157
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights

, , , , , & show all
Received 01 Dec 2023, Accepted 08 Apr 2024, Published online: 21 Apr 2024

References

  • Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (kdigo) controversies conference. Kidney Int. 2015 Jul;88(1):17–27.
  • Harris PC, Torres VE. Polycystic kidney disease, autosomal dominant. Adam M, Everman D Mirzaa G, editors. Seattle (WA): GeneReviews((R)); 1993.
  • Bergmann C, Guay-Woodford LM, Harris PC, et al. Polycystic kidney disease. Nat Rev Dis Primers. 2018 Dec 6;4(1):50. doi: 10.1038/s41572-018-0047-y
  • Colbert GB, Elrggal ME, Gaur L, et al. Update and review of adult polycystic kidney disease. Dis Mon. 2020 May;66(5):100887.
  • Gonzalez-Perrett S, Kim K, Ibarra C, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2±permeable nonselective cation channel. Proc Natl Acad Sci USA. 2001 Jan 30;98(3):1182–1187. doi: 10.1073/pnas.98.3.1182
  • Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002 Mar;4(3):191–197.
  • Mangolini A. Role of calcium in polycystic kidney disease: from signaling to pathology. World J Nephrol. 2016 Jan 6;5(1):76–83. doi: 10.5527/wjn.v5.i1.76
  • Liu X, Tang J, Chen XZ. Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front physiol. 2022;13:962571. doi: 10.3389/fphys.2022.962571
  • Kim DY, Park JH. Genetic mechanisms of ADPKD. Adv Exp Med Biol. 2016;933:13–22.
  • Lee SH, Somlo S. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res Clin Pract. 2014; Jun.33(2):73–78. doi: 10.1016/j.krcp.2014.05.002
  • Ma M. Cilia and polycystic kidney disease. Semin Cell Dev Biol. 2021 Feb;110:139–148. doi: 10.1016/j.semcdb.2020.05.003
  • Rossetti S, Consugar MB, Chapman AB, et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007 Jul;18(7):2143–2160.
  • Torres VE, Harris PC. Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol. 2006 Jan;2(1):40–55. quiz 55. doi: 10.1038/ncpneph0070
  • Chebib FT, Sussman CR, Wang X, et al. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol. 2015 Aug;11(8):451–464.
  • Orisio S, Noris M, Rigoldi M, et al. Mutation analysis of pkd1 and pkd2 genes in a large Italian cohort reveals novel pathogenic variants including a novel complex rearrangement. Nephron. 2023 May 25. doi: 10.1159/000530657
  • Gall E C-L, Audrezet MP, Rousseau A, et al. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016 Mar;27(3):942–951.
  • Gall E C-L, Audrezet MP, Le Meur Y, et al. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat. 2014 Dec;35(12):1393–1406.
  • Gall E C-L, Audrezet MP, Chen JM, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013 May;24(6):1006–1013.
  • Cornec-Le Gall E, Torres VE, Harris PC. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am Soc Nephrol. 2018; Jan.29(1):13–23. doi: 10.1681/ASN.2017050483
  • Harris PC, Bae KT, Rossetti S, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006 Nov;17(11):3013–3019.
  • Irazabal MV, Rangel LJ, Bergstralh EJ, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015 Jan;26(1):160–172.
  • Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012 Dec 20;367(25):2407–2418. doi: 10.1056/NEJMoa1205511
  • Gattone VH 2nd, Wang X, Harris PC, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003 Oct;9(10):1323–1326.
  • Juul KV, Bichet DG, Nielsen S, et al. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol. 2014 May 1;306(9):F931–40. doi: 10.1152/ajprenal.00604.2013
  • Capuano I, Buonanno P, Riccio E, et al. Tolvaptan vs. somatostatin in the treatment of ADPKD: a review of the literature. Clin Nephrol. 2022 Mar;97(3):131–140.
