100
Views
0
CrossRef citations to date
0
Altmetric
Review

An insight into the last 5-year patents on Porphyromonas gingivalis and Streptococcus mutans, the pivotal pathogens in the oral cavity

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 08 Nov 2023, Accepted 26 Apr 2024, Published online: 20 May 2024

References

  • Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015 Jan;15(1):30–44. doi: 10.1038/nri3785
  • Word Health Organization. Oral health. [cited 2023 Sep 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health
  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018 Dec;16(12):745–759. doi: 10.1038/s41579-018-0089-x.
  • Segata N, Haake SK, Mannon P, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012 Jun 14;13(6):R42. doi: 10.1186/gb-2012-13-6-r42
  • Lu M, Xuan S, Wang Z. Oral microbiota: a new view of body health. Food Sci Hum Wellness. 2019 Mar 1;8(1):8–15. doi: 10.1016/j.fshw.2018.12.001
  • Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010 Jul;8(7):481–490. doi: 10.1038/nrmicro2337
  • Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012 Dec;27(6):409–419. doi: 10.1111/j.2041-1014.2012.00663.x.
  • Abusleme L, Dupuy AK, Dutzan N, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. Isme J. 2013 May;7:(5):1016–1025. doi: 10.1038/ismej.2012.174
  • Wang T, Ishikawa T, Sasaki M, et al. Oral and gut microbial dysbiosis and non-alcoholic fatty liver disease: the central role of porphyromonas gingivalis. Front Med. 2022;9. doi: 10.3389/fmed.2022.822190
  • Gasmi Benahmed A, Kumar Mujawdiya P, Noor S, et al. Porphyromonas gingivalis in the development of periodontitis: impact on dysbiosis and inflammation. Arch Razi Inst. 2022 Oct 31;77(5):1539–1551. doi: 10.22092/ARI.2021.356596.1875
  • Krzyściak W, Jurczak A, Kościelniak D, et al. The virulence of streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014 Apr;33(4):499–515. doi: 10.1007/s10096-013-1993-7.
  • Busuioc M, Mackiewicz K, Buttaro BA, et al. Role of intracellular polysaccharide in persistence of streptococcus mutans. J Bacteriol. 2009 Dec;191(23):7315–7322. doi: 10.1128/JB.00425-09
  • Pathak JL, Yan Y, Zhang Q, et al. The role of oral microbiome in respiratory health and diseases. Respir med. 2021;185:106475. doi: 10.1016/j.rmed.2021.106475
  • Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022 Mar 2;14(1):1–11. doi: 10.1038/s41368-022-00163-7
  • Park SY, Hwang BO, Lim M, et al. Oral–gut microbiome axis in gastrointestinal disease and cancer. Cancers (Basel). 2021 Jan;13:(9):2124. doi: 10.3390/cancers13092124
  • Han YW. Oral bacteria as drivers for colorectal cancer. J Periodontol. 2014 Sep;85(9):1155–1157. doi: 10.1902/jop.2014.140039.
  • Zhang L, Liu Y, Zheng HJ, et al. The oral microbiota May have influence on oral cancer. Front Cell Infect Microbiol. 2019;9:476. doi: 10.3389/fcimb.2019.00476
  • Gnanasekaran J, Binder Gallimidi A, Saba E, et al. Intracellular porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells. Cancers (Basel). 2020 Aug 18;12(8):2331. doi: 10.3390/cancers12082331
  • Liu XB, Gao ZY, Sun CT, et al. The potential role of P.Gingivalis in gastrointestinal cancer: a mini review. Infect Agent Cancer. 2019 Sep 10;14(1):23. doi: 10.1186/s13027-019-0239-4
  • Yu L, Maishi N, Akahori E, et al. The oral bacterium streptococcus mutans promotes tumor metastasis by inducing vascular inflammation. Cancer Sci. 2022 Nov;113:(11):3980–3994.
