomonas aeruginosa Is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol. 2007;189(18):6695–6703. doi: 10.1128/JB.00023-07
  • Comtois SL, Gidley MD, Kelly DJ. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology. 2003;149(1):121–129. doi: 10.1099/MIC.0.25896-0
  • Hu Y, Coates ARM, Ho PL. Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TpX. PloS One. 2009;4(4):e5150. doi: 10.1371/JOURNAL.PONE.0005150
  • Gao H, Bian X. Editorial: microbial siderophores: biosynthesis, regulation, and physiological and ecological impacts. Front Microbiol. 2022;13:1–3. doi: 10.3389/fmicb.2022.892485
  • D’Agostino I, Mathew GE, Angelini P, et al. Biological investigation of N-Methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem. 2022;37:986. doi: 10.1080/14756366.2022.2055009
  • Puca V, Turacchio G, Marinacci B, et al. Antimicrobial and antibiofilm activities of carvacrol, amoxicillin and salicylhydroxamic acid alone and in combination vs. Helicobacter pylori: towards a new multi-targeted therapy. Int J Mol Sci. 2023;24:4455. doi: 10.3390/IJMS24054455
  • Dell’annunziata F, Folliero V, Giugliano R, et al. Gene transfer potential of outer membrane vesicles of gram‐negative bacteria. Int J Mol Sci. 2021;22(11):5985. doi: 10.3390/ijms22115985
  • Micoli F, Adamo R, Nakakana U. Outer membrane vesicle vaccine platforms. BioDrugs. 2023;38(1):47–59. doi: 10.1007/s40259-023-00627-0
  • Yang Z, Hua L, Yang M, et al. RBD-Modified bacterial vesicles elicited potential protective immunity against SARS-CoV-2. Nano Lett. 2021;21:5920–5930. doi: 10.1021/acs.nanolett.1c00680
  • Weiwei H, Yanbing M, Zhongqian Y, et al. Construction method and application of bacterial biofilm vesicles (BBV) as vaccine vectors. CN112662695A. 2021.
  • Weiwei H, Yanbing M, Weiran L, et al. Preparation method and application of universal bacterial vaccine. CN112755180A. 2021.
  • Acevedo R, Fernández S, Zayas C, et al. Bacterial outer membrane vesicles and vaccine applications. Front Immunol. 2014;5:1–6. doi: 10.3389/fimmu.2014.00121
  • Abdelhamid AG, Yousef AE. Combating bacterial biofilms: current and emerging antibiofilm strategies for treating persistent infections. Antibiot. 2023;12(6):1005. doi: 10.3390/ANTIBIOTICS12061005
  • Carrascosa C, Raheem D, Ramos F, et al. Microbial biofilms in the food industry – a comprehensive review. Int J Environ Res Public Heal. 2021;18(4):2014. doi: 10.3390/ijerph18042014
  • Hemmati F, Rezaee MA, Ebrahimzadeh S, et al. Novel strategies to combat bacterial biofilms. Mol Biotechnol. 2021;63(7):569–586. doi: 10.1007/s12033-021-00325-8
  • Sánchez-Gómez S, Martínez-de-Tejada G. Antimicrobial peptides as anti-biofilm agents in medical implants. Curr Top Med Chem. 2017;17(5):590–603. doi: 10.2174/1568026616666160713141439
  • Ban GH, Kim SH, Kang DH, et al. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol. 2023;32:1679–1702. doi: 10.1007/s10068-023-01312-2
  • Wasfi R, Abd El-Rahman OA, Zafer MM, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 2018;22(3):1972–1983. doi: 10.1111/jcmm.13496
  • Jung S, Park OJ, Kim AR, et al. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J Microbiol. 2019;57(4):310–315. doi: 10.1007/S12275-019-8538-4/METRICS
  • Ghane M, Babaeekhou L, Ketabi SS. Antibiofilm activity of kefir probiotic lactobacilli against uropathogenic Escherichia coli (UPEC). Avicenna J Med Biotechnol. 2020;12(4):221
  • Rieu A, Da SIlva Barreira D, Guzzo J. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. MBio. 2022;13(5):WO2022129808A1. doi: 10.1128/mbio.02375-22
  • Jeong G-J, Khan F, Tabassum N, et al. Bacterial extracellular vesicles: modulation of biofilm and virulence properties. Acta Biomater. 2024. doi: 10.1016/j.actbio.2024.02.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.