  • Torres VE, Chapman AB, Devuyst O, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4: 4 Trial. Nephrol Dial Transplant. 2018 Mar 1;33(3):477–489. doi: 10.1093/ndt/gfx043
  • Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017 Nov 16;377(20):1930–1942. doi: 10.1056/NEJMoa1710030
  • Muller RU, Messchendorp AL, Birn H, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA working group on inherited kidney disorders, the European rare kidney disease reference network and polycystic kidney disease international. Nephrol Dial Transplant. 2022 Apr 25;37(5):825–839. doi: 10.1093/ndt/gfab312
  • Murakami T, Nishimura K, Ono H, et al. Clinical characteristics associated with 1-year tolvaptan efficacy in autosomal dominant polycystic kidney disease with a wide range of kidney functions. J Med Invest. 2020;67(3.4):315–320. doi: 10.2152/jmi.67.315
  • Gkika V, Louka M, Tsagkatakis M, et al. The efficacy, the treatment response and the aquaretic effects of a three-year tolvaptan regimen in polycystic kidney disease patients. Clin Pract. 2023 Aug 24;13(5):1035–1042. doi: 10.3390/clinpract13050092
  • Todorova P, Arjune S, Hendrix C, et al. Interaction between determinants governing urine volume in patients with ADPKD on tolvaptan and its impact on quality of life. Kidney Int Rep. 2023 Aug;8(8):1616–1626.
  • Calvaruso L, Yau K, Akbari P, et al. Real-life use of tolvaptan in ADPKD: a retrospective analysis of a large Canadian cohort. Sci Rep. 2023 Dec 14;13(1):22257. doi: 10.1038/s41598-023-48638-9
  • Kramers BJ, Koorevaar IW, van Gastel MDA, et al. Effects of hydrochlorothiazide and metformin on aquaresis and nephroprotection by a vasopressin v2 receptor antagonist in ADPKD: a randomized crossover trial. Clin J Am Soc Nephrol. 2022 Apr;17(4):507–517.
  • Trillini M, Caroli A, Perico N, et al. Effects of octreotide-long-acting release added-on tolvaptan in patients with autosomal dominant polycystic kidney disease: pilot, randomized, placebo-controlled, cross-over trial. Clin J Am Soc Nephrol. 2023 Feb 1;18(2):223–233. doi: 10.2215/CJN.0000000000000049
  • Alpers DH, Lewis JH, Hunt CM, et al. Clinical pattern of tolvaptan-associated liver injury in trial participants with autosomal dominant polycystic kidney disease (ADPKD): an analysis of pivotal clinical trials. Am J Kidney Dis. 2023 Mar;81(3):281–293 e1.
  • Watkins PB, Lewis JH, Kaplowitz N, et al. Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf. 2015 Nov;38(11):1103–1113.
  • Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, et al. Tolvaptan for children and adolescents with autosomal dominant polycystic kidney disease: randomized controlled trial. Clin J Am Soc Nephrol. 2023 Jan 1;18(1):36–46. doi: 10.2215/CJN.0000000000000022
  • Caroli A, Perico N, Perna A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet. 2013 Nov 2;382(9903):1485–1495. doi: 10.1016/S0140-6736(13)61407-5
  • Perico N, Ruggenenti P, Perna A, et al. Octreotide-LAR in later-stage autosomal dominant polycystic kidney disease (ALADIN 2): a randomized, double-blind, placebo-controlled, multicenter trial. PLOS Med. 2019 Apr;16(4):e1002777.
  • Hogan MC, Masyuk T, Bergstralh E, et al. Efficacy of 4 years of octreotide long-acting release therapy in patients with severe polycystic liver disease. Mayo Clin Proc. 2015 Aug;90(8):1030–1037.
  • Pisani A, Sabbatini M, Imbriaco M, et al. Long-term effects of octreotide on liver volume in patients with polycystic kidney and liver disease. Clin Gastroenterol Hepatol. 2016 Jul;14(7):1022–1030 e4.
  • van Aerts RMM, Kievit W, D’Agnolo HMA, et al. Lanreotide reduces liver growth in patients with autosomal dominant polycystic liver and kidney disease. Gastroenterology. 2019 Aug;157(2):481–491 e7.
  • Spinelli L, Pisani A, Giugliano G, et al. Left ventricular dysfunction in ADPKD and effects of octreotide-LAR: a cross-sectional and longitudinal substudy of the ALADIN trial. Int J Cardiol. 2019 Jan 15;275:145–151. doi: 10.1016/j.ijcard.2018.10.063
  • Hanaoka K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol. 2000; Jul.11(7):1179–1187. doi: 10.1681/ASN.V1171179
  • Hanaoka K, Devuyst O, Schwiebert EM, et al. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol. 1996 Jan;270(1 Pt 1):C389–99.