  • Lafuente Ibáñez de Mendoza I, Maritxalar Mendia X, de la Fuente AMG, et al. Role of porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review. J Periodontal Res. 2020 Jan;55(1):13–22. doi: 10.1111/jre.12691
  • Kugaji MS, Kumbar VM, Peram MR, et al. Effect of resveratrol on biofilm formation and virulence factor gene expression of porphyromonas gingivalis in periodontal disease. APMIS Acta Pathol Microbiol Immunol Scand. 2019 Apr;127(4):187–195. doi: 10.1111/apm.12930
  • Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. doi: 10.1155/2014/476068
  • Clais S, Boulet G, Kerstens M, et al. Importance of biofilm formation and dipeptidyl peptidase IV for the pathogenicity of clinical porphyromonas gingivalis isolates. Pathog Dis. 2014 Apr;70:(3):408–413. doi: 10.1111/2049-632X.12156
  • Travis J, Banbula A, Potempa J. The role of bacterial and host proteinases in periodontal disease. Adv Exp Med Biol. 2000;477:455–465. doi: 10.1007/0-306-46826-3_46
  • Sheets SM, Potempa J, Travis J, et al. Gingipains from porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun. 2005 Mar;73(3):1543–1552. doi: 10.1128/IAI.73.3.1543-1552.2005.
  • Holt SC, Ebersole J, Felton J, et al. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988 Jan 1;239(4835):55–57. doi: 10.1126/science.3336774
  • Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011 Nov 17;10(5):497–506. doi: 10.1016/j.chom.2011.10.006
  • Zhang Z, Liu S, Zhang S, et al. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. J Periodontol. 2022 Apr;93:(4):515–525. doi: 10.1002/JPER.21-0144
  • Gualtero DF, Lafaurie GI, Buitrago DM, et al. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med. 2023;10:1250263. doi: 10.3389/fcvm.2023.1250263
  • Ryder MI. Porphyromonas gingivalis and Alzheimer disease: recent findings and potential therapies. J Periodontol. 2020 Oct;91(Suppl 1):S45–9. doi: 10.1002/JPER.20-0104
  • de Molon RS, Rossa C Jr, Thurlings RM, et al. Linkage of periodontitis and rheumatoid arthritis: Current evidence and potential biological interactions. Int J Mol Sci. 2019 Jan;20(18):4541. doi: 10.3390/ijms20184541
  • Amissah F, Andey T, Ahlschwede KM. Nanotechnology-based therapies for the prevention and treatment of streptococcus mutans-derived dental caries. J Oral Biosci. 2021 Dec;63(4):327–336. doi: 10.1016/j.job.2021.09.002
  • Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients. 2010 Mar;2(3):290–298. doi: 10.3390/nu2030290
  • Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am. 2010 Jul;54(3):441–454. doi: 10.1016/j.cden.2010.03.002
  • Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect. 2000 Nov;2(13):1599–1607. doi: 10.1016/S1286-4579(00)01316-2
  • Ajdić D, McShan WM, McLaughlin RE, et al. Genome sequence of streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14434–14439. doi: 10.1073/pnas.172501299
  • Cui T, Luo W, Xu L, et al. Progress of antimicrobial discovery against the major cariogenic pathogen streptococcus mutans. Curr Issues Mol Biol. 2019;32:601–644. doi: 10.21775/cimb.032.601
  • Lemos JA, Palmer SR, Zeng L, et al. The biology of streptococcus mutans. Microbiol Spectr. 2019 Jan;7(1). doi: 10.1128/microbiolspec.GPP3-0051-2018
  • Bowen WH, Koo H. Biology of streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86. doi: 10.1159/000324598
  • Wen ZT, Yates D, Ahn SJ, et al. Biofilm formation and virulence expression by streptococcus mutans are altered when grown in dual-species model. BMC Microbiol. 2010 Apr 14;10(1):111. doi: 10.1186/1471-2180-10-111
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond). 2021 May 28;135(10):1233–1249. doi: 10.1042/CS20210040
  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016 Jul 15;473(14):2023–2032. doi: 10.1042/BCJ20160115
  • Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets. 2023 Jul-Dec;27(10):897–910. doi: 10.1080/14728222.2023.2263914
  • Nocentini A, Capasso C, Supuran CT. Carbonic anhydrase inhibitors as novel antibacterials in the era of antibiotic resistance: where are we Now? Antibiot (Basel). 2023Jan 10;12(1):142. doi: 10.3390/antibiotics12010142