  • Distefano G, Boca M, Rowe I, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009 May;29(9):2359–2371.
  • Spirli C, Okolicsanyi S, Fiorotto R, et al. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology. 2010 May;51(5):1778–1788.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033. doi: 10.1126/science.1160809
  • Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013 Apr;19(4):488–493.
  • Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023; Apr.24(4):255–272. doi: 10.1038/s41580-022-00547-x
  • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003 Nov 26;115(5):577–590. doi: 10.1016/S0092-8674(03)00929-2
  • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008 Apr 25;30(2):214–226. doi: 10.1016/j.molcel.2008.03.003
  • Caplan MJ. AMPK and polycystic kidney disease drug development: an interesting off-target target. Front Med. 2022;9:753418. doi: 10.3389/fmed.2022.753418
  • Zheleznova NN, Wilson PD, Staruschenko A. Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta. 2011; Oct.1812(10):1301–1313. doi: 10.1016/j.bbadis.2010.10.004
  • Nowak KL, Hopp K. Metabolic reprogramming in autosomal dominant polycystic kidney disease: evidence and therapeutic potential. Clin J Am Soc Nephrol. 2020 Apr 7;15(4):577–584. doi: 10.2215/CJN.13291019
  • Soomro I, Sun Y, Li Z, et al. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant. 2020 Oct 1;35(10):1824. doi: 10.1093/ndt/gfz109
  • Sun W, Lee TS, Zhu M, et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation. 2006 Dec 12;114(24):2655–2662. doi: 10.1161/CIRCULATIONAHA.106.630194
  • Dehnavi S, Kiani A, Sadeghi M, et al. Targeting AMPK by statins: a potential therapeutic approach. Drugs. 2021 Jun;81(8):923–933.
  • Takiar V, Nishio S, Seo-Mayer P, et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA. 2011 Feb 8;108(6):2462–2467. doi: 10.1073/pnas.1011498108
  • Chang MY, Ma TL, Hung CC, et al. Metformin inhibits cyst formation in a zebrafish model of polycystin-2 deficiency. Sci Rep. 2017 Aug 2;7(1):7161. doi: 10.1038/s41598-017-07300-x
  • Ong ACM, Gansevoort RT. Tameing ADPKD with metformin: safe and effective? Kidney Int. 2021; Sep.100(3):513–515. doi: 10.1016/j.kint.2021.07.021
  • Leonhard WN, Song X, Kanhai AA, et al. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine. 2019 Sep;47:436–445. doi: 10.1016/j.ebiom.2019.08.041
  • Perrone RD, Abebe KZ, Watnick TJ, et al. Primary results of the randomized trial of metformin administration in polycystic kidney disease (TAME PKD). Kidney Int. 2021 Sep;100(3):684–696.
  • Blazer-Yost BL, Haydon J, Eggleston-Gulyas T, et al. Pioglitazone attenuates cystic burden in the pck rodent model of polycystic kidney disease. PPAR Res. 2010;2010:1–8. doi: 10.1155/2010/274376
  • Flaig SM, Gattone VH, Blazer-Yost BL. Inhibition of cyst growth in PCK and Wpk rat models of polycystic kidney disease with low doses of peroxisome proliferator-activated receptor gamma agonists. J Transl Int Med. 2016 Sep 1;4(3):118–126. doi: 10.1515/jtim-2016-0028
  • Blazer-Yost BL, Bacallao RL, Erickson BJ, et al. A randomized phase 1b cross-over study of the safety of low-dose pioglitazone for treatment of autosomal dominant polycystic kidney disease. Clin Kidney J. 2021 Jul;14(7):1738–1746.
  • Cadnapaphornchai MA, George DM, McFann K, et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2014 May;9(5):889–896.