  • D’Agostino I, Mathew GE, Angelini P, et al. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem. 2022 Dec;37:(1):986–993. doi: 10.1080/14756366.2022.2055009
  • Plotniece A, Sobolev A, Supuran CT, et al. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem. 2023 Dec;38:(1):2155816. doi: 10.1080/14756366.2022.2155816
  • Supuran CT, Capasso C. Carbonic anhydrase from porphyromonas gingivalis as a drug target. Pathogens. 2017Jul 15;6(3):30. doi: 10.3390/pathogens6030030
  • Del Prete S, Vullo D, De Luca V, et al. A highly catalytically active γ-carbonic anhydrase from the pathogenic anaerobe porphyromonas gingivalis and its inhibition profile with anions and small molecules. Bioorg Med Chem Lett. 2013Jul 15;23(14):4067–4071. doi: 10.1016/j.bmcl.2013.05.063
  • Vullo D, Del Prete S, Osman SM, et al. Anion inhibition study of the β-class carbonic anhydrase (PgiCab) from the oral pathogen porphyromonas gingivalis. Bioorg Med Chem Lett. 2014Sep 15;24(18):4402–4406. doi: 10.1016/j.bmcl.2014.08.014
  • Dedeoglu N, De Luca V, Isik S, et al. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen streptococcus mutans. Bioorg Med Chem. 2015Jul 1;23(13):2995–3001. doi: 10.1016/j.bmc.2015.05.007
  • Capasso C, Supuran CT. An overview of the carbonic anhydrases from two pathogens of the oral cavity: streptococcus mutans and porphyromonas gingivalis. Curr Top Med Chem. 2016;16(21):2359–2368. doi:10.2174/1568026616666160413135522
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 2009 Jul 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
  • Bin Hafeez A, Jiang X, Bergen PJ, et al. Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci. 2021 Oct 28;22(21):11691. doi: 10.3390/ijms222111691
  • Li S, Deng B, Li Z. Anti-streptococcus mutans polypeptide and application thereof. CN111378023A. 2020.
  • Li Z, Liu Q, Deng B, et al. Polypeptide resistant to porphyromonas gingivalis and Fusobacterium nucleatum and application. CN110272472A. 2019.
  • Li Z, Liu Q, Deng B, et al. Antimicrobial peptide and application thereof. CN110305194A. 2019.
  • Li Z, Liu Q, Deng B, et al. Polypeptide resistant to oral pathogens and application. CN110317247A. 2019.
  • Li Z, Liu Q, Deng B, et al. Anti-porphyromonas gingivalis polypeptide and application thereof. CN110305193A. 2019.
  • Jin Y, Wang F, Yang J. Antibacterial peptide MAMP-01 and application thereof. CN114149486A. 2022.
  • Wang F, Jin Y, Yang J. Antibacterial peptide MAMP-03 and application thereof. CN114149484A. 2022.
  • Jin Y, Wang F, Yang J. Antibacterial peptide composition and application thereof. CN114149483A. 2022.
  • Tu H, Qiu L, Zhang X, et al. Streptococcus mutans specific targeting antibacterial peptide and application thereof. CN112961216A. 2021.
  • Zhang Y, Manchu R, Wei H, et al. Combined antibacterial peptide with antibacterial activity on streptococcus mutans and application thereof. CN114106102A. 2022.
  • Dongru C, Huancai L, Yucong C, et al. Aggregating polypeptide and its application. CN116462741A. 2023.
  • Shah IM, German J, Mills D, et al. Peptides from human B-Casein that have anti-bacterial activity. WO2022103854A3. 2022
  • Pasero C, D’Agostino I, De Luca F, et al. Alkyl-guanidine compounds as potent broad-spectrum antibacterial agents: chemical library extension and biological characterization. J Med Chem. 2018Oct 25;61(20):9162–9176. doi: 10.1021/acs.jmedchem.8b00619
  • Cole ST. Who will develop new antibacterial agents? Philos Trans R Soc B Biol Sci. 1645 [2014 Jun 19];369(1645):20130430. doi: 10.1098/rstb.2013.0430
  • Barrett AJ. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J. 1980 Jun 1;187(3):909–912. doi: 10.1042/bj1870909
  • Lynch CC, Konradi A, Galemmo J, Aminopyridine compounds and methods for the preparation and use thereof. WO2018209132A1. 2018
  • Galemmo JA, Konradi AW, Lynch CC, et al. Arginine gingipain inhibitors. WO2020191348A1. 2020.
  • Marzolini C, Mueller R, Li-Blatter X, et al. The brain entry of HIV-1 protease inhibitors is facilitated when used in combination. Mol Pharm. 2013 Jun 3;10(6):2340–2349. doi: 10.1021/mp300712a
  • Booth V, Ashley FP, Lehner T. Passive immunization with monoclonal antibodies against porphyromonas gingivalis in patients with periodontitis. Infect Immun. 1996 Feb;64(2):422–427. doi: 10.1128/iai.64.2.422-427.1996
  • Konradi AW, Galemmo R, Dominy SS, et al., Ketone inhibitors of Lysine Gingipain. WO2018053353A1. 2018
  • Konradi AW, a GJ, Dominy SS, et al., Ketone inhibitors of Lysine Gingipain. US2023142714A1. 2023
  • Kawaguchi S, Agent for prevention and/or treatment of porphyromonas gingivalis infection. WO2023026957A1. 2023
  • Macia E, Ehrlich M, Massol R, et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006 Jun;10(6):839–850. doi: 10.1016/j.devcel.2006.04.002
  • Chen CH, Xie H, Inhibitors of intracellular invasion. WO2018035497A1. 2018
  • Velu SE, Wu H, Zhang Q, et al. Streptococcus mutans glucosyl transferase inhibitors for dental caries therapy. WO2019195430A1. 2019.
  • Naidoo R, Patel M, Gulube Z, et al. Inhibitory activity of Dodonaea viscosa var. angustifolia extract against streptococcus mutans and its biofilm. J Ethnopharmacol. 2012 Oct 31;144(1):171–174. doi: 10.1016/j.jep.2012.08.045
  • Michalek SM, McGhee JR, Shiota T, et al. Virulence of streptococcus mutans: cariogenicity of S. mutans in adult gnotobiotic rats. Infect Immun. 1977;15(2):466–471. doi: 10.1128/iai.15.2.466-471.1977
  • Yan L, Zhou X, Pang S. Application of ellagic acid in preparation of medicines for inhibiting pathogenicity of streptococcus mutans. CN109674783A. 2019.
  • Bo T, Yang L, Jiaman L, et al. Sargassum fusiforme polyphenol with streptococcus mutans inhibition capability and. CN111807939A. 2020.
  • Li Y, Shui Y. Application of houttuyfonate analogue in preparation of streptococcus mutans growth and biofilm inhibitor. CN113143904A. 2021.
  • Yang L, Schoenfisch MH. Nitric oxide-releasing polyaminoglycosides as biodegradable antibacterial scaffolds and methods pertaining thereto. ACS Appl Bio Mater. 2018;1(4):1066–1073. doi: 10.1021/acsabm.8b00304
  • Schoenfisch MH, Yang L, Jin H. Nitric oxide-releasing hyperbranched compounds as antibacterial scaffolds and methods pertaining thereto. WO2019099525A1. 2019.
  • Mullish BH, Allegretti JR. The contribution of bile acid metabolism to the pathogenesis of clostridioides difficile infection. Ther Adv Gastroenterol. 2021;14:17562848211017725. doi: 10.1177/17562848211017725
  • Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021 Nov;599:(7885):458–464.
  • Lei Z, Fan Z, Kun S, et al. Bile acid-metronidazole conjugate and application thereof. CN115785185A. 2023.
  • Yoshikawa K, Nakayama Y, Hayashi M, Unemoto T, Korormicin MK. An antibiotic specific for gram-negative marine bacteria, strongly inhibits the respiratory chain-linked Na±translocating NADH: quinone reductase from the marine vibrio alginolyticus. J Antibiot (Tokyo). 1999 Feb;52(2):182–185. doi: 10.7164/antibiotics.52.182
  • Dibrov P, Dibrov E, Pierce G, Derivatives of korormicin useful as antibiotics. WO2016168938A1. 2016
  • Sung KH, Mi YK, Hak BK, et al. Derivative of a hydroxy-substituted c15-20 fatty acid and composition for prevention or treatment of oral disease comprising the same as an active ingredient. KR20210156791A. 2021.