  • Baliga MM, Klawitter J, Christians U, et al. Metabolic profiling in children and young adults with autosomal dominant polycystic kidney disease. Sci Rep. 2021 Mar 23;11(1):6629. doi: 10.1038/s41598-021-84609-8
  • Hallows KR, Li H, Saitta B, et al. Beneficial effects of bempedoic acid treatment in polycystic kidney disease cells and mice. Front Mol Biosci. 2022;9:1001941. doi: 10.3389/fmolb.2022.1001941
  • Zhao J, Ma Y, Zhang Y, et al. Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. Cell Death Discov. 2019;5(1):76. doi: 10.1038/s41420-019-0156-8
  • Soomro I, Sun Y, Li Z, et al. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant. 2018 Aug 1;33(8):1343–1353. doi: 10.1093/ndt/gfx349
  • Maxson R, Starr J, Sewell J, et al. SGLT2 inhibitors to slow chronic kidney disease progression: a review. Clin Ther. 2023 Nov 9;46(1):e23–e28. doi: 10.1016/j.clinthera.2023.10.014
  • Afsar B, Afsar RE, Demiray A, et al. Sodium-glucose cotransporter inhibition in polycystic kidney disease: fact or fiction. Clin Kidney J. 2022 Jul;15(7):1275–1283.
  • Wang X, Zhang S, Liu Y, et al. Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han: SPRD rats. Kidney Int. 2013 Nov;84(5):962–968.
  • Rodriguez D, Kapoor S, Edenhofer I, et al. Inhibition of sodium-glucose cotransporter 2 with dapagliflozin in han: SPRD rats with polycystic kidney disease. Kidney Blood Press Res. 2015;40(6):638–647. doi: 10.1159/000368540
  • Kapoor S, Rodriguez D, Riwanto M, et al. Effect of sodium-glucose cotransport inhibition on polycystic kidney disease progression in pck rats. PLOS ONE. 2015;10(4):e0125603. doi: 10.1371/journal.pone.0125603
  • Morioka F, Nakatani S, Uedono H, et al. Short-term dapagliflozin administration in autosomal dominant polycystic kidney disease—a retrospective single-arm case series study. J Clin Med. 2023 Oct 3;12(19):6341. doi: 10.3390/jcm12196341
  • Sweeney WE Jr., von Vigier RO, Frost P, et al. Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol. 2008 Jul;19(7):1331–1341.
  • Tesar V, Ciechanowski K, Pei Y, et al. Bosutinib versus placebo for autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2017 Nov;28(11):3404–3413.
  • Gambacorti-Passerini C, Cortes JE, Lipton JH, et al. Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol. 2014 Oct;89(10):947–953.
  • Sweeney WE, Frost P, Avner ED. Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease. World J Nephrol. 2017 Jul 6;6(4):188–200. doi: 10.5527/wjn.v6.i4.188
  • Reed BY, Masoumi A, Elhassan E, et al. Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease. Kidney Int. 2011 Jan;79(1):128–134.
  • Huang JL, Woolf AS, Long DA. Angiogenesis and autosomal dominant polycystic kidney disease. Pediatr Nephrol. 2013; Sep.28(9):1749–1755. doi: 10.1007/s00467-012-2305-7
  • Raina S, Honer M, Kramer SD, et al. Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am J Physiol Renal Physiol. 2011 Oct;301(4):F773–83.
  • Woodhead JL, Pellegrini L, Siler SQ, et al. Prospective liver safety comparison of two treatments for autosomal-dominant polycystic kidney disease (ADPKD) using quantitative systems toxicology modeling. J Pharmacokinet Pharmacodyn. 2019;37(2):44. doi: 10.1007/s11095-019-2726-0
  • Wang X, Constans MM, Chebib FT, et al. Effect of a vasopressin v2 receptor antagonist on polycystic kidney disease development in a rat model. Am J Nephrol. 2019;49(6):487–493. doi: 10.1159/000500667
  • Centessa. Available from: https://investors.centessa.com/news-releases/news-release-details/centessa-pharmaceuticals-makes-strategic-decision-discontinue
  • Omar F, Findlay JE, Carfray G, et al. Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc Natl Acad Sci USA. 2019 Jul 2;116(27):13320–13329. doi: 10.1073/pnas.1822113116
  • Albaqumi M, Srivastava S, Li Z, et al. KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int. 2008 Sep;74(6):740–749.
  • Trant J, Sanchez G, McDermott J, et al. Ouabain enhances renal cyst growth in a slowly progressive mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol. 2023 Oct 12;325(6):F857–F869. doi: 10.1152/ajprenal.00056.2023
  • Shayman JA. Targeting glucosylceramide synthesis in the treatment of rare and common renal disease. Semin Nephrol. 2018; Mar.38(2):183–192. doi: 10.1016/j.semnephrol.2018.01.007
  • Natoli TA, Smith LA, Rogers KA, et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med. 2010 Jul;16(7):788–792.