  • Kim KY, Kim HW, Lee TH, et al. Naphthoquinone derivatives compound and a composition containing the same for antibacterial activity. KR20220007439A. 2022.
  • Koch C, Nordzieke S, A method for fighting microorganisms using menthol derivatives. WO2022122144A1. 2022
  • Song Z, Zhou W, Zhou L, et al. Application of glaucocalyxin a in preparation of product for preventing and treating periodontal disease. CN111840263A. 2020.
  • Li Y, Lei Z, Qiu Y, et al. Application of nicotinamide in preparation of medicine for resisting porphyromonas gingivalis. CN113908157A. 2022.
  • Li Y, Lin Y, Lei Z, et al. Application of nicotinamide in preparation of inhibitor for streptococcus mutans acid production and biofilm formation. CN113197897A. 2021.
  • Ksiazek M, Mizgalska D, Enghild JJ, et al. Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop. J Biol Chem. 2015 Jan 2;290(1):658–670. doi: 10.1074/jbc.M114.601716
  • Potempa JS, Ksiazek M, Mizgalska DM, et al. Recombinant Miropin. WO2022226451A1. 2022
  • Chen Y, Liu N, Miao D, et al. Application of MicrocinC7 in preparation of periodontal disease treatment medicine. CN115581759A. 2023.
  • Arnaboldi PM, Narasimhan S. Hygromycin a in the Lymelight. Cell Host Microbe. 2021 Nov 10;29(11):1599–1601. doi: 10.1016/j.chom.2021.10.007
  • Tindall M, Lewis K. Hygromycin a for treatment of diseases and infections. WO2023049849A1. 2023.
  • Qingfan L, Haiying C, Longfeng W. Application of gentian in treating chronic periodontitis and gentian alcohol extract. CN116251131A. 2023.
  • Bae JM, Kim SH. Compositions for preventing or treating oral disease or bone disease comprising extracts of brachypodium sylvaticum. KR102061981B1. 2020.
  • Bae JM, Kim SH. Compositions for preventing or treating oral disease or bone disease comprising extracts of Colocasia antiquorum var. Exculenta. KR20200034451A. 2020.
  • Bae JM, Kim SH. Compositions for preventing or treating oral disease or bone disease comprising extracts of Asplenium incisum. KR20200034452A. 2020.
  • Kim SH. Compositions for preventing or treating oral disease or bone disease comprising extracts of sagittaria genus. KR20210065721A. 2021.
  • Geng C, Chen J, Yan M, et al. Applications of Broussonetia papyrifera extract in preparation of products for oral diseases. CN108904594A. 2018.
  • Geng C, Chen J, Yan M, et al. Application of flavonoids from Broussonetia papyrifera in the preparation of anti-oral bacterial drugs. CN109172640A. 2019.
  • Lim ST. Antibacterial composition for porphyromonas gingivalis comprising plant extract or lactic acid bacteria fermentation product thereof. KR20200017912A. 2020.
  • Wang X, Liu P. Application of frankincense extract in oral antibacterial composition. CN110368335A. 2019.
  • Jin T, Naito M. Compositions and methods for inhibiting growth of caries-, Gingivitis- and halitosis-causing bacteria. US2020289391A1. 2020.
  • Shin KH. Composition for oral cavity containing herbal extracts. KR20220019489A. 2022.
  • Cho CS. Compositions for preventing improving or treating periodontal disease containing Dendropanax Morbifera Lev. Extracts KR20220110931A. 2022.
  • Nam SH. Antibacterial composition for porphyromonas gingivalis containing extract of the Clematis Florida Thunb as an active ingredient. KR20230035872A. 2023.
  • Hee NS. Antibacterial composition comprising cibotium barometz J. Smith extract as an active ingredient. KR20230056190A. 2023.
  • Cho CS. Compositions for preventing improving or treating periodontal disease containing lagerstroemia speciosa leaf extracts. KR20220111022A. 2022.
  • Tani H, Yamaki A, Yamaya M. Method for suppressing antibacterial activity of honey, and method for producing antibacterial agent. JP2021187840A. 2021.
  • Li L, Gao Y, Kong X, et al. Composition for repairing oral cavity, gel preparation prepared from composition and application of gel preparation. CN115154501A. 2022.
  • Hui YN, Min KY, Shuk SK, et al. Composition for preventing, ameliorating or treating periodontal disease comprising persimmon calyx extract as effective component. KR20230000985A. 2023.
  • Yoshino N, Ikeda T, Nakao R. Fungicide for porphyromonas gingivalis, and method for producing component having antifungal action against porphyromonas gingivalis. JP2022154653A. 2022.
  • Deung PH, Ji CE, Shin KH. Composition for inhibition of biofilm formation by streptococcus mutants comprising effective amount of rafinose. KR20180006800A. 2018.
  • Weng SL, Qiu QX, Zhou CZ, et al. Method for preparing seaweed extract and product application thereof capable of inhibiting growth of streptococcus mutans for oral care. TW202045133A. 2020.
  • Her Y, Oh JH. Ginsenosides and their crude extracts which have antibacterial activity against streptococcus mutans. KR20200019358A. 2020.
  • Kim YJ, Han HS, Lee KD. Anti-bacterial composition for streptococcus mutans and composition for removing halitosis using the same. KR20210012529A. 2021.
  • Vitale I, Spano M, Puca V, et al. Antibiofilm activity and NMR-based metabolomic characterization of cell-free supernatant of Limosilactobacillus reuteri DSM 17938. Front Microbiol. 2023;14:1128275. doi: 10.3389/fmicb.2023.1128275
  • Maccelli A, Carradori S, Puca V, et al. Correlation between the antimicrobial activity and metabolic profiles of cell free supernatants and membrane vesicles produced by lactobacillus reuteri DSM 17938. Microorganisms. 2020 Oct 24;8(11):1653. doi: 10.3390/microorganisms8111653
  • Seminario-Amez M, López-López J, Estrugo-Devesa A, et al. Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal. 2017 May;22(3):e282. doi: 10.4317/medoral.21494
  • Paek NS, Kang CH. Lactobacillus salivarius having anticariogenic activities and composition comprising the same. KR20200070081A. 2020.
  • Yu X, Yu Y, Ma X, Application of lactobacillus salivarius in protecting oral health. AU2021106148A4. 2021
  • Liu H, Tao H, Luo Y, et al. Lactobacillus salivarius strain ZK-88 for inhibiting inflammation, relieving swelling and aching of gum and improving oral flora balance. CN114164157A. 2022.
  • Duan Z, Zhang J, Guo C, et al. Saliva combined lactobacillus with effects of preventing or treating decayed teeth and periodontal diseases. CN115960741A. 2023.
  • Ellepola K, Liu Y, Cao T, et al. Bacterial GtfB augments Candida albicans accumulation in Cross-Kingdom biofilms. J Dent Res. 2017 Sep;96(10):1129–1135. doi: 10.1177/0022034517714414
  • Chen W, Zhang Q, Qin S, et al. Method capable of inhibiting streptococcus mutans and candida albicans double-bacteria biofilm. CN109908185A. 2019.
  • Xu Z, Cheng L, Gao L, et al. Composition for inhibiting streptococcus mutans and application of composition. CN111588838A. 2020.
  • Zhang H, Xie Y, Qiao R, et al. Lactobacillus plantarum SD26 as well as product and application thereof. CN112175884A. 2021.
  • Zheng Y, Hu M, Zhang Q, et al. Lactobacillus plantarum for preventing and/or treating periodontitis as well as culture, preparation and application of lactobacillus plantarum. CN113005055A. 2021.
  • Duan Z, Zhang J, Cheng S, et al. Phytobacterium plantarum and application thereof in prevention or treatment of oral diseases. CN115960740A. 2023.
  • Ho HH, Lin WY, Kuo YW, et al. Composition for improving oral immunoglobulin a content and inhibiting pathogens, and use. WO2022180587A1. 2022.
  • He X, Lin W, Guo Y, et al. Composition for increasing content of oral immunoglobulin a and inhibiting pathogenic bacteria and application thereof. CN114948843A. 2022.
  • Ni H, Danji Zhang J, Liu J, et al. Phytobacterium plantarum with effects of preventing or treating decayed teeth and periodontal diseases and application of phytobacterium plantarum. CN115820450A. 2023.