  • Deshmukh GD, Radin NS, Gattone VH, et al. Abnormalities of glycosphingolipid, sulfatide, and ceramide in the polycystic (cpk/cpk) mouse. J Lipid Res. 1994 Sep;35(9):1611–1618. 2nd. doi: 10.1016/S0022-2275(20)41159-9
  • Ruh H, Salonikios T, Fuchser J, et al. MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res. 2013 Oct;54(10):2785–2794.
  • Chatterjee S, Shi WY, Wilson P, et al. Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J Lipid Res. 1996 Jun;37(6):1334–1344.
  • Gansevoort RT, Hariri A, Minini P, et al. Venglustat, a novel glucosylceramide synthase inhibitor, in patients at risk of rapidly progressing ADPKD: primary results of a double-blind, placebo-controlled, phase 2/3 randomized clinical trial. Am J Kidney Dis. 2023 May;81(5):517–527 e1.
  • Kottgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Bio. 2008 Aug 11;182(3):437–447. doi: 10.1083/jcb.200805124
  • Capuano I, Buonanno P, Riccio E, et al. Therapeutic advances in ADPKD: the future awaits. J Nephrol. 2022 Mar;35(2):397–415.
  • Gradilone SA, Masyuk TV, Huang BQ, et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology. 2010 Jul;139(1):304–14 e2.
  • Saito M, Otsu W, Miyadera K, et al. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci. 2023;10:1232188. doi: 10.3389/fmolb.2023.1232188
  • Chen NX, Moe SM, Eggleston-Gulyas T, et al. Calcimimetics inhibit renal pathology in rodent nephronophthisis. Kidney Int. 2011 Sep;80(6):612–619.
  • Gattone VH 2nd, Chen NX, Sinders RM, et al. Calcimimetic inhibits late-stage cyst growth in ADPKD. J Am Soc Nephrol. 2009 Jul;20(7):1527–1532.
  • Di Mise A, Tamma G, Ranieri M, et al. Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep. 2018 Apr 9;8(1):5704. doi: 10.1038/s41598-018-23732-5
  • Leuenroth SJ, Crews CM. Studies on calcium dependence reveal multiple modes of action for triptolide. Chem Biol. 2005; Dec.12(12):1259–1268. doi: 10.1016/j.chembiol.2005.09.009
  • Leuenroth SJ, Okuhara D, Shotwell JD, et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci USA. 2007 Mar 13;104(11):4389–4394. doi: 10.1073/pnas.0700499104
  • Chen D, Ma Y, Wang X, et al. Triptolide-containing formulation in patients with autosomal dominant polycystic kidney disease and proteinuria: an uncontrolled trial. Am J Kidney Dis. 2014 Jun;63(6):1070–1072.
  • Capelli I, Lerario S, Aiello V, et al. Diet and physical activity in adult dominant polycystic kidney disease: a review of the literature. Nutrients. 2023 Jun 3;15(11). doi: 10.3390/nu15112621
  • Kipp KR, Rezaei M, Lin L, et al. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol. 2016 Apr 15;310(8):F726–F731. doi: 10.1152/ajprenal.00551.2015
  • Warner G, Hein KZ, Nin V, et al. Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol. 2016 May;27(5):1437–1447.
  • Hopp K, Catenacci VA, Dwivedi N, et al. Weight loss and cystic disease progression in autosomal dominant polycystic kidney disease. iScience. 2022 Jan 21;25(1):103697. doi: 10.1016/j.isci.2021.103697
  • Torres JA, Kruger SL, Broderick C, et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 2019 Dec 3;30(6):1007–1023 e5. doi: 10.1016/j.cmet.2019.09.012
  • Strubl S, Oehm S, Torres JA, et al. Ketogenic dietary interventions in autosomal dominant polycystic kidney disease-a retrospective case series study: first insights into feasibility, safety and effects. Clin Kidney J. 2022 Jun;15(6):1079–1092.