  • Fang S, Zuo H, Zhu M, et al. Lactobacillus plantarum strain WKA86, application of lactobacillus plantarum strain WKA86 in preparation of product for preventing and treating ozostomia and product. CN114574405A. 2022.
  • Kang SS, Kim MY, Hyunin K. Use of lactobacillus plantarum and lactobacillus rhamnosus in the prevention amelioration or treatment of periodontal disease. KR20230105718A. 2023.
  • Zhang Q, Chen W, Xu W, et al. Lactobacillus rhamnosus capable of preventing and/or treating periodontitis and application thereof. CN113046258A. 2021.
  • Zhang J, Duan Z, Wu S, et al. Lactobacillus rhamnosus and application thereof in prevention or treatment of decayed teeth and periodontal diseases. CN115960739A. 2023.
  • Qi MS, Liu X, Guo X. Application of lactobacillus rhamnosus R7970 in preparation of pathogenic bacterium inhibition product. CN115317522A. 2022.
  • Fang S, Kong S, Zhu M, et al. Application of lactobacillus rhamnosus strain LRa05 in preparation of product for inhibiting helicobacter pylori and/or streptococcus mutans. CN115153026A. 2022.
  • Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol. 1967 Nov;38(6):610–616.
  • Paek NS, Kang CH. MG505 lactobacillus reuteri MG505 having anticariogenic activities and composition comprising the same. KR20200070080A. 2020.
  • Huazhu L. Composite probiotic composition for oral cavity, application and product thereof. CN116492285A. 2023.
  • Li X, Zhang G, Zhao Y, et al. Probiotic composition for inhibiting streptococcus mutans and application of probiotic composition. CN113273697A. 2021.
  • Liu X, Gao Y, Ma J, et al. Lactobacillus paracasei probio-01 and application of lactobacillus paracasei probio-01 in preparation of probiotic oral preparation. CN114606164A. 2022.
  • Paek NS, Kang CH. Probiotics for prevention or treatment of periodontitis and use thereof. KR102217525B9. 2021.
  • Zhang J, Liu J, Ni H, et al. Lactobacillus paracasei and application thereof in prevention or treatment of oral diseases. CN115717113A. 2023.
  • Zhang L, Ma C, Ma J, et al. Isolated lactobacillus paracasei PC-01 for promoting oral health and application of lactobacillus paracasei PC-01. CN110257297A. 2019.
  • Kim TH, Ryu DW, Choi WJ. Lacticaseibacillus paracasei strain for suppressing periodontal disease inducing bacteria and use thereof. KR102491641B1. 2023.
  • Qiang F, Mengfan Z, Xiumei Z. Herbal mouthwash containing lactobacillus sanfranciscensis and preparation method thereof. CN116327675A. 2023.
  • Hu L, Cornacchione L. Strains of Lactobacillus Delbrueckii which inhibit porphyromonas gingivalis. WO2020191111A1. 2020.
  • Park JS, Lee DJ, Lee DS. Novel Lactobacillus acidophilus strain having streptococcus mutans inhibition and anti-inflammatory effect and use thereof. KR20220170630A. 2022.
  • Jin T, Naito M, Probiotic for oral health. WO2022016266A1. 2022
  • Cui A. Streptococcus thermophilus strain P0012, oral health care probiotic composition prepared from streptococcus thermophilus strain P0012 and application of streptococcus thermophilus strain P0012. CN116024128A. 2023.
  • Zhong Z, Liu W, Guo L, et al. New streptococcus and application of streptococcus preparation to inhibition of oral pathogens. CN111471628A. 2020.
  • Liu H, Tao H, Luo Y, et al. Bifidobacterium animalis strain ZK-77 for inhibiting pathogenic bacteria, relieving inflammation and regulating flora balance. CN114164158A. 2022.
  • Li C, Luan C, Zhao Y, et al. Leuconostoc mesenteroides and application of leuconostoc mesenteroides in preparation of oral care products, health care products, medicines or foods for inhibiting porphyromonas gingivalis. CN114621898A. 2022.
  • Wang Z, Zhang D, Li M, et al. A strain of Weizmannia coagulans GBW0011 and its application in the preparation of oral bacteriostatic agents. CN116355788A. 2023.
  • Yalin L. Oral care solution containing probiotics. CN114432227A. 2022.