  • Testa F, Marchiò M, D’Amico R, et al. GREASE II. A phase II randomized, 12-month, parallel-group, superiority T study to evaluate the efficacy of a modified atkins diet in autosomal dominant polycystic kidney disease patients. Pharmanutrition. 2020;13:100206. doi: 10.1016/j.phanu.2020.100206
  • Oehm S, Steinke K, Schmidt J, et al. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2023 Jun 30;38(7):1623–1635. doi: 10.1093/ndt/gfac311
  • Cukoski S, Lindemann CH, Arjune S, et al. Feasibility and impact of ketogenic dietary interventions in polycystic kidney disease: KETO-ADPKD-a randomized controlled trial. Cell Rep Med. 2023 Nov 21;4(11):101283. doi: 10.1016/j.xcrm.2023.101283
  • Zittema D, Boertien WE, van Beek AP, et al. Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin J Am Soc Nephrol. 2012 Jun;7(6):906–913.
  • Nagao S, Nishii K, Katsuyama M, et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol. 2006 Aug;17(8):2220–2227.
  • Hopp K, Wang X, Ye H, et al. Effects of hydration in rats and mice with polycystic kidney disease. Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F261–6. doi: 10.1152/ajprenal.00345.2014
  • Taylor JM, Hamilton-Reeves JM, Sullivan DK, et al. Diet and polycystic kidney disease: a pilot intervention study. Clin Nutr. 2017 Apr;36(2):458–466.
  • Wang CJ, Creed C, Winklhofer FT, et al. Water prescription in autosomal dominant polycystic kidney disease: a pilot study. Clin J Am Soc Nephrol. 2011 Jan;6(1):192–197.
  • Amro OW, Paulus JK, Noubary F, et al. Low-osmolar diet and adjusted water intake for vasopressin reduction in autosomal dominant polycystic kidney disease: a pilot randomized controlled trial. Am J Kidney Dis. 2016 Dec;68(6):882–891.
  • Barash I, Ponda MP, Goldfarb DS, et al. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010 Apr;5(4):693–697.
  • El-Damanawi R, Lee M, Harris T, et al. High water vs. ad libitum water intake for autosomal dominant polycystic kidney disease: a randomized controlled feasibility trial. QJM. 2020 Apr 1;113(4):258–265. doi: 10.1093/qjmed/hcz278
  • Rangan GK, Wong ATY, Munt A, et al. Prescribed water intake in autosomal dominant polycystic kidney disease. NEJM Evidence. 2021;1:1–13.
  • Torres VE, Erickson SB, Smith LH, et al. The association of nephrolithiasis and autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1988 Apr;11(4):318–325.
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402
  • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008 Apr 17;452(7189):896–899. doi: 10.1038/nature06783
  • Ramalingam H, Yheskel M, Patel V. Modulation of polycystic kidney disease by non-coding RNAs. Cell Signal. 2020 Jul;71:109548. doi: 10.1016/j.cellsig.2020.109548
  • Lakhia R, Ramalingam H, Chang CM, et al. PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression. Nat Commun. 2022;13:4765. doi: 10.1038/s41467-022-32543-2
  • Lee E, Valencia TM, Owen T, et al. RGLS4326 increases urinary pc1 and pc2 levels in individuals with autosomal dominant polycystic kidney disease (ADPKD). American Society Nephrol Kidney Week. 2021;1:1. Abstract PO1244
  • Lee EC, Valencia T, Allerson C, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019 Sep 12;10(1):4148. doi: 10.1038/s41467-019-11918-y
  • Onuchic L, Padovano V, Schena G, et al. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nat Commun. 2023 Mar 30;14(1):1790. doi: 10.1038/s41467-023-37449-1
  • Tran T, Song CJ, Nguyen T, et al. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell. 2022;29(7):1083–1101. doi: 10.1016/j.stem.2022.06.005
  • Cruz NM, Song X, Czerniecki SM, et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 2017 Nov;16(11):1112–1119.
  • Hiratsuka K, Miyoshi T, Kroll KT, et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. Sci Adv. 2022 Sep 23;8(38):eabq0866. doi: 10.1126/sciadv.abq0866
  • Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015 Oct 23;6:8715. doi: 10.1038/ncomms9715
  • Kuraoka S, Tanigawa S, Taguchi A, et al. PKD1-Dependent renal cystogenesis in human induced pluripotent stem cell-derived ureteric bud/collecting duct organoids. J Am Soc Nephrol. 2020 Oct;31(10):2355–2371.
  • Benedetti V, Brizi V, Guida P, et al. Engineered kidney tubules for modeling patient-specific diseases and drug discovery. EBioMedicine. 2018 Jul;33:253–268. doi: 10.1016/j.ebiom.2018.06.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.