  • Ding Y, Song S, Dai J, et al. Bacillus coagulans for high-efficiency antagonism of streptococcus mutans, preparation method of bacterial powder, chewing gum containing bacterial powder and application. CN110195029A. 2019.
  • Nussbaum G, Kirshning C. Bacteria expressing single chain antibodies against toll-like receptors. WO2020075171A1. 2020.
  • Burns E, Bachrach G, Shapira L, et al. Cutting edge: TLR2 is required for the innate response to porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol. 2006 Dec 15;177(12):8296–8300.
  • Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013 Aug 30;394(1–2):49–54. doi: 10.1016/j.jim.2013.05.002
  • Pang Y, Wu B, Wei Y. Yolk antibody composition to prevent and treat pathogenesis of Helicobacter pylori, porphyromonas gingivalis and streptococcus mutans, product prepared with yolk antibody composition and application of yolk antibody composition. CN109908346A. 2019.
  • Xu Y, Liu X, Gui S, et al. Specific anti-porphyromonas gingivalis egg yolk antibody liposome solution and preparation method thereof. CN112274638A. 2021.
  • Sadri L, Tavakoli R, Akbari MS, et al., Anti-streptococcus mutans and streptococcus subrinus immunoglobulins powder of egg yolk. WO2022144580A1. 2022
  • Hu Y, Li H, Li J, et al. Application of antibody-bacteriolysin (SM-ScFv-fc-ly) in treatment of streptococcus mutans infection. CN115232207A. 2022.
  • Heggers JP, Kucukcelebi A, Stabenau CJ, et al. Wound healing effects of aloe gel and other topical antibacterial agents on rat skin. Phytother Res. 1995;9(6):455–457. doi: 10.1002/ptr.2650090615
  • Hutter JA, Salman M, Stavinoha WB, et al. Antiinflammatory C-glucosyl chromone from Aloe barbadensis. J Nat Prod. 1996 May;59:(5):541–3. doi: 10.1021/np9601519
  • Im SA, Oh ST, Song S, et al. Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol. 2005 Feb 1;5(2):271–279. doi: 10.1016/j.intimp.2004.09.031
  • Mehrani SJ, Gill P. Fabrication of aloe vera nano-cellulose via mechanical method. WO2018104971A1. 2018.
  • Fu Q. Bioactive borate glasses. WO2020106514A1. 2020.
  • Fu Q. Bioactive silicate glasses. WO2020112404A1. 2020.
  • Shi X. Cra4s1 gene, encoded Cra4s1 protein, and application. WO2021017365A1. 2021.
  • Daniela CDMA, Fernanda PDS, João CPDM, et al. Use of microstructured polymer with Limonium brasiliense and respective microparticles. BR102020023491A2. 2022.
  • Zhang HG. Plant-derived exosome-like nanoparticles inhibit bacterial pathogenicity. WO2020180801A1. 2020.
  • Nara PL, Sindelar DL, Antigen-binding molecules that bind to Porphyromonas gingivalis. WO2022098661A1. 2022
  • Kutschera GM, Mang TS, Photodynamic therapy compositions and methods of use thereof. WO2022056299A1. 2022
  • Reynolds EC, Slakeski N. Chimeric polypeptides. WO2023137519A1. 2023.
  • Sun X, Lin T, Chen S, et al. Application of OTUD6A protein in preparation of medicine for preventing or treating periodontitis. CN116042815A. 2023.
  • Wu PC, Shieh DB, Cheng FY, et al. Methods for treating periodontal diseases. US2020172961A1. 2020.
  • Liu C, Chen R, Du M. An immunoliposome drug targeting Porphyromonas gingivalis and its preparation method and application. CN116392444A. 2023.
  • Liu CI, Lin YS, Su HJ, et al. Composition for inhibition of Streptococcus mutans. TW202247840A. 2022.
  • Yang Y, Li Q, Yang D. Cascade nano-enzyme for targeted photocatalysis of Streptococcus mutans biological membrane. CN115671264A. 2023.
  • Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 2017 Jun 1;133:63–73. doi: 10.1016/j.bcp.2017.01.003
  • Schofield C. Antibiotics: current innovations and future trends. Norfolk (UK): Caister Academic Press; Sánchez, Sergio, Demain, Arnold L, 2015. p. 430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.